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Manual segmentation of patient CT images is both time-consuming and labor-

intensive. Additionally, classic image processing techniques are insufficient in 

CT images due to the close pixel values of tissues. Automatic segmentation of 

the aorta in human anatomy can reduce healthcare workers' workload in 

preoperative planning. This study compares the performance of the AKG-Unet 

segmentation model with other models (U-Net, Inception UNetv2, LinkNet, 

SegNet, and Res-Unet) on thoracic aorta, abdominal aorta, and iliac arteries 

segmentation in contrast CT images. Initially, pixel intensities in the Kits and 

Rider datasets were recalibrated. Then, 2D axial images underwent resizing 

and grayscale normalization. Segmentation models have been trained and 

tested with 5-fold cross-validation. 2D prediction masks were stacked to 

generate a 3D output, and spatial information was transferred to the predicted 

mask. In the 3B aortic segmentation, small objects adjacent to it were removed 

using image processing techniques. In our study, the AKG-UNET model 

achieved the highest segmentation results on the AVT dataset with a Dice 

score of 91.2%, Intersection-Over-Union (IoU) score of 85.6%, sensitivity of 

90.9%, and specificity of 99%. A method has been proposed that helps 

physicians analyze the aortic structure, and segments the aortic structure so 

that they can intervene in the correct location and make a preoperative 

evaluation. 
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 Hasta bilgisayarlı tomografi (BT) görüntülerinin manuel segmentasyonu hem 

zaman alıcı hem de emek yoğun bir işlemdir. Ayrıca, doku piksel değerlerinin 

yakınlığı nedeniyle BT görüntülerinde klasik görüntü işleme teknikleri 

yetersizdir. İnsan anatomisinde aortun otomatik olarak segmentasyonu, ameliyat 

öncesi planlamada sağlık çalışanlarının iş yükünü azaltabilir. Bu çalışma, 

kontrastlı BT görüntülerinde torasik aorta, abdominal aorta ve iliak arterlerin 

segmentasyonunda AKG-Unet segmentasyon modelinin diğer modellerle (U-

Net, Inception UNetv2, LinkNet, SegNet ve Res-Unet) performansını 

karşılaştırır. İlk olarak, Kits ve Rider veri kümelerinde piksel yoğunlukları 

Anahtar Kelimeler: 
Aortik segmentasyon 

AKG-UNet 

Bilgisayarlı tomografi anjiyografisi 
Derin öğrenme 
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Görüntü işleme 

 
yeniden kalibre edildi. Daha sonra, 2B eksenel görüntüler yeniden 

boyutlandırıldı ve gri tonlaması normalleştirildi. Segmentasyon modelleri 5 katlı 

çapraz doğrulama yöntemi ile eğitilip test edilmiştir. 2B tahmin maskeleri üst 

üste eklenilerek 3B bir çıktı elde edildi ve tahmin edilen maskeye mekansal bilgi 

aktarıldı. 3B aortik segmentasyonun yanındaki küçük nesneler görüntü işleme 

teknikleri ile kaldırıldı. Çalışmamızda, AKG-UNET modeli, AVT veri setinde 

Dice skoru %91.2, IoU skoru %85.6, hassasiyet %90.9 ve özgüllük %99 ile en 

yüksek segmentasyon sonuçlarını elde etti. Doktorların aortik yapıyı analiz 

etmelerine yardımcı olacak ve doğru konumda müdahale edebilmeleri ve 

ameliyat öncesi değerlendirme yapabilmeleri için aortik yapının 

segmentasyonunu yapacak bir yöntem önerilmiştir. 
To Cite: Bozkır ÖF., Urfalı A., Celikten A., Demirel S., Budak A., Karatas H., Ceylan M. Enhancing Aorta Segmentation in 

Contrast CT Images: A Novel Deep Architectural Approach. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 

2024; 7(5): 2284-2303.

1. Introduction 

The aorta, the most significant arterial blood channel in the human body, carries blood from the heart to 

all other organs. Aneurysms, dissections, stenoses, and calcification diseases that occur in the aorta can 

be detected using 3D medical imaging and if not diagnosed early, can lead to death (Otaki et al., 2020). 

Therefore, creating a fully automatic system that efficiently and accurately segments the aorta to detect 

these abnormalities earlier may be advantageous. This procedure is important for understanding the 

structure and function of the aortic structure and for the diagnosis, preoperative treatment planning, and 

postoperative monitoring of aortic diseases.  

Today, doctors use radiological imaging techniques such as Computer Tomography (CT) and Magnetic 

Resonance (MR) to examine the body’s anatomy, which is displayed in PACS (Picture Archiving and 

Communication System). Manual vessel analysis in CT images is both difficult and time-consuming for 

physicians. Additionally, in CT images, 2D-3D segmentation of the anatomical structure is performed 

using image processing methods such as level-set, fast marching, region growing, and threshold (Lin et 

al., 2004; Forcadel et al., 2008; Pratondo et al., 2014; Maolood et al., 2018). However, it is difficult to 

distinguish the vessel and other tissues in contrast-free CT images because the Hounsfield Unit value of 

the structures is very similar. As a solution to these problems, deep learning-based automatic 

segmentation studies are conducted.  

The initial stage in image analysis is often segmentation. Segmentation is to divide an image into 

meaningful regions where different features are held (Zhou et al., 2017). In short, tags are created for 

each pixel and some inferences are made by making predictions about these tags. Image segmentation 

in medical images is a critical component for preoperative pathology location, treatment planning, and 

early diagnosis. Manual segmentation in CT scans is expensive for hospitals and time-consuming for 

physicians. By performing fully automatic segmentation studies in the medical field the workload of 

physicians is reduced. In recent years, deep learning techniques have been used in face recognition, 

autonomous vehicles, and the defense industry (Mendi, 2023). Studies on the segmentation of kidney 

and stones, brain tumors, polyps, blood vessel segmentation in retinal images, liver segmentation, and 

other organs have been conducted utilizing deep learning approaches in the field of health (Jin et al., 
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2018; Bilic et al., 2019; Aldoj et al., 2020; Onthoni et al., 2020; Ter-Sarkisov, 2020; Ranjbarzadeh et 

al., 2021; Jha et al., 2023).  

Many recent studies have also been carried out on aortic segmentation in CT images using deep learning 

methods.  

Dasgupta et al., (2017) proposed an automatic aortic segmentation algorithm of the thorax region, both 

with and without contrast, from 120 CT images collected from the National Taiwan University Hospital. 

In this study, Circular Hough Transform (CHT) is applied to determine the localization of the descending 

and ascending aorta, then active contour is applied to segment the aortic region. They achieved a dice 

score of 0.88 in the test results.  

Zheng et al., (2018) proposed a fully automated method for Abdominal Aortic Aneurysm (AAA) 

segmentation using little data in their study. They strengthened the data by applying gray value variation 

and rotation to prevent memorization as a preprocessing. Then they trained the aortic region in the U-

Net model to segment it and finally 3D rendered the data obtained as a result of the segmentation. They 

provided 82.4% Dice Similarity Coefficient (DSC) in the test results. 

Noothout et al., (2018) proposed an extended CNN for aortic segmentation with Deep learning methods 

using 24 low-dose chest CT scans obtained from the National Lung Screening Trial (NLST). In this 

study, images from three planes were averaged and yielded a dice score of 0.91 in aortic segmentation.  

Lareyre et al., (2019) proposed a method for detecting Vascular and AAA. In their study, they performed 

it in four steps using 40 CT scan data. In the first step, they applied window/level and noise reduction 

as preprocessing. In the second step, they performed the segmentation of the aortic lumen by 

determining a contour with the threshold-based method. Finally, they performed segmentation of 

thrombus and segmentation of calcifications using lumen segmentation. In the test results, the mean 

sensitivity for segmentation of the aortic lumen was 0.90 +/ 0.06, the mean specificity was 0.9997 +/ 

0.0004, the mean Jaccard index was 0.87 +/ 0.07; they provided an average DSC of 0.93 +/ 0.04. 

Morris et al., (2020) proposed a segmentation method with a 3D U-Net model using CT and MR images 

to segment the heart. In the study, they provided a 0.85 dice score in aortic segmentation.  

Fantazzini et al., (2020) proposed a deep learning approach for a spatially compatible segmentation of 

the thoracic aorta, abdominal aorta, and iliac arteries in their study. First, they performed segmentation 

with 2D U-Net in axial view to determine the localization of the aorta. They divided the localized aorta 

into axial, coronal, and sagittal planes and performed resizing, data augmentation (rotation, width shift, 

height shift), and set the window level and width on the images to 800-200, respectively, as 

preprocessing. During the training phase, axial, coronal, and sagittal data were trained with three 

separate U-Net architectures. Finally, they rendered the resulting 2D three segmentation regions in 3D. 

In their test results, they achieved a DSC of 0.92 ± 0.01.  

Bonechi et al., (2021) in their study, proposed a fully automatic method for segmentation of the 

abdominal aorta. They presented an automated method for segmentation of the aorta based on 2D CNN 

using 3D CT scans as input. In the study, they used a dataset consisting of 153 CT images. They analyzed 



2287 

 

it using three 2D segmentation meshes, one for each of the axial, sagittal, and coronal planes in the 

image scan. In the study, they compared two different network architectures, U-Net and LinkNet, by 

applying ResNet V2 and ResNet34 architectures as backbones. In this study, they applied cropping and 

adaptive histogram equalization to image dimensions as preprocessing. As a result of the training, they 

showed that the LinkNet+ResNetV2 model gave the best result. In the test results for the three planes, 

they obtained an axial 83.45%, coronal 77.11%, and sagittal 76.75% IoU Score.  

Wang et al., (2022) proposed a two-stage deep learning method consisting of contrast enhancement and 

segmentation model to overcome the difficulty in segmentation of non-contrast CT images of the aorta 

and pulmonary arteries. They used the contrast enhancement model to increase the success of 

segmentation of the aorta and pulmonary arteries. Applying five-fold cross-validation in training, they 

obtained Dice coefficients of 0.97 ± 0.66 and 0.93 ± 0.16 in the segmentation results of the aorta and 

pulmonary artery, respectively.  

In their study, researchers presented an approach to improve the performance of aortic segmentation in 

18 CT scans (Benčevi´benčevi´c et al., 2022). In the study, as a preprocess, the image dimensions were 

256×256, the window range of CT scans was 200-500 HU, and they performed normalization on the 

data in the range of [-0.5,0.5]. Data augmentation methods were applied to these obtained data. They 

first roughly segmented the training-ready axial data in the U-Net model. The segmentation data they 

obtained were passed through polar transform networks separately by determining the center points for 

each object. They inverted the weighted pole estimates they obtained as a result of the network and 

combined them into a single image. Finally, they performed aortic segmentation by setting a threshold 

of 0.4. As a result, they obtained a 0.932 ± 0.027 Dice score and 0.895 ± 0.033 mIoU score in aortic 

segmentation. 

Brutti et al. (2022) proposed a method for automatic partitioning of intraluminal thrombi within the aorta 

and subsequent analysis of abdominal aortic aneurysm (AAA) geometry using CT angiography (CTA) 

images. The dataset used in their study comprised 85 CTA scans provided by IRCCS Ospedale 

Policlinico San Martino (Genoa, Italy). They performed lumen segmentation using a U-Net model and, 

for thrombus segmentation, they initially localized the aortic structure in three separate planes using a 

U-Net model and then conducted the segmentation process. The obtained results yielded a Dice score 

of 0.89 ± 0.04 for thrombus segmentation. 

In this study, deep learning algorithms were used to segment the aortic structure extending from the left 

ventricle to the abdominal region in contrast to CT image scans, and 3D visualization was performed. 

The study aims to achieve full automatic segmentation of the thoracic aorta, abdominal aorta, and iliac 

arteries. This will enable 3D analysis of the aortic lumen and assist doctors in preoperative planning and 

periodic follow-up. 

It has been observed that models in the literature are inadequate for aortic segmentation and particularly 

for segmenting small objects. To address this issue, the AKG-Module was developed, leading to the 
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creation of the novel AKG-Unet model. AKG-Unet not only improves performance but also 

significantly reduces computational cost. 

The high number of parameters in existing models, the need for training separate models for each plane, 

and the use of 3D CNN structures prolong both training and prediction times. To overcome these 

challenges, AKG-Unet integrates Depth-Wise and SE blocks. These blocks enhance the model's 

efficiency by reducing the number of parameters while improving performance. 

The unique architecture of AKG-Unet is notable for its ability to simultaneously extract both low-level 

and high-level features. In the encoder section, the use of 7×7 depthwise separable convolutions and SE 

blocks optimizes performance and increases efficiency. These features ensure that AKG-Unet maintains 

its efficiency even when working with large datasets and high-resolution images. 

In conclusion, AKG-Unet has the capacity to create more complex structures and produce more precise 

results compared to traditional U-Net and Inception U-Net models. These characteristics make AKG-

Unet a reliable model that demonstrates superior performance, particularly with complex and detailed 

image data. 

The main contributions of this study are presented below:  

• We took advantage of a brand-new dataset of contrast CT imaging scans from, published in 2022 (Radl 

et al., 2022). 

• A new AKG-UNet segmentation network was designed to improve the success of aortic segmentation.  

• In the new dataset, the AKG-UNet, U-Net, Inception U-Netv2, LinkNet, SegNet and Res-UNet 

segmentation algorithms were tested, and the results are presented comparatively (Ronneberger et al., 

2015; Badrinarayanan et al., 2017; Chaurasia et al., 2017; Delibasoglu et al., 2020; Diakogiannis et al., 

2020; Urfali et al., 2023).  

• Results were obtained with a 2D Convolutional Neural Network (CNN) using axial images. Afterward, 

3D segmentation results were visualized with the Medical Imaging Interaction Toolkit (MITK) interface 

program and post-preprocessing methods. 

The remaining parts of this article are organized as follows. In the second part, related studies are given. 

In the second part, the data set used, the methods followed, the newly designed AKG-UNet model used 

in the study and finally the performance criteria are explained. In Chapter 3, the results of the study are 

compared and presented. In Chapter 4, the result of the study is explained briefly and concisely. 

 

2. Material and Method 

In this section, the dataset is explained in detail in section 2.1. In Section 2.2, preprocessing done on the 

dataset is explained. The system architecture is explained in detail in Section 2.3. In Section 2.4, the 

designed AKG module and AKG-Unet structure are explained. Section 2.5 describes the performance 

criteria used in the study to compare the models. 
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2.1. Dataset  

The AVT dataset consists of the combination of Dongyang Kits Rider datasets, and this dataset was 

published by Radl et al. (2022). The AVT dataset was also used our study. This dataset comprises 

contrast-enhanced scans of the aorta and its branches, including the thoracic aorta, abdominal aorta, and 

iliac artery, specifically designed for segmentation in deep learning algorithms. As seen in Table 1, 

information for the Dongyang, Kits, and Rider datasets is provided. In this study, a total of 22,753 axial 

sections from 56 CT scans were utilized across the Dongyang, Kits, and RIDER datasets. The RIDER 

dataset encompasses not only normal image scans but also includes pathologies such as AAA and Aortic 

Dissection.  

 

Table 1. Dataset properties (Yuan et al., 2023). 

 

 

  

(a) (b) 

  

(c) (d) 

Image Information DONGYANG KITS RIDER 

Image Size 512×666 512×512 512×512 

Number of Axial Scans 2840 5394 14519 

Number of Cases 18 20 18 

Slice thickness 2/3/3 mm 0.5/5/5 mm 0.625/0.625/2.5 mm 

Pathologies None None AD, AAA 
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(e) (f) 

Figure 1. 2D images and 3D ground truth masks from different dataset (Radl et al., 2022) (a) 2D axial view in 

Dongyang dataset, (b) 3D axial view in Dongyang dataset, (c) 2D axial view in Kits dataset, (d) 3D axial view 

in Kits dataset, (e) 2D axial view in Rider dataset, (f) 3D axial view in Rider dataset 

 

2.2. Preprocessing 

To successfully train deep learning networks, data preprocessing is essential. Below, all the steps related 

to data preprocessing are explained in order.  

• In axial slices in the Dongyang, Kits, and Rider datasets, 512×666 and 512×512 image sizes were 

resized to 256×256. 

• The central intensities of the aorta, which are clinically significant in the Kits and Rider datasets, are 

approximately 1024 units higher compared to the D dataset. This pixel difference may lead to the 

inability to obtain HU values in the same range across all datasets, potentially causing a decrease in 

training success. Therefore, we adjusted all pixel values in the Kits and Rider datasets by reducing them 

by 1024 units (Yuan et al., 2023). 

• The HU range in the Dongyang, Kits, and Rider datasets were set to 200-500.  

• 0-1 grayscale normalization process was applied to the images. 

 

2.3. Aortic Segmentation 

The recommended approach for 3D segmentation of the aorta from 2D CT scans is as shown in Figure 

2. As seen in the system architecture, the contrasted images are first preprocessed. After preprocessing, 

the data were trained with AKG-UNet, U-Net, Inception U-Netv2, LinkNet, SegNet, and Res-UNet 

models. At the end of the training, the test process was carried out and the obtained axial mask images 

were converted to nii format by overlapping. The location header information of the original image 

series was transferred to the resulting 3D prediction masks. By applying the method of removing small-

area objects on the predicted series, the false negative objects that were segmented around the vessel as 

a result of prediction were cleaned and improved. 3D prediction masks were visualized in 3D in the 

MITK application (MITK-Diffusion, 2023). Finally, the 3D prediction masks obtained from AKG-

UNet, U-Net, Inception U-Netv2, LinkNet, SegNet and Res-Unet were compared using performance 

metrics. 
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Figure 2. System architecture 

 

 

2.4. AKG-Unet  

When compared to the conventional U-Net and Inception U-Net, AKG-Unet exhibits a distinct 

architectural design, as seen in Figure 3. This differentiation is most pronounced in the configuration of 

the encoder section. The principal departure from Inception U-Net lies in the incorporation of 

specialized components referred to as the “AKG Module” within the encoder module of AKG-Unet 

(Urfali et al., 2023). A notable innovation introduced by this unique module is its capacity to amalgamate 

filters of varying dimensions. The distinctive architecture of AKG-Unet not only enhances performance 

but also reduces computational costs and power consumption. This advantage becomes particularly 

prominent when juxtaposed with similar models such as Inception U-Net and the conventional U-Net. 

Notably, the utilization of the AKG Module enables the construction of more intricate structures while 

necessitating fewer input parameters. Consequently, the model operates at an accelerated pace and 

requires less memory. AKG-Unet maintains its operational efficiency even when processing extensive 

datasets and high-resolution images, thanks to reduced computational overhead. The encoder section 

plays a pivotal role in data processing and feature extraction. Unlike the conventional U-Net, AKG-Unet 

employs a unique approach in its encoder component. It commences with the conventional 3×3 binary 

convolution process as the initial step in the extraction of crucial information. Subsequently, the AKG 

Module is seamlessly integrated, facilitating the model’s efficient construction of increasingly intricate 

structures. This integration enhances the network’s ability to accurately represent data, resulting in more 

precise outcomes. In contrast to the conventional U-Net architecture, the decoder section of AKG-Unet 

adopts a different strategy. While traditional U-Net models frequently employ binary 3×3 convolutions, 

we opt for the more efficient “depthwise separable convolutions” in the decoder section (Chollet, 2017). 

This preference is founded upon a fundamental principle in U-Net architecture: essential features are 

extracted in the encoder section and subsequently relayed to the decoder section. Depthwise separable 

convolutions effectively reduce the number of parameters, eliminating the need for superfluous weights 
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and diminishing pixel-level dependencies. Consequently, a lighter and more computationally efficient 

model is achieved. In the case of AKG-Unet’s decoder section, the objective is not only parameter 

reduction but also the preservation of performance. Compared to conventional convolutions, depthwise 

separable convolutions can achieve similar performance with fewer parameters. This translates to 

reduced computational costs, expedited training, and swifter results. The incorporation of the AKG 

Module within the framework of AKG-Unet equips it with the capability to express more intricate 

features, constituting a significant advantage. This attribute contributes to the model’s capacity to 

produce more accurate results. AKG-Unet exhibits the potential to yield superior outcomes compared 

to conventional U-Net and Inception U-Net models, particularly when dealing with complex and 

detailed image data. The unique encoder design of AKG-Unet empowers the model to efficiently 

generate more intricate structures, culminating in outcomes that are notably precise and accurate. 

 

Figure 3. AKG-Unet architecture (Urfali et al., 2023) 

 

2.4.1. AKG-Module  

Since GoogleNet initially made the “Inception module” available, it has grown significantly in 

prominence, especially for issues with medical image processing (Szegedy et al., 2015). This section 

aims to provide a technical explanation of the fundamental functionality of the module, referred to as 

the “AKG-Module” as illustrated in Figure 4 (Urfali et al., 2023). The Inception module is exceptional 

in that it can concurrently extract both low-level and high-level characteristics. With this capacity, 

feature quality is improved, variety is increased, and better outcomes are possible. The Inception module 

produced outstanding results even in its early iterations, and it has since been enhanced in subsequent 

research. To increase the effectiveness of the Inception module, several changes have been added. These 
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improvements attempt to decrease the amount of parameters while enhancing the performance of the 

module. The Inception module of the AKG module now has 7×7 size depthwise separable chunks. This 

decreases the amount of parameters while improving the performance of the module. After the module, 

SE blocks were added, which improved performance while spending less on computation (Hu et al., 

2023). Similar to attention processes, SE blocks function by highlighting critical characteristics and 

suppressing less significant ones. 

 

Figure 4. AKG-MODULE architecture (Urfali et al., 2023) 

 

2.5. Performance Metrics 

In deep learning studies, metrics are used to measure the performance of the model and to compare 

different models. In this study, four different pixel-based performance measures, namely Sensitivity, 

Specificity, Dice, and IoU, were calculated to compare success measures in AKG-UNet, U-Net, 

Inception U-Net, LinkNet, SegNet, and Res-Unet models. The Confusion Matrix is a matrix model that 

gives information about the classification performance over the real and predicted images on the data. 

As seen in Table 2, the columns represent the estimation of positive and negative, rows the actual 

positive and negative. By using the values in this matrix, the calculations of Sensitivity, Specificity, 

Dice, and IoU metrics were made. 

 TP: Examples where the true value is 1 (True) and the estimated value is 1 (Positive). 

 FN: Examples where the actual value is 1 (True) but the estimated value is 0 (Negative). 

 FP: Examples where the true value is 0 (False) but the predicted value is 1 (Positive). 

 TN: Examples where the true value is 0 (False) and the predicted value is 0 (Negative). 
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2.5.1. Sensitivity 

Sensitivity, as shown in equation 1, expresses the ratio with which the pixels that need to be segmented 

in the image during a segmentation process can be detected. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (1) 

 

2.5.2. Specificity 

Specificity, as seen in equation 2, expresses the ratio at which the pixels that should not be segmented 

on a pixel basis in a segmentation process can be detected. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (2) 

 

2.5.3. Dice score 

Dice score is a pixel-based performance measure used especially in health studies. It is calculated as 

shown in equation 3. 

 

𝐷𝑖𝑐𝑒 =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (3) 

 

2.5.4. Intersection-Over-Union (IoU, Jaccard Index) 

The Jaccard Index, often known as Intersection over Union (IoU), is one of the most popular metrics in 

semantic segmentation. It is calculated as seen in Equation 4. This metric is also associated with the 

Dice calculation. 

 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁
 (4) 

 

3. Results and Discussion 

This experimental study was performed using 56 contrast-enhanced CT image scans from three different 

datasets. Training, validation, and testing were performed under the Windows 10 operating system, 

using Intel(R) Core (TM) i7-10700 CPU @ 2.90 GHz processor, 16.0 GB Memory, and NVIDIA® 

GeForce RTX 3060 12GB graphics card. Python software language was used in the whole process of 

the study. Anaconda’s Spyder ide was used during the training and testing process. In this study, our 

designed AKG-UNet model was compared with U-Net, Inception U-Netv2, LinkNet, SegNet and Res-

Unet models, and the Cross Entropy + Dice loss was employed as the hyperparameter during the training 

process. The learning rate of the models was set to 0.001, batch size 2, and epoch number 50. Root Mean 

Square Propagation (RMSprop) was used as the optimization algorithm to minimize the overall error 

and loss function. 10% of the data was set aside for testing. The remaining 90% was used for training 



2295 

 

with 5-fold cross-validation. The 2D images obtained at the end of the test process were combined and 

turned into 3D in NIfTI format. Two processes were carried out as post-processing. In the first of these, 

although the 2D estimated masks were detected close to the truth, distortion was detected in the 3D 

images, as seen in Figure 5a, due to the lack of coordinate information of the 3D scan created. This 

problem was solved by automatically transferring the coordinate information in the original image to 

the estimated mask scan with the Python code, as seen in Figure 5b. Finally, the false negative regions 

in the 3D images as a result of the segmentation were removed with the remove small object function 

of the skimage library, as seen in Figure 6, and the images 6a and 6b have been cleaned and the 3D 

images improved, as seen in 6c and 6d. 

 

 

(a) 

 

(b) 

Figure 5. Applying original image metadata onto the predicted masks. (a) 3D image obtained as 

a result of the test, (b) 3D image with location information transferred from original scan to 

estimated scan. 

  

(a) (b) 

  

(c) (d) 

Figure 6. Reducing false positives in predicted 3D masks. (a) and (c) Show the predicted mask, 

(b) and (d) Remove Small Object 
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In this study, the test results obtained by combining DONGYANG, KITS, and RIDER data of LinkNet, 

SegNet, ResUnet, U-Net, Inception U-Netv2, and AKG-UNet models trained on 2D axial images with 

5-fold Cross Validation are compared in Table 3. In LinkNet, 87.2% Dice, 77.4% IoU, %82.9 sensitivity, 

and 99.9% specificity was obtained, 84.9% Dice, 74.0% IoU, 79.3% sensitivity, 99.9% specificity were 

obtained in SegNet, and 87.5% Dice, 78.1% IoU, 83.1% sensitivity, 99.9% specificity were obtained in 

ResUNet, and 90.2% Dice, 82.2% IoU, 87.6% sensitivity, 99.9% specificity were obtained in U-Net, 

and 90.9% Dice, 83.3% IoU, 88.8% sensitivity, 99.9% specificity were obtained in Inception U-Netv2, 

and 91.2% Dice, 85.6% IoU, 90.0% sensitivity, 99.9% specificity were obtained in AKG-UNet. In the 

training results obtained by combining the Dongyang, KITS, and RIDER datasets, it was seen that the 

AKG-UNet model gave higher results than the other models. Figure 7 shows the 2D axial results 

obtained by U-Net, Inception U-Netv2, LinkNet, SegNet, Res-Unet, and AKG-UNet models, 

respectively. Finally, the 3D segmentation results of the models are shown as shown in Figure 8. 

 

Table 3. Dongyang, Kits and Rıder datasets test results by applying 5-Fold Cross-validation on 

LinkNet, SegNet and Res-Unet, Inception U-Netv2, U-Net, AKG-UNet models 

DONGYANG+KITS+RIDER 

(Yuan et al., 2023) 
DICE IOU SENS SPE 

MODEL 

PARAMETER(M) 

Weight 

Files(MB) 

LinkNet 0.872 0.774 0.829 0.999 11,527,234 44 

SegNet 0.849 0.740 0.793 0.999 29,443,010 112 

ResUNet 0.875 0.781 0.831 0.999 13,040,770 49.8 

U-Net 0.902 0.822 0.876 0.999 31,036,546 124.2 

Inception U-Netv2 0.909 0.833 0.888 0.999 32,041,850 125.3 

AKG-UNet 0.912 0.856 0.900 0.999 10,413,408 40.8 

 

   

(a) (b) (c) 
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(d) (e) (f) 

  

(g) (h) 

Figure 7. Segmentation results of the aorta in 2D axial slices. (a) Input test image, (b) ground truth mask of 

the input test image, (c) Predicted mask by using AKG-Unet on the test image, (d) Predicted mask by using 

Inception U-Netv2 on the test image, (e) Predicted mask by using U-Net on the test image, (f) Predicted mask 

by using ResUnet on the test image, (g) Predicted mask by using LinkNet on the test image, (h) Predicted 

mask by using SegNet on the test image 

       

(a) (b) (c) (d) (e) (f) (g) 

Figure 8.  3D test results of aort segmentation (a) ground truth, (b) 3D prediction result obtained by AKG-

UNet, (c) 3D prediction result obtained by Inception U-Netv2, (d) 3D prediction result obtained by U-Net, (e) 

3D prediction result obtained by ResUNet, (f) 3D prediction result obtained by LinkNet, (g) 3D prediction 

result obtained by SegNet 
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The performance criteria of this study with the aortic studies conducted in the literature are compared 

in Table 4. 

Table 4. Comparison of the results with previous studies for Aort segmentation 

Study DATASET CASE DICE IOU SEN SPE 

Dasgupta et al. (2017) LIDC-IDRI 30 0.880 X X X 

Zheng et al. (2018) PRIVATE - 0.824 X X X 

Noothout et al. (2018) PRIVATE 24 0.910 X X X 

Lareyre et al. (2019) PRIVATE 40 0.930 0.870 0.900 0.999 

Morris et al. (2020) PRIVATE 25 0.850 X X X 

Fantazzini et al. (2020) PRIVATE 80 0.928 ± 0.013 0.866 ± 0.023 X X 

Bonechi et al. (2021) PRIVATE 153 X 0.835 X X 

Wang et al. (2022) PRIVATE 179 0.970 X X X 

Benčevi´benčevi´c et al. 

 (U-Net)  (2022) 

AVT 

(Dongyang) 
18 0.886± 0.049 X X X 

Brutti et al. (2022) PRIVATE 85 0.89 ± 0.04 X X X 

Our Study (LinkNet) AVT 56 0.872 0.774 0.829 0.999 

Our Study (SegNet) AVT 56 0.849 0.740 0.793 0.999 

Our Study (ResUNet) AVT 56 0.875 0.781 0.831 0.999 

Our Study (U-Net) AVT 56 0.902 0.822 0.876 0.999 

Our Study (Inception U-Netv2) AVT 56 0.909 0.833 0.888 0.999 

Our Study (AKG-UNet) AVT 56 0.912 0.856 0.900 0.999 

 

When the results of aortic segmentation were compared with previous studies, it was seen that significant 

results were obtained and more successful results were obtained than many studies in the literature.  

Dasgupta et al. (2017) first applied a Circular Hough Transform (CHT) to localize the aorta, then active 

contouring to segment the aorta. However, it was observed in our study that the deep learning models 

U-Net, Inception U-Netv2, and the model we designed, AKG-UNet, provided higher dice scores. 

In the study by Zheng et al. (2018), the network was trained for axial images using a 2D CNN network. 

Afterwards, 3D outputs were obtained by following a 3D reconstruction method similar to the method 

applied by us. However, when we look at the Dice Score obtained, it is observed that the Dice Score 

obtained by us is higher among the six models. 

In the study conducted by Noothout et al. (2018), a segmentation study related to the iliac arteries was 

not performed while conducting aortic segmentation. Due to the small size of the iliac arteries, there is 

a decrease in segmentation success in this context. Taking these factors into account, we conducted a 

more comprehensive analysis in our study, and additionally, the AKG-UNet model yielded a higher 

Dice Score. 

In the studies carried out by Bonechi et. al. (2021) and Fantazzini et. al. (2020) the images were given 

as input to three different networks for axial, sagittal and coronal images using 2D CNN network. 

Afterwards, the obtained predictions were rendered in 3D. This extends the prediction time in addition 

to the training time of the model. In the study carried out by us, the training and estimation process of 

the model was completed with a single axial view. Afterwards, 3D outputs were obtained through the 

MITK intermediate program. Additionally, our designed AKG-UNet model achieved a higher IoU score 

compared to the study conducted by Bonechi et al. (2020). 
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Morris et al. (2020) performed segmentation with a 3D U-Net model to segment the heart. A higher dice 

scores were achieved compared to Morris et al.'s work, except for the SegNet model. In addition, in our 

study, 2D LinkNet, SegNet, ResUNet and AKG-UNet models can be used instead of 3D U-NET to 

produce faster estimation result with fewer parameters. 

Although Wang et al.'s (2022) performance rates were higher than our study, the size of the dataset they 

used was also larger than ours. The point where we differ from this work is the 3D visualization. 

In their study, Buritti et al. (2022) performed aortic lumen and thrombus segmentation to conduct 

diameter analysis for AAA. Despite utilizing a larger amount of CTA data in their study, our research 

attained a higher Dice score in the deep learning models, including U-Net, Inception U-Netv2, and our 

custom-designed AKG-UNet. 

In the study by Benčevi´benčevi´c et al. (2022), aortic segmentation was performed by training on the 

CT dataset collected from the DONGYANG hospital, which was also used in our study, using U-Net 

and polar transform networks. In our study, to increase data diversity and conduct a more comprehensive 

analysis, training was conducted using the DONGYANG, KITS, and RIDER datasets. As a result, a 

higher Dice score was attained in the U-Net, Inception U-Netv2, and our designed AKG-UNet models. 

In the studies to be carried out after this stage, our aim is to make improvements on the aortic anatomy 

performance and to determine the regions such as aneurysm and vasoconstriction in a fully automatic 

manner by calculating the diameter and area of the segmented aortic vessel. 

 

4. Conclusion 

In this study, a deep learning approach is proposed for the segmentation of the thoracic aorta, abdominal 

aorta, and iliac arteries in contrast to CT scans. In the proposed System architecture design, firstly, axial 

CT data were preprocessed, then by training and testing of U-Net, Inception U-Netv2, LinkNet, SegNet, 

ResUNet, and AKG-UNet models, 2D estimated mask sections have been created, and these 2D sections 

have been combined on top of each other. By removing small objects and adding coordinate information 

from the original image to the 3D radiological image obtained, the distortions in the 3D view were 

corrected and displayed in 3D in the MITK interface. As a result, in the aortic segmentation study, the 

best performance criterion was achieved in the AKG-UNet model that we designed. In the AKG-UNet 

model, we obtained scores of 91.2% for Dice, 85.6% for IoU, 90.0% for sensitivity, and 99.9% for 

specificity. Additionally, this study contributes to the literature with the introduction of the AKG-UNet 

model. As a result of this study, a system has been developed that uses aortic segmentation to 

significantly reduce the workload of surgeons during the preoperative planning and follow-up stages of 

treatment for conditions such as aneurysms and vascular narrowing, and make decision-making easier. 

In future works, virtual reality applications may be used with the proposed system. Virtual reality 

technologies have been widely used in the health sector in recent years. Following this, this study aims 

to help physicians examine the aorta structure as close to reality as possible in vascular analysis through 
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the integration of 3D segmentation of the aortic structure into virtual reality applications. Finally, the 

system is promising in clinical applications and is open to development. 
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