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Abstract 

The tracking, analysis, and classification of human movements can be crucial, 

particularly in areas such as elderly care, healthcare, and infant care. Typically, such 

tracking is done remotely with cameras. However, radar systems have emerged as 

significant methods and tools for these tasks due to their advantages such as privacy, 

wireless operation, and the ability to work through walls. By converting reflected 

radar signals from targets into images, human activities can be classified using 

powerful classification tools like deep learning. In this study, range-Doppler images 

of behind-the-wall human movements obtained with a radar system consisting of one 

transmitter and four receiver antennas were classified. Since the data collected from 

the four receiver antennas are in different positions, the collected reflection signals 

also differ. The signals collected with the range-time matrix content were divided 

into positive and negative parts, resulting in eight images from the four antennas. 

Instead of using all the data in CNN training, the images were first subjected to a 

reconstruction process with an autoencoder to reduce differences. The reproduced 

images were then classified with CNN. Moreover, the classification success is 

increased by 8.50% with the proposed method compared to classification only with 

CNN. In conclusion, it was observed that the classification success of radar images 

can be increased by using a hybrid system with an autoencoder to reconstruct the 

images before classification with CNN. 
 

 
1. Introduction 

 

Electronic devices have begun to play an active role 

in daily life, such as machines, robots, and cameras, 

due to their more effective operation compared to 

humans in various fields [1]-[3]. These devices are 

advantageous due to their speed, continuity, lower 

energy consumption, and reduced errors. 

Additionally, they can prioritize important values 

such as privacy, confidentiality, and security over 

humans [4]. Given all these advantages, leveraging 

technology in critical tasks such as monitoring the 

elderly, children, and patients is highly appealing. It 

requires constant monitoring of individuals who may 

be in dangerous situations or require immediate 

intervention. Continuous monitoring implies 
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observing every moment of these individuals, 

potentially violating their private spaces. Therefore, 

radar devices and systems have started to be used in 

such tasks as an alternative to devices like cameras 

that directly display people.  

Radar (Radio Detection and Ranging) is a 

system that uses electromagnetic waves to determine 

the position and movement of objects [5], [6]. Radars 

are commonly used in various fields such as aircraft, 

ships, vehicles, and airports. Radar begins its 

operation by emitting electromagnetic waves at a 

specific frequency. These waves are typically radio 

waves or microwaves. When these emitted waves 

encounter target objects, reflection occurs. The 

reflected waves travel back from the object and are 

received by the radar. The collected waves are 
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processed by the radar system. This process involves 

analyzing the timing, frequency, and power of the 

waves to determine the position, distance, and speed 

of the target object [7], [8]. Additionally, inference 

can be made based on the converted signals into 

images [9]-[11]. 

Radar systems, by converting radar signals 

into images, have become an area of interest for 

researchers in classifying human movements [11]-

[14]. Since reflections in collected signals differ 

based on movements, motion analysis can be 

performed from the generated images [15]-[17]. 

However, due to the different semantic relationships 

between neighboring pixels in such images 

compared to classical images, feature extraction or 

image enhancement cannot be performed using 

classical image processing methods [18]. Although 

these images may be meaningless to humans, deep 

learning methods can establish meaningful 

relationships between pixels thanks to their strong 

structures. Therefore, deep learning tools developed 

for image processing play a critical role in achieving 

effective results on radar images [15]. Among these 

algorithms, autoencoders have become preferred due 

to their powerful features such as noise reduction and 

image reconstruction. Autoencoders, with their deep 

learning structure, have the ability to reproduce an 

image similar to the target images. 

While a human can understand real-world 

images by examining them and easily identify 

shapes, activities, or objects in the image, radar or 

frequency domain images showing different features 

of the environment do not make sense to humans. It 

is very difficult for individuals to make an inference 

from such images at first glance. Even non-experts 

would perceive these images as completely 

meaningless. However, with powerful classification 

algorithms, it is possible for machines to understand 

such images. In this context, many studies have been 

conducted to classify radar images using machine 

learning algorithms [11], [19], [20]. Radar signals 

reflected from the human chest have been used to 

perform tasks such as detecting living beings or 

counting pulses [21], [22]. Radar signals have also 

been used to detect instances of individuals in need 

of care, such as monitoring breathing and detecting 

falls [23]-[25]. Additionally, it has been shown that 

different movements can be detected using images 

created with radar signals [26], [27]. 

In [11], it was shown that images of signals 

from different antennas for human activities could be 

classified with CNN. It was reported that interference 

and noise differences in signals received with 4 

antennas were suitable for data augmentation for 

CNN, known to provide better results with more 

data, and the amount of data was increased eightfold 

with the structure created. In this study, instead of 

using all the data for CNN training, an autoencoder-

CNN hybrid system was proposed to improve images 

by reconstructing them with an autoencoder [28]. 

Three different combinations were created for 

training and testing the autoencoder, and to compare 

the results, the CNN structure used in [11] was 

employed. 

The contributions of this study are as 

follows. 

• Classification of images obtained with a 

multi-antenna structure by increasing the similarity 

to each other in the classification of human 

movements behind walls, 

• Improving classification performance with 

fewer images. 

The rest of the paper is organized as follows: 

Section 2 provides the autoencoder and dataset. 

Section 3 presents the experiments and results. The 

last section concludes the study. 

  
2. Material and Method 

 

2.1. Autoencoder 

 

Autoencoders, unsupervised learning techniques that 

utilize neural networks for representation learning 

[29]. Essentially, it is a type of artificial neural 

network that attempts to learn the original 

representation of input data. Autoencoder can be 

used in many applications such as data compression, 

noise reduction, dimensionality reduction, and 

feature learning. 

Autoencoder consists of two main 

components: 

 Encoder: The part that transforms the input 

data into a lower-dimensional representation. 

 Decoder: The part that reconstructs the 

original input data from the lower-dimensional 

representation generated by the encoder. 

During the training of the autoencoder, the 

model first transforms the input data into a lower-

dimensional representation with the encoder and 

then attempts to reconstruct the original data using 

the decoder. In this process, the model tries to 

minimize the difference between the input and 

output. Thus, the model learns the original 

representation of the input data. 

Autoencoder is used to compress multi-

dimensional data into hidden space first and then 

reconstruct the compressed data from the 

compressed hidden space [30]. The network 



K. Ucar / BEU Fen Bilimleri Dergisi 13 (3), 578-586, 2024 

580 
 

architecture consists of a neural network that creates 

a compressed representation of the original input and 

then recreates it. When input features are 

independent of each other, this compression and 

subsequent reconstruction become a very 

challenging task. However, if there is a kind of 

learnable structure in the data, this structure can be 

learned and used to force the input through the 

bottleneck of the network. 

The network takes an unlabeled dataset as 

input and can be summarized as the reconstruction of 

the original input x in the framework of a supervised 

learning problem that produces the output x .̂ The 

training of the network can be achieved by 

minimizing the reconstruction error L(x,x )̂, which 

measures the differences between the original input 

and the reconstruction [31]. The bottleneck is a 

crucial step in the network; with the bottleneck, the 

input cannot directly pass to the output, thus 

preventing memorization. 

The ideal autoencoder model should be 

sensitive enough to the inputs when reconstructing 

the outputs based on inputs. At the same time, 

sensitivity should not be too excessive for problems 

such as memorizing or overfitting the training data. 

This balance forces the model to preserve variations 

in the data required to reconstruct the input without 

retaining redundancies in the input. In most cases, 

this involves creating a loss function that encourages 

the model to be sensitive to the inputs (i.e., 

reconstruction loss L(x,x )̂) and another term that 

discourages memorization/overfitting (i.e., an 

additional regularizer). 

Figure 1 shows the autoencoder structure 

used. A 104x40 pixel input image passes through two 

convolution layers with 3x3 kernel sizes to reach the 

fully connected layer. Then, the convolution 

operations are repeated in reverse, and the image is 

reconstructed. Here, the training process aims to 

obtain images similar to the target image from the 

input image. Two hidden layers are used in 

autoencoder. Layer sizes consist of 8 and 16 neurons, 

respectively. This structure was determined based on 

trial and error method and cross-validation results.  

 

Figure 1. Autoencoder structure 

 

2.2. CNN 

 

Convolutional Neural Network (CNN) is a deep 

learning architecture widely used especially in image 

and video recognition, image classification, object 

detection and similar tasks. CNNs, unlike classical 

artificial neural networks, are much more successful 

in learning spatial and temporal relationships within 

data. Convolutional layer, activation function, 

pooling layer, fully connected layer are the basic 

components of CNN. The convolutional layer is 

applied by shifting filters (kernels) of certain sizes on 

the input data. Each filter is used to recognize certain 

features in the image, such as edges, corners. Each 

application of the filter produces an output called a 

feature map. Activation function is generally used to 

produce the output of the layer after convolutional 

layers. Pooling layer reduces the size of feature 

maps. Thus, computational cost and memory usage 

are reduced. The most commonly used type of 

pooling is Max Pooling, this type of pooling selects 

the maximum value in a particular region. The last 

layer, the fully connected layer, connects all neurons 

to each other, as in classical artificial neural 

networks. A flattened vector of feature maps is given 

as input to this layer. This layer is used as the last 

layer in classification tasks and provides probability 

distribution between classes with the softmax 

activation function [32]. The CNN architecture used 

in [11] is as shown in Figure 2. After 2 convolutional 

and pooling layers, output estimation is performed in 

the fully connected layer. The numbers of 3x3 sized 

kernels in the convolutional layers are 32 and 64, 

respectively. 
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Figure 2. Used CNN model [11] 

 

2.3. Dataset 

 

The dataset used [11] consists of four human 

activities: running, walking with swinging arms, 

waving, and walking with steady arms. 50 samples 

were collected for each activity using 4 antennas. 

After obtaining grayscale images from the 4 

antennas, the method described in Figure 3 [33] was 

used to double the signals using the negative and 

positive parts. Thus, there are a total of 1600 images 

in the dataset, with 400 images for each class. While 

the image dimensions are 101x39 pixels, they are 

resized to 104x40 pixels with zero padding to fit the 

input of the autoencoder. Due to the structure of the 

autoencoder, the images are reconstructed to be of 

size 104x40 pixels. Therefore, the original images 

are given to the autoencoder with zero padding to 

match the output size. Figure 4 shows the input and 

output images of the autoencoder for each class. 

Although the generated images may appear different 

from the original images, they will only be used in 

the training and testing of the classifier (CNN) in the 

study, hence they will not have a detrimental effect 

on the classification. 

 

 
Figure 3. Antenna array [11] 

 

 
Figure 4. Original images (first row) and images created with autoencoder (last row)

 



K. Ucar / BEU Fen Bilimleri Dergisi 13 (3), 578-586, 2024 

582 
 

2.4. Proposed Method 

 

The proposed autoencoder-CNN architecture is as 

shown in Figure 5. The system reconstructs the 

images with Autoencoder before classification. The 

output of the Autoencoder is fed into CNN for 

classification, and as a result, the classes of the 

movements are obtained. 

 

 
Figure 5. Proposed autoencoder-CNN hybrid model

 

3. Experimental Result and Discussion 

 

For both the training and testing of the autoencoder, 

the dataset is further divided into two groups: one for 

reconstructing the input images and the other for the 

target images. To investigate the effect of image 

reconstruction by the autoencoder on CNN 

classification, the dataset [11] is divided into different 

groups and three approaches are tried. In [11], it is 

stated that during classification, ch4+ (the positive 

signal part of the 4th receiver antenna) yields better 

results compared to other channels. From this 

statement, it can be inferred that positive channels 

may perform better for classification compared to 

negatives. Therefore, in the experiments, the positive  

 

parts of the channels are used as target images for the 

autoencoder, while the negatives are used as input 

images to be reconstructed. In other words, the 

negative region images are attempted to be made 

similar to the positive ones. Additionally, care has 

been taken to ensure that the target and input images 

are taken from the same sample. Table 1 provides the 

images used for autoencoder training and testing for 

the three experiments. Table 2 presents the image 

channels and numbers classified with CNN in these 

experiments. 

Table 1. Autoencoder train and test image channels 

Experiment no Train input Train target Test input Test target 

Experiment 1 Ch1-, Ch4- Ch1+, Ch4+ Ch2-, Ch3- Ch2+, Ch3+ 

Experiment 2 Ch1-, Ch4- Ch1+, Ch4+ Ch2-, Ch3- Ch2+, Ch3+ 

Experiment 3 Ch1-, Ch2- Ch1+, Ch2+ Ch3- Ch3+ 

 

Table 2. CNN train, test images channel and number 

Experiment 

no 

Used channels Number of 

images 

Experiment 

1 

Ch1+, Ch2+, Ch3+, Ch4+,  

Ch1-, Ch2-, Ch3-, Ch4- 

1600 

Experiment 

2 

Ch2-, Ch3-, Ch2+, Ch3+ 800 

Experiment 

3 
Ch4+ 

200 

 

In the three experiments for the autoencoder, the 

parameters listed in Table 3 have been utilized. 

 

 

 

 

 

 

 

Table 3. Autoencoder parameters 

Parametre Chosen parameter 

Epoch 15 

Optimizer Adam 

Loss func Mean Squerad Error 

(MSE) 

Padding Same 

Activation 

func. 

ReLu 

In Experiment 1, the classification success of 

the entire dataset, as observed in [11], was monitored. 

The dataset was divided into four parts for both 

training and testing of the autoencoder. According to 

the antenna arrangement depicted in Figure 3, the 

images from the two antennas farthest from each other 

were used for training, while the images from the 

other antennas were used for testing. After 15 epochs, 

the training error was 0.0060, and the test error was 

0.0085. Following the training of the autoencoder, the 
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images from the entire dataset were reconstructed. 

These reconstructed images were randomly 

distributed and used for training and testing of the 

CNN. 

In Experiment 1, since the first and fourth 

channels were used for training the autoencoder, 

when fed back into the autoencoder for classification 

in the CNN, there might be more similarity compared 

to the second and third channels. In other words, after 

successful autoencoder training, the channels used in 

training would be more similar to the ones used in 

testing. This similarity could lead to inconsistencies 

in the data. Therefore, performing classification in the 

CNN using data not used in the autoencoder training 

ensures balanced similarity across all data. In 

Experiment 2, the aim was to classify only the images 

used in the testing of the autoencoder. Thus, the 

success of classifying images not included in the 

training data of the autoencoder was monitored. After 

15 epochs, the training error was 0.0047, and the test 

error was 0.0070. Since [11] did not present the 

classification results using only these images, the 

CNN from [11] was trained and tested using the 

original images. 

In the final experiment, the effect of 

reconstructing the ch4+ images with the autoencoder, 

which exhibited the highest classification success in 

[11], was demonstrated. In this experiment, images 

from channels other than the fourth channel were used 

for both training and testing of the autoencoder, while 

the CH4- images were not used in either the 

autoencoder or the CNN. After 15 epochs, the training 

error was 0.0036, and the test error was 0.0065. The 

results of all experiments are presented in Table 4, 

based on the classification results of the images used 

in [11]. 

 
Table 4. Classification accuracy of CNN 

Experiment no Original images Reconstructed 

images 

Experiment 1 90.25% [11] 91.87% 

Experiment 2 85.88% 91.12% 

Experiment 3 84.50% [11] 93.00% 

 

Upon examination of Table 4, it is observed 

that as the amount of data decreases in the original 

images, the classification success also decreases. 

Conversely, with the proposed method, the situation 

is reversed. Overall, in all experiments, it is evident 

that the images reconstructed with the autoencoder 

improve the classification success. In Experiment 1, 

where classification was performed with all images 

from [11], the accuracy rate increased by 1.62%. In 

Experiment 2, where only the test images 

reconstructed by the autoencoder were used, 

significantly higher accuracy rates were achieved 

compared to the original images. With the proposed 

autoencoder-CNN hybrid method in this study, 

approximate values were obtained with less data in 

terms of accuracy. Since the training target images 

were also included in the CNN training and test data 

in Experiment 1, it is natural to observe higher 

classification success. The effect of the proposed 

method is very clear in Experiment 3. With only 200 

ch4+ images, 8.50% higher accuracy was achieved 

compared to the original images. The accuracy value 

achieved in Experiment 3 is quite high compared to 

the results presented in [11]. It has been demonstrated 

that high accuracy can be achieved with the 

autoencoder without requiring a large amount of data. 

Autoencoders can perform data cleaning by 

reducing noise. This can improve classification 

performance by reducing interference and noise in 

radar images. The hybrid model provides the 

combination of both low-dimensional feature 

representation and spatial features. This allows for a 

more powerful and effective data representation. 

Because hybrid models can learn both low-

dimensional features and spatial layout, their 

generalization ability is generally high. This can be 

effective in recognizing different types of human 

movements. 

Hybrid models generally require more 

computing power and memory. Training both 

Autoencoder and CNNs can be computationally 

intensive. The complexity of the hybrid model can 

create challenges during the design and training of the 

model. This requires careful adjustment of the 

model's settings and hyperparameters. Hybrid models 

generally require more data. Without a sufficient 

amount and variety of data, the model's ability to 

generalize may be limited. 

Autoencoder training took approximately 

10.45 seconds with NVIDIA Tesla K80 with 12GB of 

VRAM GPU. Memory usage was 1543.55 MB. 

Reconstructing an image with the autoencoder took 

approximately 0.55 μs. Classifying the reconstructed 

image with CNN takes 0.83 μs. 

 

4. Conclusion and Suggestions 

 

Autoencoders are deep learning methods used to 

reconstruct images. They take an input image, pass it 

through a convolution process, and then through a 

bottleneck before reconstructing the image through 

reverse convolution. In this study, an autoencoder-

based approach is proposed to enhance the 

classification accuracy of radar images generated 
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with stepped-frequency continuous-wave (SFCWR) 

and Uniform Linear Array (ULA) structures. In the 

previous study [11], it was mentioned that when all 

images were used in CNN training and testing, the 

classification accuracy increased. However, in this 

study, unlike [11], the augmented data was used for 

training and testing the autoencoder. As a result, this 

paper demonstrates that the proposed autoencoder-

CNN hybrid approach can achieve significantly 

higher accuracy with less data compared to the 

previous study. 
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