
 

 

 

 

 

 

Investigation of Permeability of Thiocolchicoside Through Transdermal Drug Delivery System 

Using Franz Diffusion Cell 

 

Hale Karagüzel1,2 , Sezen Sivrikaya Özak3* , Aslıhan Dalmaz3  

 
1 Düzce University, Graduate Education Institute, Department of Chemistry,  Düzce, Türkiye, halemanti@gmail.com 
2 Nobel Drug Pharmaceutical R&D Center (Nobel-Ilac Ar-Ge Merkezi), Düzce, Türkiye 
3 Düzce University, Faculty of Art and Science, Department of Chemistry,  Düzce, Türkiye, sezensivrikaya@duzce.edu.tr, 

aslihandalmaz91@gmail.com 
*Corresponding Author 

 

ARTICLE INFO ABSTRACT 

 

Keywords: 

Thiocolchicoside 

Franz diffusion cell   

Synthetic membranes 

Transdermal drug  

delivery system  

HPLC  

 

 

 

 

 

Article History:  
Received: 21.03.2024  

Accepted: 22.05.2024  

Online Available: 01.08.2024 

 

 

Recently, drug release applications through the skin have become very popular. One 

of the most remarkable of these drug release applications is transdermal drug release 

systems, which are drug release methods that allow the active substance to pass into 

the systemic circulation through the skin or artificial membranes. In this study, the 

optimization conditions required for the release and permeation tests of a gel drug 

containing the active substance thiocolchicoside were comparatively investigated 

using synthetic membranes without human or animal skin. For this purpose, the 

permeability of the gel drug in gel form and the active ingredient thiocolchicoside 

was carried out using Franz Diffusion Cell.  As a result of the investigations, it was 

observed that the best synthetic membrane for the permeability of thiocolchicoside 

in the Franz Diffusion Cell was the Supor membrane. In addition, the method's 

relative standard deviation values, detection, and quantification limits were 

determined, and permeation studies were carried out. In this study, the correlation 

coefficient was found to be 0.9992, and the limits of detection and quantification 

were 0.026 and 0.078 µg/L. In this way, the sensitivity and reliability of the 

validation study were determined. 

 
1. Introduction 

 

Colchicoside is a glucoside found in the plant 

Colchicum autumnale. A semisynthetic sulfur 

derivative of colchicoside is called 

thiocolchicoside. Thiocolchicoside acts as a 

potent muscle relaxant by activating the GABA-

nergic inhibitory pathways, which modify 

muscular contracture due to its particular affinity 

for -amino butyric acid (GABA) receptors 

(Figure 1). In clinical settings, the substance is 

used to treat neurological, rheumatic, muscular, 

and traumatic problems. In animal models, anti-

inflammatory and analgesic effects have also 

been documented. Because of the hepatic first-

pass effect and limited gastrointestinal 

absorption, the oral bioavailability of the 

medication is approximately 25%. Since its low 

oral bioavailability limits its use, a different 

delivery method is preferred to achieve high 

blood concentrations for treatment management 

[1-8]. 

 

 
Figure 1. Chemical structure of thiocolchicoside 

 

A transdermal drug delivery system (TDDS) is 

an effective system that provides controlled 

active drug delivery and is an alternative to 
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traditional drug delivery method treatments. 

TDDS ensures that the drug applied to the skin 

has a therapeutic effect and that the concentration 

of the active ingredient passes into the 

bloodstream systematically and is controlled. 

Essential advantages of TDDS: The aim is to 

reduce the side effects of the drug by avoiding the 

first pass effect in the liver, reducing the 

frequency of drug administration, and ensuring a 

constant and stable plasma level [9-13].  

 

Thanks to these advantages, the development of 

TDDS has led to its approval by regulatory 

authorities for its increasing importance and 

commercialization in the pharmaceutical 

industry [14-18]. To observe and test the 

therapeutic efficacy of TDSS, in vitro, technical, 

and model systems that can measure drug release 

permeability and obtain reliable, reproducible, 

validated, and accurate predictive data are 

required [19-24]. In addition, the applicability of 

TDDS is made by in vitro tests on drugs in 

finished dosage form. The drug's performance 

can be tested with a permeation test study 

combined with an in vitro-in vivo [25-28]. 

 

Clinical trials for TDDS offer substantial chances 

to save time and money on development. Scale-

up in drug production and extensive changes in 

the performance of approved products (e.g., 

changes in drug supplier, formulation and 

manufacturer, or raw materials. Comprehensive 

studies by companies should ensure 

reproducibility [29]. In the literature on in vitro–

in vivo correlations (IVIVCs) for TDDS, the 

recommended drug by international guidelines 

formulation studies in topical and transdermal 

dosage forms are advised to measure release and 

penetration [30-37]. IVIVCs, Franz-type (static) 

diffusion cells with two compartments, are the 

most widely used technical (modifiable) 

diffusion cells. In the Franz Diffusion Cell test, a 

membrane that separates the donor and the 

receptor and can represent human skin is needed, 

and synthetic membrane studies are gaining 

importance for this purpose [30, 38, 39]. 

 

Synthetic membranes are frequently used in drug 

release and permeability studies on human or 

animal skin [31]. Synthetic membranes are the 

best topical in vitro model reported to date to 

predict skin status in Franz cells in vivo 

penetration of products [40]. Regulatory 

authorities highly recommend them. However, 

the use of human skin and slaughtered animal 

skin is considered reasonable and is subject to 

national and international ethical guidelines [9, 

41, 42]. Several studies have shown that pig ears 

can be used for testing because they have 

biochemical properties and structural similarities 

to human skin, and the ability to obtain results 

comparable to human skin has made them ideal 

for permeability studies [31, 43, 44]. 

 

Since biological skin is difficult to find and has 

different properties in each sample, an 

inexpensive and reproducible membrane model 

that mimics the skin barrier in terms of release 

and permeability is becoming very popular. In 

this study, the necessary optimization conditions 

for drug release and permeation tests were 

investigated by using synthetic membranes that 

do not contain human or animal skin. The effects 

of parameters such as membrane selection, 

membrane saturation, mixing time, mixing 

speed, and temperature on the permeability of the 

developed gel drug were investigated, and their 

similarity with the reference drug was proven. 

Fourier transform infrared spectroscopy and 

Differential scanning calorimetry analyses were 

performed to show the similarity between the 

developed gel drug and the reference drug. 

 

2. Materials and Methods 

  

2.1. Reagents and chemicals 

 

All reagents used are of analytical purity. 

Potassium monobasic phosphate (KH2PO4), 

potassium chloride (KCl), sodium chloride 

(NaCl), disodium hydrogen phosphate 

(Na2HPO4), trifluoroacetic acid, high-

performance liquid chromatography (HPLC) 

quality acetonitrile and methanol Merck quality 

96% to 99.7%. It has varying degrees of purity. 

0.45 mm polytetrafluoroethylene (PTFE) filters 

were used to filtrate the solutions (Millex 

Millipore, Istanbul, Türkiye). Ultrapure water 

was obtained using the Sartorius water 

purification (Sartorius Arium, USA). 

Thiocolchicoside standard (Batch No: 

M062300088) was purchased from INDIA 

GLYCOLS and used in working studies. The 

commercially available reference drug in gel 
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form containing the active ingredient 

thiocolchicoside was obtained from a pharmacy 

in Duzce (Türkiye). A drug in gel form with a 

new formulation was developed in the laboratory 

environment with the purchased thiocolchicoside 

standard. As a commercial membrane, PALL 

Supor 450 membrane disc filter 0.45µM 47 mm, 

plain (REF:60173), PALL HT-450 Tuffryn 

100/PK Membrane Filter 0.45µM 47 m (Ref: 

T42575), Sartorius regenerated cellulose (RC) 

0.45 µM (Ref: 1122 18406 2201853) filters were 

used in Franz diffusion cell experiments. 

 

2.2. Instruments 

 

The study used Hanson Research MicroettePlus 

brand Franz cell 10-1522, serial number Franz 

Diffusion Cell, for in vitro permeation 

experiments. The quantification of 

thiocolchicoside in the samples obtained by 

permeation was validated with the WATERS 

2487 Dual Absorbance Detector HPLC system. 

 

2.3. Physico-chemical characterization 

 

Fourier transform infrared (FT-IR) spectroscopy 

confirms the chemical characterization of two 

drugs developed in gel form and used as a 

reference, proving their similarity. The FT-IR 

analysis was performed using Agilent brand 

Digilab FTS-3500 model spectrophotometer 

equipped with an ATR to illuminate the structure 

in the wavelength spectrum range of 600-4000 

cm-1. 

 

Differential scanning calorimetry (DSC) 

experiments were performed on two drugs 

developed in gel form and used as a reference. 

Calorimetric measurements were made using an 

Agilent brand DSC 200 F3 model differential 

scanning calorimeter. The samples were placed 

in tin pans and carried out in an N2 atmosphere 

with a temperature increase of 10 °C min-1. 

 

2.4. In vitro permeation method 

 

The permeation of the active ingredient 

thiocolchicoside in the gel form of the 

commercially purchased and used reference drug 

through the Franz Diffusion Cell was compared 

with this developed drug. In vitro permeation 

studies were performed in a Franz Diffusion Cell 

system with a receptor volume of 15 mL and a 

diffusion area of 1.77 cm2 pH 7.4 media solution, 

representing the physiological region suitable for 

the receptor phase.  

 

For permeability studies, three different 

membranes with different properties were kept in 

the media solution at pH 7.4, the most suitable 

pH for the skin, for 8 hours to saturate. Then, 

parameters affecting permeation, such as 

temperature, mixing speed, and sample amount, 

were changed, and the parameters that achieved 

the best efficiency were selected. All samples 

collected with the determined parameters were 

transferred to vials, and the amount of active 

ingredient was determined by the HPLC method 

and compared with the reference drug in the 

study. Permeation studies in each membrane and 

each parameter were performed in 3 repetitions. 

Thiocolchicoside permeation from a transdermal 

system using the Franz Diffusion Cell is shown 

in Figure 2. 

 

 
Figure 2. Thiocolchicoside permeation from a 

transdermal drug delivery system using the Franz 

Diffusion Cell 

 

2.5. High-Performance Liquid Chromatography 

analysis 

 

Waters 2487 model HPLC was used for the 

quantitative determination of thiocolchicoside. 

After filtering, standard thiocolchicoside 

solutions were analyzed at 280 nm with a Dual 

Absorbance Detector on an ACE5 C18 (4.6 mm; 

150 mm; 5 µm) column. HPLC analysis method 

conditions were performed at 25 °C temperature, 

1.2 mL/min flow rate, and 50 µL injection 

volume. The buffer solution contains pure water 

and trifluoroacetic acid. The mobile phase was 

prepared by adjusting acetonitrile and buffer 

solution in a ratio of 83:17, respectively. The 

dilution solution contains buffer solution and 

methanol in a 1:1 ratio. 
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3. Results and Discussion 

 

3.1. FT-IR and DSC analysis 

 

FT-IR spectroscopy is critical to determining the 

chemical interactions between thiocolchicoside 

and excipients. The absorption bands seen in the 

FT-IR spectrum give us information about the 

functional groups present in the structure. FT-IR 

spectra of the reference and developed gel drug 

are shown in Figure 3. When the FT-IR spectrum 

was analyzed, all bands were present in the 

developed gel drug sample. In the spectrum, the 

fingerprint identification peaks of the functional 

groups that should be present in the structure of 

the gel drug are seen. These peaks can be 

observed in all characteristic interaction spectra. 

The characteristic fingerprint peaks at 1647 and 

1525 cm-1 in the FT-IR spectrum correspond to 

C=O and amide groups in the tropane ring. In 

addition, the broadening band corresponding to 

the O-H stretching mode is observed between 

3200 and 3600 cm-1. Moreover, the peak at 2953 

cm-1 indicates the presence of C-H groups in the 

structure. 

 

DSC analysis provides information on 

endothermic/exothermic peaks, melting, release, 

and compatibility between thiocolchicoside and 

the drug, thus providing rapid evidence. Figure 4 

shows the DSC thermograms of the developed 

gel drug and the reference drug. The DSC 

thermograms show both the absence of a new 

peak and the presence of a characteristic 

endothermic peak. This peak indicates no 

incompatibility between the active ingredient 

thiocolchicoside and the drug content. An 

endothermic peak with a maximum of 144.3 °C 

in the DSC thermograms is due to melting. When 

the analysis results are analyzed, it is seen that 

the thermograms of the developed gel drug and 

the reference drug are compatible [45-47]. 

 

3.2. HPLC method validation 

 

This study developed an analytical method for in 

vitro permeation studies of a commercial 

reference drug and a gel containing the active 

ingredient thiocolchicoside. The validation 

parameters of the developed method are given in 

Table 1. Linearity, precision, accuracy, limit of 

detection (LOD), and limit of quantification 

(LOQ) parameters for the chromatographic 

method were validated. The results of the 

analysis will be determined by taking into 

account the ICH validation of analytical 

procedures: text and methodology Q2(R1) 

criteria [48-50]. For the linearity study, samples 

were prepared at six levels of thiocolchicoside 

concentration ranging from 0.078 to 40.0 µg/mL. 

They were evaluated by linear regression 

analysis in line with the obtained areas. The 

regression equation and correlation coefficient 

are y=56699572.93x+4514.39 and 0.9992, 

respectively. 

 

Figure 3. FT-IR spectra of a) reference drug and    

b) developed drug sample 

 

Figure 4. DSC thermograms of a) reference drug 

and b) developed drug sample 

 

For the precision of this analytical method, the 

relative standard deviation (%RSD) value 

between the results of 5 different sample 

solutions prepared at the same concentration was 

determined to be less than 3%. To prove the 

accuracy of the analytical method, the % 

recovery values of the sample solutions prepared 

at four different concentrations in the linear 

region were calculated. The concentration of the 

value determined as 100% in accuracy and 

recovery studies is 26 µg/mL. Other 

concentration values were determined by 

proportioning the percentages of this value. The 

data obtained from 100%-102% proves the 

method’s accuracy. Signal/noise (S/N) was used 

to determine LOD and LOQ values. The 



Sakarya University Journal of Science, 28(4) 2024, 804-815 

 

808 
 

signal/noise ratio determines it by comparing the 

result of the thiocolchicoside containing the 

lowest concentration of analyte with the result of 

the blank solution. S/N refers to 3 times the LOD 

and ten times the LOQ of the noise. LOD and 

LOQ values were calculated as 0.026 µg/mL and 

0.078 µg/mL. 

 
Table 1. Validation parameters of the developed method 

Validation parameters  Level Results  Level Results 

Accuracy  50% 101.2±0.3% Recovery 30% 98.9± 0.3% 

  80% 101.8±0.5%  80% 99.9± 0.1% 

 100% 101.1±0.9% 100% 100.1± 0.1% 

 120% 100.4±0.6% 120% 100.2± 0.2% 

 150% 100.2±0.5% Repeatability 100% 100.1± 0.7% 

 

3.3. Effect of membranes on Thiocolchicoside 

permeation 

 

Three different membranes with different 

properties specified in “Section 2.1. Reagents 

and chemicals” were used. It was determined 

how similar results were obtained with the 

reference drug by using a pH 7.4 media solution, 

600 rpm mixing speed, 32.0 oC temperature, and 

400 mg thiocolchicoside as optimum parameters 

in the in vitro permeability of these membranes. 

When Figure 5 is examined, when the 

permeability of thiocolchicoside in the drug 

whose formulation was developed from 

Cellulose, Tuffryn, and Supor membranes is 

compared with the reference drug, the 

permeability differences between the membranes 

are seen. It can be seen from the figure that the 

best permeability was achieved when the Supor 

membrane was used, so the study continued 

using the Supor membrane. 

 

3.4. Effect of membrane saturation on 

Thiocolchicoside permeation 

 

One of the most critical parameters in Franz cell 

studies is saturation of the membrane with 

sufficient media solution. After the membrane 

selection is determined as “Supor”, the similarity 

of the membrane with the reference drug, both 

with and without saturation with the ambient 

solution under the selected optimum conditions, 

is shown in Figure 6. 

 

Figure 5. Effect of different membranes on 

thiocolchicoside permeation (Optimization 

conditions: solution pH: 7.4, mixing speed: 600 rpm, 

mixing time: 6 hours, temperature: 32.0 oC, 

thiocolchicoside amount: 400 mg) 

 

Figure 6. Effect of saturated and unsaturated 

membranes on thiocolchicoside permeation. 

(Optimization conditions: Supor membrane, solution 

pH: 7.4, mixing speed: 600 rpm, mixing time: 6 

hours, temperature: 32.0 oC, thiocolchicoside 

amount: 400 mg) 

 

It can be seen in Figure 6 that the saturated 

membrane is more similar to the reference drug. 

The study conducted with a saturated membrane 

showed that 6 hours of saturation time was 

sufficient. For this reason, the membrane 

saturation time in the study was determined as 6 

hours. 
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3.5. Effect of sample amount on 

Thiocolchicoside permeation 

 

Another parameter whose effect is examined is 

the amount of sample placed in the Franz 

Diffusion Cell. Sample amounts ranging from 

300 to 500 mg were inducted into the cell, 

questioning whether it affected thiocolchicoside 

permeation. A minimum of 300 mg of gel drug is 

required to completely cover the area of the 

membrane placed on the Franz Diffusion Cell 

and to spread the drug evenly on the membrane 

[51]. Examining this parameter determined that 

the amount of sample placed in the Franz 

Diffusion Cell had no effect (Figure 7). 

Therefore, a 400 mg thiocolchicoside sample was 

selected and used as an optimum sample amount 

in the study. 

 

3.6. Effect of mixing time on Thiocolchicoside 

permeation 

 

The amount to which the mixing time affected 

the permeability of thiocolchicoside in the Franz 

Diffusion Cell was evaluated to achieve the best 

resemblance with the reference drug. Under the 

identified ideal conditions, the amount of 

thiocolchicoside was measured various times, 

ranging from 0.5 to 8 hours, and its resemblance 

to the reference drug was ascertained. 

 

 
Figure 7. Effect of sample amount on 

thiocolchicoside permeation. (Optimization 

conditions: solution pH: 7.4, mixing speed: 600 rpm, 

mixing time: 6 hours, temperature: 32.0 oC) 

 

As seen in Figure 8, the amount of 

thiocolchicoside passing from the Franz 

Diffusion Cell to the environment did not vary in 

6 hours or longer. Since it was similar to the 

reference drug, 6 hours was sufficient for the 

study's mixing time. The mixing time was 

determined to be 6 hours. 

 
Figure 8. Effect of mixing time on thiocolchicoside 

permeation. (Optimization conditions: solution pH: 

7.4, mixing speed: 600 rpm, temperature: 32.0 oC, 

and thiocolchicoside amount: 400 mg) 

 

3.7. Effect of mixing speed on 

Thiocolchicoside permeation 

 

After determining the mixing time, another 

parameter is to examine the effect of mixing 

speed. For this parameter, the change in the 

permeability of thiocolchicoside was 

investigated by changing the mixing speed 

between 500 and 660 rpm. When Figure 9 is 

reviewed, it is seen that the similarity with the 

reference drug reaches 100% when mixing at 600 

rpm. For this reason, 600 rpm was preferred as 

the working mixing speed. 

 

Figure 9. Effect of mixing speed on 

thiocolchicoside permeation. (Optimization 

conditions: solution pH: 7.4, mixing time: 6 hours, 

temperature: 32.0 oC, and thiocolchicoside amount: 

400 mg) 

 

3.8. Effect of temperature on Thiocolchicoside 

permeation 

 

In the study examining the effect of temperature 

on the permeation of thiocolchicoside, the 
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required temperature was 32.0 °C, which is the 

body temperature. The experiment on 

permeation rate is conducted at 32 ± 1 °C, except 

for vaginal drug products, which require a 

temperature of 37 ± 1 °C [52]. The permeation of 

thiocolchicoside was carried out at different 

temperatures by varying the temperatures 

between 30.0 and 36.0 °C. Figure 10 shows that 

the best permeability to the reference drug was 

obtained at 32.0 °C body temperature. For this 

reason, 32.0 °C was determined as the optimum 

temperature and used in the study. The 

temperature optimization study is to observe the 

permeation of thiocolchicoside at temperatures 

other than 32.0 °C and prove that 32.0 °C has the 

highest permeation. 

 

 
Figure 10. Effect of temperature on thiocolchicoside 

permeation. (Optimization conditions: solution pH: 

7.4, mixing speed: 600 rpm, mixing time: 6 hours, 

and thiocolchicoside amount: 400 mg) 

 

3.9. Comparison of the method with other 

studies 

 

When the results obtained from the literature data 

are examined, it is seen that the Franz Diffusion 

Cell is frequently used to investigate the use of 

transdermal drug carrier systems and it is one of 

the important methods due to its originality. In a 

study reported by Shiow-Fern Ng and colleagues, 

Franz Diffusion Cells were used and their effect 

on the applied method was examined. For this 

purpose, they used ibuprofen as a model drug and 

synthetic membranes as a barrier. When they 

examined the study results, they found that it 

positively affected the validation [53].  

 

In another study, Alice Simon et al. used 

different synthetic polymeric membranes and pig 

ear skin and evaluated the rivastigmine 

transdermal drug delivery system by performing 

in vitro permeation experiments in Franz 

Diffusion Cells. They performed a series of 

studies to identify the best-performing model 

membranes [30]. In the study examining the 

passage of niacinamide from different 

formulations into human skin, traditional Franz 

Diffusion Cells were used and investigated both 

in vitro and in vivo using a quantitative Confocal 

Raman Spectroscopy method including finite 

dose conditions. They emphasized that it is a 

valuable study for both actives and excipients 

[54]. 

 

4. Conclusions 

 

One of the increasingly essential systems in the 

pharmaceutical industry is the transdermal drug 

delivery system, which constitutes an innovative 

and successful research area. In this study, the 

permeation of thiocolchicoside, the active 

ingredient taken into the body through various 

drug applications, with Franz Diffusion Cell, the 

permeability of the drug developed in gel form, 

and the reference drug was evaluated 

comparatively using the "Supor" membrane. 

Validation studies were carried out to evaluate 

the accuracy and reliability of the results 

obtained from the samples. In addition, although 

there are different studies with the 

thiocolchicoside agent, it will be the first 

comparative study with the reference drug gel. 

As a result of the injection of sample and 

reference solutions, it was determined that the 

linearity of the chromatograms obtained for 

thiocolchicoside with a correlation coefficient of 

0.9992 was satisfactory for the established 

method. 

 

Moreover, it was observed that the detection 

limit was 0.026 µg/mL, the relative standard 

deviation values were less than 3%, and the 

accuracy values were between 100% and 102%. 

These values obtained prove the accuracy and 

reliability of the study. In addition, the method is 

environmentally friendly in that it can be applied 

rapidly because it does not require many process 

steps, consumes few materials, and requires no 

toxic solutions. 
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