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Abstract 

Local climate zones play an important role in understanding microclimates in urban areas, contributing to urban planning, 

environmental sustainability and human comfort. Istanbul, a city connecting the European and Asian continents, creates microclimate 

diversity in city areas with the influence of different land use models. The concept of Urban Head Island (UHI) arises when urban areas 

have different temperatures with neighboring rural areas. The lack of a universally accepted definition of the concept of urban and rural 

areas has created difficulties in the evaluation of this concept. In response to this situation, a standardized Local Climate Zone (LCZ) 

classification system for urban temperature observations was created. This study performs LCZ classification with YOLOV8, one of 

the deep learning-based image segmentation models, using high-resolution Istanbul Google Earth images. Labeled data was created 

from WUDAPT's Google Earth images according to the post "Things to consider when creating LCZ training areas". Model training 

was carried out by creating a dataset by labeling high-resolution, bird's-eye view images of Istanbul obtained from Google Earth, 

paying attention to the diversity of LCZ categories. Box P 0.263, R 0.341, mAP50 0.317, mAP50-95 0.219 and Mask P 0.254, R 0.318, 

mAP50 0.404, mAP50-95 0.305 model metric values obtained after training were calculated. Although these values are below 50 

percent, the LCZ class predictions appear to be largely accurate in the labeled result images. Metric results are important for improving 

the model and detecting weak points. This research contributes to the field of urban climate studies by providing a robust and scalable 

approach to LCZ classification using advanced deep learning techniques. The results can form the basis for urban planning, 

environmental sustainability and informed decision-making processes in the context of Istanbul's urban environment. 
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Introduction 

The city plays a crucial role in the ongoing development 

of human society. Urbanization stands out as one of the 

most significant phenomena globally today (Li, et al., 

2019; Shen, et al., 2020; Wu, et al., 2020; Zhou, et al., 

2020). As urbanization progresses, cities undergo 

substantial expansion, often at the expense of encroaching 

upon agricultural land and green open spaces (Zhou, et al., 

2020; Huang and Wang, 2020; Shao, et al., 2020). 

Simultaneously, there is a significant influx of population 

into urban areas, contributing to urban growth (Li, et al., 

2016; Trinder and Liu, 2020; Shao, et al., 2021). 

Increasing urban populations and simultaneous ecological 

threats pose formidable challenges for cities grappling 

with the repercussions of rapid urbanization (Alsaaideh, 

et al., 2017). The 20th century witnessed a rapid increase. 

This rapid increase has led to the transformation of natural 

landscapes in urban areas into artificial surfaces, buildings 

and roads, causing significant changes in the urban area 

and climate (Taha, 1997). Cities, urban expansion, as we 

overcome the complexity of population growth and 

ecological problems, there is a need to balance solutions 

with environmental sustainability. The Urban Heat Island 

(UHI) effect, which is defined as the increase in 

temperature within a city differently than the temperature 

of neighboring rural areas (Memon, et al., 2008), is 

worsened by rapid urbanization and changes in land cover 

(Ruiz and Correa, 2015). The Urban Heat Island (UHI) 

effect stands out as an important environmental problem 

resulting from irregular and unplanned city construction 

during the urbanization process (Yang, et al., 2020). UHI 

manifests itself as higher temperatures in urban areas 

compared to neighboring rural areas. Researchers 

revealed the UHI intensity with traditional measurements 

by examining the temperature difference in urban and 

rural areas (Jiang, et al., 2006; Zheng, et al., 2018; 

Steward and Oke, 2012; Hadeel, et al., 2009; Zhou, et al., 

2020; Huang, et al., 2021). The UHI effect occurs for 

many reasons. In addition to factors that people can 

control such as green areas, building materials, building 

heights, parking areas, and building spacing, natural 

factors such as wind speed, cloudiness, aspect, elevation, 

and water areas also affect this situation. Both sets of 

factors are important in influencing the formation of urban 

heat islands. The main sources of heating in cities include 

human-induced heat sources such as traffic, power plants, 

home heating and cooling systems, as well as factors that 

people can control. In addition, the absorption and 

dissipation of heat by complex urban structures also 

causes warming in cities (Memon, et al., 2008; Diren 

Research  Article 

How to cite: Nicanci Sinanoglu and Kaya (2024). Local Climate Zone Classification Using YOLOV8 Modeling in Instance Segmentation 

Method. International Journal of Environment and Geoinformatics (IJEGEO), 11(2): 001-009. doi.10.30897/ijegeo.1456352 

https://orcid.org/0009-0001-8230-1071
https://orcid.org/0000-0002-4962-0492
https://orcid.org/0009-0001-8230-1071
https://orcid.org/0000-0002-4962-0492


Nicanci Sinanoglu and Kaya / IJEGEO 11(2):001-009(2024) 

2 

Ustün, et al., 2022). Research has shown that urban green 

spaces provide cooling and increase outdoor thermal 

comfort during hot seasons. These green spaces can 

significantly reduce environmental stress caused by heat 

island effects (Akpinar, 2016). 

Considering the constraints of the built urban landscape, 

which is especially evident in vibrant metropolises such 

as Istanbul, the necessity of increasing green areas 

becomes very important. In order to expand green areas, 

roofs, facades and roadsides should be determined as 

priority areas, and special attention should be paid to areas 

that lack green areas and are faced with high population 

density and building density (Kuscu Simsek and 

Sengezer, 2012). One of the problems experienced in 

densely populated areas is temperature fluctuation. One of 

the problems experienced in densely populated areas is 

temperature fluctuation. Considering these, it is necessary 

to prevent the problems arising from unplanned cities 

built without considering the future, especially in 

developed and constantly developing cities that receive 

constant migration, such as Istanbul. 

The lack of universal definitions for determining urban 

and rural areas makes it difficult to classify these areas. 

This uncertainty in the classification of urban and rural 

areas makes it significantly difficult to accurately assess 

the Urban Heat Island (UHI) effect. The scope and rigor 

of UHI research may be limited due to the lack of a 

standardized classification. The Local Climate Zone 

(LCZ) scheme has emerged as an important classification 

system that provides a standardized framework for urban 

temperature observations in studies of the UHI impact. 

The LCZ classification system not only facilitates UHI 

research but also sets a standard for understanding urban 

temperature dynamics worldwide. The increasing 

adoption of deep learning algorithms for LCZ 

classification further increases the potential of LCZ 

classification. Before the advent of Local Climate Zone 

(LCZ) algorithms, the difference between urban areas and 

neighboring rural areas was examined to measure Urban 

Heat Island Intensity (UHII), a commonly used indicator 

to characterize the UHI impact. (Estoque, R.C.,2016). 

However, as urbanization progressed and urban-rural 

boundaries blurred, the method of comparing rural and 

urban hindered accurate UHI characterization.  

Stewart and Oke (2012) introduced the LCZ scheme to 

objectively classify urban and rural land covers by 

considering the developmental impact on local 

temperatures. They suggested using LCZ X – LCZ D to 

represent KSE; where the KSE temperature is defined as 

the temperature of any LCZ (LCZ X) minus the 

temperature of LCZ D (Estoque., 2016). LCZ classes are 

shown in “Fig.1”. Recent years have seen a surge in global 

LCZ studies, particularly dominated by research in China 

(Yang, et al., 2019) and the United States (Middel, et al., 

2014). Various countries and regions have undertaken 

empirical research combined with LCZ, expanding its 

applications beyond its initial intent for field site 

classification in UHI studies (Stewart, et al., 2014). In its 

first decade, LCZ applications have diversified, with a 

review of the range of represented research topics using 

biometric tools. This comprehensive overview identifies 

future trends for LCZ applications in urban research. 

Mapping studies using the LCZ classification system are 

carried out with different techniques. Although 

classification with deep learning techniques is one of 

these techniques, the newest image segmentation models 

have not been used in LCZ classification and have not 

been used to detect LCZ changes more clearly and quickly 

in metropolitan city areas such as Istanbul, where LCZ 

classes can change. This paper working on these issues in 

this article, we aim to make the detection of LCZ changes 

in city areas more clearly and quickly with the new 

segmentation model developed. In the following sections, 

the article is explained as working area dataset preparation 

for image segmentation, creating a labeled dataset for the 

segmentation model, the method and model used for 

segmentation, model results, and finally the summary and 

conclusion of the study. 

Study Area and Dataset 

Our study focuses on the dynamic and culturally rich city 

of Istanbul, a unique metropolis spanning two continents, 

Europe and Asia, as seen in “Fig.2”. Istanbul, with its 

strategic location at the crossroads of diverse cultures, 

presents a compelling urban environment for the 

exploration of Local Climate Zones (LCZs). The 

geographical scope of our investigation includes key 

districts and neighborhoods within the expansive 

metropolitan area of Istanbul, covering approximately 

5,343 km². Istanbul's distinctive geographic features 

include the Strait of Istanbul (Bosporus), which separates 

the European and Asian sides of the city, contributing to 

its climatic diversity. Istanbul experiences a 

Mediterranean climate, characterized by hot, dry summers 

and mild, wet winters. The city's topography, historic 

architecture, and modern developments create a mosaic of 

LCZs, as seen in “Fig.1” ranging from compact low-rise 

(LCZ 3) areas with preserved historical structures, such as 

the iconic Hagia Sophia and Blue Mosque, to zones with 

intensive industrial activities (LCZ 8 and LCZ 10) 

reflecting the city's economic vibrancy. Midrise and high-

rise compact buildings from the build cover LCZ classes 

seen in “Fig.1” are very common in Istanbul.   

Istanbul's urban fabric is a mixture of residential, 

commercial and industrial land uses and has a diverse 

urban landscape. It aims to use the Local Climate Zone 

(LCZ) classification to better understand Istanbul's 

microclimates and temperature changes in urban areas. 

The main factors affecting Istanbul's LCZs can be listed 

as urban development, historical preservation efforts and 

the challenges created by population growth. The city's 

water resources, including the Sea of Marmara, the 

Golden Horn and lakes, add another dimension to the 

climate dynamics (LCZ G). This study, an analysis of 

Istanbul's LCZs, aims to add valuable information that can 

be used as a basis for urban planning, climate impact 

analysis and sustainable environmental practices tailored 

to the specific needs of this dynamic and developing 

metropolis. 
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Fig 1. Local climate zones with illustration and representation image. (Steward and Oke, 2012) 

Fig. 2. Location of Istanbul (a); Google Earth satellite image of Istanbul (b). 
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Dataset and Pre-Processing 

While creating the dataset for Local Climate Zone (LCZ) 

classification, Google Earth's high-resolution instant 

access and up-to-date satellite images, which are available 

as an open source to obtain geospatial information, were 

used. Combining satellite imagery, aerial photographs, 

and interactive maps, Google Earth provides researchers 

with a versatile resource for data collection and analysis. 

Google Earth makes it easy to explore geographic 

features, land cover, and urban morphology with high-

resolution satellite imagery. This platform is the ideal tool 

to define Local Climate Zones (LCZs) based on visual 

analysis, allowing researchers to virtually navigate 

between study zones. Figure 3 shows Istanbul city images 

taken from Google Earth for LCZ classification. As can 

be seen from the examples here, being able to designate 

the work area for research, quick access, high quality 

images and high quality downloadability are features that 

make study easier. 

The decision to utilize Google Earth data in LCZ 

classification arises from several advantages: 

 Global Coverage: Enables studying diverse

urban environments worldwide. 

 High-Resolution Imagery: Provides detailed

urban landscape analysis.

 Temporal Analysis: Facilitates tracking urban

development over time.

 Cost-Effectiveness: Economical compared to

traditional methods.

While Google Earth offers significant advantages, 

researchers must be mindful of certain limitations. The 

temporal resolution may not be as frequent as dedicated 

satellite missions, and cloud cover can obscure visibility 

in some regions. Additionally, the use of Google Earth is 

subject to its terms of service and licensing agreements. 

In conclusion, Google Earth emerges as a valuable 

resource for researchers engaged in the creation of LCZ 

classification datasets. Its global coverage, high-

resolution imagery, temporal analysis capabilities, and 

cost-effectiveness contribute to the efficiency and 

accessibility of LCZ studies, fostering advancements in 

urban climate research.  

Fig. 3. Google Earth images from some parts of Istanbul 

Fig.4. Total numbers of train, validation and test after data augmentation 
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Preparing Label Data 

A dataset of 47 images was created for Local Climate 

Zone (LCZ) classification. Each image from Google Earth 

has a resolution of 1024x768 pixels. The dataset contains 

17 different LCZ tags, with each image meticulously 

tagged. The labeled data then went through pre-

processing and data augmentation processes. As seen in 

“Fig.4”, the dataset with pre-processing and data 

augmentation resulted in a total of 121 labeled data.  

Pre-processing steps such as auto-orient and resize are 

standards set for images. The standard image size in this 

study is 640x640 pixels. As seen in “Fig.4”, three 

different data augmentation methods were used: 

clockwise, counterclockwise and upside down, rotating 

90 degrees, rotating between ±15 degrees and changing 

saturation degrees between ±20 degrees. The reason for 

using these is that smaller points can be detected by 

preventing excessive learning during training. 

Method 

In the study, the YOLOv8 model, the newest and latest 

technology that can be used in object detection, image 

classification and sample segmentation tasks, was used. 

The YOLO (You Only Look Once) architecture has 

proven to be a robust and effective framework for object 

detection tasks. The working logic of the YOLO 

architecture is to evaluate input images by dividing them 

into grids. Evaluation is made according to whether an 

object exists in each grid formed and whether the 

midpoint of the object is found or not. YOLOv8, one of 

the versions of the YOLO architecture, offers 

improvements that make it particularly suitable for the 

Local Climate Zone (LCZ) classification. YOLOv8 uses 

a unified neural network for simultaneous bounding box 

prediction and class probabilities. Unlike traditional two-

stage detectors, YOLOv8 processes images in a single 

pass, making it faster and more efficient; making it vital 

for large-scale datasets and real-time applications in LCZ 

classification. YOLOv8 includes many basic features in 

terms of visual classification performance. It uses a 

versatile backbone architecture that enables capturing 

complex classes and spatial relationships in urban 

environments. This feature is necessary for feature 

extraction from images. The YOLO layer in the 

architecture efficiently estimates object bounding boxes 

and class probabilities, making it suitable to use the model 

to detect various classes of LCZs encountered in urban 

environments. Multi-scale prediction capabilities allow 

objects of different sizes to be detected. This feature 

significantly increases the model's capacity to distinguish 

fine details in the LCZ classification, allowing accurate 

identification of urban structures and features without 

being affected by size differences of objects.  

Advantages of YOLOv8 for LCZ Classification: 

- Efficiency: YOLOv8's single-pass architecture

enables fast image processing ideal for LCZ

classification tasks and real-time applications.

- Adaptability: Flexible backbone architecture

provides effective feature extraction, making it 

easier to detect various urban areas encountered 

in LCZ classification. 

- Multi-Scale Capability: this capability increases

the performance of recognizing various urban

structures in fine detail without being affected by

size differences, meeting the requirements of the

LCZ classification.

As of January 10, 2023, there are five versions of 

YOLOv8, from YOLOv8n (the smallest model with a 

37.3 mAP score on COCO) to YOLOv8x (the largest 

model with a 53.9 mAP score on COCO) (Ultralytics).  

COCO (Common Objects in Context) is the industry 

standard benchmark for evaluating object detection 

models. When comparing models on COCO, we look at 

the mAP value and FPS measurement for inference speed. 

Models should be compared at similar inference speeds. 

“Fig.5” shows the inference speed comparison of the 

Yolov8 model with other models. “Table 1” shows the 

accuracy of YOLOv8 model versions in COCO. 

Fig. 5. A comparison between YOLOv8 and other YOLO 

models (Ultralytics) 

In summary, YOLOv8's working principle, feature 

highlights, and advantages position it as a compelling 

choice for LCZ classification tasks, offering efficiency, 

adaptability, and multi-scale capabilities that are essential 

for accurately delineating the intricate features of urban 

environments. 

There are some preliminary preparations required for 

model training with Yolo. Some of these preparations 

include labeling the images and creating a dataset, which 

we mentioned in the previous sections. When the created 

Nicanci Sinanoglu and Kaya / IJEGEO 11(2):001-009(2024) 
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dataset is ready for use, some parameters must be 

determined in order to optimize the performance of the 

model. The parameters and configurations employed 

during the training of Yolo models encompass a range of 

hyperparameters. These factors play a pivotal role in 

determining the model's effectiveness, velocity, and 

precision. Fundamental training configurations involve 

batch size, learning rate, momentum, and weight decay. 

Furthermore, the selection of optimizer, loss function, and 

composition of the training dataset can significantly 

influence the training procedure. Diligent fine-tuning and 

experimentation with these configurations are essential 

for maximizing performance. 

Table 1. YOLOv8 COCO evaluation (Ultralytics) 
Model Size 

(pixels)

mAP val 

50-95

Speed 

CPU ONNX 

(ms) 

Speed 

A100 Tensor 

RT 

(ms)

params 

(M) 
FLOPs 

(B)

YOLO v8n 640 37.3 80.4 0.99 3.2 8.7 

YOLO v8s 640 44.9 128.4 1.20 11.2 28.6 

YOLO v8m 640 50.2 234.7 1.83 25.9 78.9 

YOLO v8l 640 52.9 375.2 2.39 43.7 165.2 

YOLO v8x 640 53.9 479.1 3.53 68.2 257.8 

Although some parameters come as Default, some are 

determined specifically according to the model. 

Specifically determined model parameters are shown in 

“Table 2”. Epoch, signifies the complete passes made 

over the dataset during training. Adjusting this value 

impacts both the duration of training and the performance 

of the model. Epoch 150 was chosen here because at this 

point the performance of the model no longer changes 

significantly.  

Table 2. Model hyperparameters 

Epochs Patience Batch Img. size 

150 50 16 640 

Patience helps prevent overfitting by stopping training 

when the model's performance reaches a plateau. Patience 

value is given as 100 by default, but 50 was chosen 

because the dataset is not large. Batch size for training 

determines the number of images processed before 

updating the model's internal parameters. 16 batches are 

sufficient for GPU memory usage. All images were 

selected at size 640 to eliminate computational 

complexity and increase model accuracy. 

Results 

As a result of modeling with Yolov8 architecture using 

the Istanbul Google Earth images dataset, the Local 

Climate Zone (LCZ) classification model was developed. 

The confusion matrix results of the dataset used for this 

modeling is shown in “Fig.6”. The model was trained on 

47 satellite images, and the results indicate high accuracy 

in classifying LCZ A and LCZ G. However, further 

training is needed, especially for distinguishing LCZ1-2-

3 in urban areas where it appears challenging. 

In particular, LCZ B and LCZ C exhibit some points of 

confusion in the classification. Additionally, 

distinguishing between LCZ E and LCZ 8 poses a 

challenge and shows overlaps with other confused classes. 

Upon reviewing the results, it is evident that additional 

visual support is required for the LCZ model training. 

Fig. 6. Confusion matrix of model dataset 
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The current model may benefit from more focused 

training on LCZ1-2-3 differentiation in urban settings, as 

well as addressing the confusion points between LCZ B 

and LCZ C. Furthermore, efforts should be directed 

towards refining the model's ability to distinguish 

between LCZ E and LCZ 8. 

Tablo 3. Model Metrics 

P R mAP50 
mAP 

50-95

Box 0.263 0.341 0.317 0.219 

Mask 0.254 0.318 0.404 0.305 

“Table 3” above contains the results of various metrics 

used to measure the performance of the model. 

 Box (P, R, mAP50, mAP50-95): This indicates

the precision (P), recall (R), and average

precision (mAP) of bounding boxes for object

detection. mAP50 represents the average

precision calculated using the threshold value

corresponding to 0.5. mAP50-95 represents the

average precision calculated using threshold

values between 0.5 and 0.95.

 Mask (P, R, mAP50, mAP50-95): This shows

the precision (P), recall (R), and average

precision (mAP) of masks for instance

segmentation. Mask mAP50 represents the

average precision calculated using the threshold

value corresponding to 0.5. Mask mAP50-95

represents the average precision calculated using

threshold values between 0.5 and 0.95.

When the metric results are evaluated, we see that the 

results do not exceed 50 percent. This is an expected result 

due to the small size of the data set used. Low values here 

do not mean that the segmentation is working incorrectly. 

Whether the values are acceptable or not can be evaluated 

as a result of comparisons with different datasets and 

models. These measurements are necessary results to help 

improve the model and understand weak points. 

Summary and Conclusions 

The results classified according to the model using 

Istanbul images are shown in “Fig.7”. Expressions 1-9 

and A-G in these images are abbreviations for LCZ 

classes, Structure Types LCZ 1-9 and Land Cover Types 

LCZ A-G. The decimal expressions indicated in the 

images are percentage results (0.3 percent to 30 percent) 

and represent an estimate of which LCZ class the marked 

region belongs to. In examining the result visuals in 

“Fig.7”, it is evident that labeled images with low 

prediction probabilities often reveal accurate predictions 

upon closer inspection. Despite low predicted 

probabilities, the model demonstrates a consistent ability 

to make correct predictions. However, it underlines the 

need for a data set prepared with more detailed and 

qualitatively increased images in regions where LCZ 

classification is difficult to distinguish. 

The analysis suggests that low classification predictions 

cannot be misclassification per se and that a different 

method and larger training data are required to gain a 

more detailed understanding of the model's performance. 

Examination of the visual classification of challenging 

LCZ classes shows that the model tends to provide 

accurate LCZ classifications although the predicted 

probabilities are low. 

Fig. 7. Images labeled as a result of modeling 

It is recommended to use a more carefully selected, larger 

data set to improve the performance of the model by 

Nicanci Sinanoglu and Kaya / IJEGEO 11(2):001-009(2024) 
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removing areas of confounding. Once these adjustments 

are made, a dataset that captures the complexity of LCZ 

features even in challenging scenarios can contribute to 

achieving high-accuracy LCZ classifications without the 

need for extensive manual review. 

As a result, although the model provides effective results 

in general, there is a need to increase the quality of the 

data set and make improvements to the model, especially 

in areas prone to confusion. Knowing the region and 

creating a classification model in smaller areas can also 

contribute to improvement. While creating the data set, 

street images of the region as well as satellite images can 

be examined and visual interpretation can be strengthened 

to improve the model. The findings underscore the 

importance of dataset optimization in achieving reliable 

and accurate LCZ classification results. It is seen as a clear 

conclusion that a good modeling result can be achieved 

with a good data set and that LCZ classification can 

produce faster, more detailed and effective results even in 

difficult areas. 
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