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Abstract   Öz  

Fringe Projection Profilometry- FPP system is widely used 

for three-dimensional(3D) imaging. This system is 

promising. However, for the changing environmental 

conditions, the measurement object, system noise, and 

strong backlighting changing, it is difficult to obtain 3D 

image accurately by fringe analyzing methods such as 

Traditional Fourier Transform Method-TFFT in FPP 

System. Therefore, in this paper, the TFFT method is 

combined with various method and hybrid methods are 

formed. The aim is to investigate how these methods affect 

the accuracy of FPP system. To make this determination, 

from simulated fringe pattern, phase is calculated. Then the 

error values are obtained using these phase values. 

Consequently, it is seen from error results that TFFT with 

two Dimensional Empirical Mode Decomposition method-

2D-EMD-FFT which gives the lowest error, is the most 

insensitive to the disruptive effects mentioned above. 

Moreover, it is the most stability and least affected by the 

geometric of the object under test. 

 Izgara Projeksiyon Profilometri-FPP sistemi, üç boyutlu 

(3D) görüntüleme için yaygın olarak kullanılmaktadır. Bu 

sistem umut vericidir. Ancak değişen çevre koşulları, 

ölçüm nesnesi, sistem gürültüsü ve güçlü arka ışık değişimi 

nedeniyle FPP Sisteminde Geleneksel Fourier Dönüşüm 

Yöntemi-TFFT gibi saçak analiz yöntemleriyle doğru 3 

boyutlu görüntü elde etmek zordur. Bu nedenle bu bildiride 

TFFT yöntemi çeşitli yöntemlerle birleştirilerek hibrit 

yöntemler oluşturulmuştur. Amaç bu yöntemlerin FPP 

sisteminin doğruluğunu nasıl etkilediğini araştırmaktır. Bu 

belirlemeyi yapmak için simüle edilmiş saçak deseninden 

faz hesaplanır. Daha sonra bu faz değerleri kullanılarak 

hata değerleri elde edilir. Sonuç olarak, hata sonuçlarından, 

en düşük hatayı veren İki Boyutlu Ampirik Mod Ayrıştırma 

yöntemi olan 2D-EMD-FFT'ye sahip TFFT'nin yukarıda 

bahsedilen bozucu etkilere en duyarsız olduğu 

görülmektedir. Üstelik test edilen nesnenin geometrisinden 

en az etkilenen ve en kararlı olanıdır. 

Keywords: Fringe projection Profilometry, Hybrid 

methods, Fringe analysis, Accuracy 

 Anahtar kelimeler: Izgara projeksiyon Profilometrisi, 

Hibrit yöntemler, Izgara analizi, Doğruluk 

1 Introduction  

FPP is a non-contact, non-destructive, reliable, and fast 

system. Moreover, it is a widely used application in industry 

as it allows for real-time measurement [1-6]. There are many 

factors to characterize the performance of FPP system, for 

example, speed, resolution, accuracy, reliability, cost, 

application scenario, etc. The most important among these 

factors is measurement accuracy of FPP system, which is not 

only determined by technical mechanisms, but is also 

affected by system components and setup, field of view, 

system calibration, geometric and surface properties of the 

measured objects, and ambient lighting [7-10]. The methods 

used in analyzing the fringe patterns obtained from such a 

system also influence the accuracy. They are greatly affected 

by noise, background, vibration, and so on. 

Up to date, to reveal the factors mentioned above that 

affect the accuracy of a system, many studies of both 

experimental and simulation data have been performed. For 

example, Li et al. [7] analyzed how change the accuracy of 

FPP system by comparing several calibration methods. 

Pérez et al. [11] obtained a 3D image of the surface of an 

oil painting with FPP system and attempted to determine the 

accuracy of the system experimentally. In this study it is used 

a four-step phase shift method and concluded that the 

accuracy of the system was one-tenth of a millimeter. 

The higher order harmonics of the distorted fringe affect 

the accuracy of the FPP system as they cause errors in phase 

estimation. To solve this problem, Yin et al. [12] proposed a 

phase estimation method based on a neural network (PWPE-

NN). They reported that the phase error caused by 

conventional methods in FPP systems that do not use a 

sinusoidal fringe pattern was eliminated by this method. 

Lv et al. [13] have attempted a critical theoretical study 

to provide deep understanding and possible improvement of 

FPP system. Moreover, they investigated the theoretical 

effects on the accuracy of FPP, as well. 

Nguyen et al. [8] aimed to investigate the accuracy of 

FPP and digital image correlation technique for 3D imaging. 

https://orcid.org/0009-0008-2961-5910
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In their study, an experimental investigation into the 

accuracy comparison of two common 3D imaging systems 

has been presented: FPP and 3D digital image correlation 

(3D-DIC) technique. In their study, it was not revealed how 

the fringe analysis methods used in the system affect the 

accuracy of the system. By comparing the results of 3D 

imaging systems, the system that obtained the best image 

was determined experimentally. 

López-Torres et al [9] proposed a method for identifying 

and removing shadows created by objects during 3D imaging 

of FPP and Wavelet Transform Profilometry (WTP). In the 

study, phase images, MSE (mean square error) and PSNR 

(peak signal-to-noise ratio) calculations, and execution times 

were presented. The results showed that the 3D imaging 

process was significantly improved with the removal of 

shadows. 

In 2019, Xu et al. [10] presented a study for 3D imaging 

of translucent objects with FPP. Three major challenges, 

which are random errors, phase unwrapping failures, and 

geometric errors, form, when phase-shifting method for 

signal analyzing in FPP system is utilized to measure 

translucent objects. They presented a new method to 

overcome these challenges. The experimental results 

revealed that this method provides high accuracy. 

In 1993, Perry et al. [1] showed that phase finding 

algorithms based on the phase shifting technique do not 

affect the accuracy of the FPP system even if edge effects, 

discontinuities, and noise are present. 

Huang et al. [2] compared several fringe analysis 

methods used in FPP system in 2010. Although 2D-

Windowed Fourier Transform (2D W-FFT) and 2D 

continuous wavelet transform (2D CWT) algorithms appear 

to be the most robust methods, they are time consuming and 

not suitable for real-time processing. All transformation 

methods performed poorly because of discontinuities in a 

phase map. In summary, it was concluded that the 

appropriate method should be selected according to the 

imaging requirements. 

Kaya et al. [14] analyzed the interference fringes by the 

Hartley transform method (HTM) in the FPP system. It was 

concluded that although HTM had a short execution time, 

traditional Fourier Transform method (TFTM) provided a 

better 3D imaging. 

In 2016, Li et al. [15] conducted a study on phase errors 

occurred when used shearlet transform (STM), EMD-TFFT 

(Emprical Mode Decomposition-TFFT), and wavelet 

transform (WTM) methods to calculate the phase in the FPP 

system. 

Dursun et al. [16] investigated the performance of FPP 

system for 3D imaging by using some fringe analysis 

methods (the one-dimensional continuous wavelet transform 

(1D-CWT), 1D-CWT Gradient, TFFT). It was concluded 

that 1D-CWT has been better than TFFT and 1D-CWT 

gradient methods to find 3D profile in FPP system. 

In 2010, Salvi et al. [17] presented a review study for 

showing the disadvantages and advantages of the fringe 

analysis methods, which are single phase shifting (SPS), 

multiple phase shifting (MPS), TFFT, and CWT.  

As can be seen from the studies carried out so far, the 

accuracy of the FPP system is mostly affected by the signal 

analysis methods used in phase detection [18-28]. One of 

these methods is the TFFT method [1-2, 8, 19, 21, 29]. This 

method has some disadvantages such as edge and 

discontinuities effects, when used alone, as seen from the 

literature. In order to eliminate these disadvantages, in this 

study, hybrid methods, which are (1) TFFT with Savitzky–

Golay (SG) Filter [30-32], (2) TFFT with Gaussian Window 

(W) [2, 33-34], (3) TFFT with 2D Empirical Mode 

Decomposition [35-38], and (4) TFFT with Modulation [39], 

were created. Here, a research study revealing how such 

hybrid methods affect the accuracy of the FPP system is 

presented for the first time. In addition, it is also revealed 

how the geometric shape of the object to be 3D imaged 

affects the phase found with these hybrid methods. 

Moreover, which method finds the 3D phase map more 

accurately is given by the error calculation. In this paper, 

accuracy of the FPP system is represented as phase error, 

which contains system, background, vibration noise etc. 

As a result, it is seen that the TFFT method with 2D-

EMD, which gives the lowest error for each object, is the 

most insensitive to noise. Moreover, it can be said that this 

hybrid method enables the imaging system to generate 

accurate results. 

This work will be organized as follows. In the second 

part, the definitions of the hybrid fringe analysis methods 

used in the FPP system will be presented. In the third part, 

phases obtained from the fringe patterns (signal) taken from 

the FPP and phase errors will be shown. In the fourth part, 

the findings obtained in the results section will be compared 

and advantages and disadvantages of all hybrid methods will 

be given. 

2 Principles of hybrid fringe analysis methods used in 

FPP systems 

The Fringe Projection system (FPP) is illustrated in 

Figure 1 and the fringe pattern (signal) obtained from this 

system is given by Equation 1. 

 

 

Figure 1. FPP System 
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2.1 Traditional fourier transform method-TFFT 

Traditional Fourier Transform Method was used by 

Takeda in 1982 for signal (fringe) analysis [29] and a fringe 

pattern can be given by Equation 1. 

 

𝑖(𝑥, 𝑦) = 𝑎(𝑥, 𝑦) + 𝑏(𝑥, 𝑦) cos (2𝜋𝑓𝑜𝑥 + 𝜙(𝑥, 𝑦)) (1) 

 

In the equation, a represents the background intensity 

distribution and b represents the fringe amplitude. ϕ is the 

phase that carries information about the measured profile. 

This pattern can also be written as in Equation 2. 

 

𝑖(𝑥, 𝑦)
= 𝑎(𝑥, 𝑦)

+
1

2
𝑏(𝑥, 𝑦) {exp(𝑖2𝜋𝑓𝑜𝑥) exp (𝑖𝜙(𝑥, 𝑦))

+ exp(−𝑖2𝜋𝑓𝑜𝑥) exp (−𝑖𝜙(𝑥, 𝑦))} 

           

(2) 

 

𝑖(𝑥, 𝑦) = 𝑎(𝑥, 𝑦) + 𝑏(𝑥, 𝑦) cos (2𝜋𝑓𝑜𝑥 + 𝜙(𝑥, 𝑦)) (3) 

 

𝑐(𝑥, 𝑦) =
1

2
𝑏(𝑥, 𝑦)𝑒𝑥𝑝 (𝑖𝜙(𝑥, 𝑦)) (4) 

 

Fast Fourier transform of Equation 3 with respect to x, is 

given in Equation 5. 

 

𝐼(𝜉, 𝑦) = 𝐴(𝜉, 𝑦) + 𝐶(𝜉 − 𝜉𝑜 , 𝑦) + 𝐶∗(𝜉 + 𝜉𝑜, 𝑦) (5) 

 

𝑓 is the spatial frequency in the x direction. 𝐶∗ is complex 

conjugate of the 𝐶. 

The background 𝐴(𝜉, 𝑦) and the two frequency 

components at frequencies 𝜉 − 𝜉𝑜 and 𝜉 + 𝜉𝑜 of the signal 

are separated with the help of Fourier transform. With a 

band-pass filter (transfer function 𝐻(𝜉, 𝑦)), only the 

𝐶(𝜉 − 𝜉𝑜, 𝑦) component is taken, as summarized in Equation 

6. 

 

𝐶(𝜉, 𝑦) = (𝜉 − 𝜉𝑜, 𝑦) = 𝐼(𝜉, 𝑦)𝐻(𝜉, 𝑦) (6) 

 

Then c(x,y) is obtained by inverse Fourier transform. 

 

𝑐(𝑥, 𝑦) = 𝑖𝑓𝑓𝑡{𝐼(𝜉, 𝑦)𝐻(𝜉, 𝑦)} (7) 

 

𝜙(𝑥, 𝑦) = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑖𝑚{𝑐(𝑥, 𝑦)}

𝑟𝑒{𝑐(𝑥, 𝑦)}
 (8) 

 

𝑖𝑚{𝑐(𝑥, 𝑦)}; imaginary part of c(x,y) , 𝑟𝑒{𝑐(𝑥, 𝑦)}; is the 

real part. This discontinuous phase is between –π and +π. 

This phase is made continuous [θ(x,y)] using an appropriate 

unwrap algorithm. The phase is calculated for both the 

reference and the image captured with the object and the 

difference presented in Equation 9. 

 

Δ𝜃 = 𝜃𝑜 − 𝜃𝑟𝑒𝑓  (9) 

 

Here 𝜃𝑜, is the phase obtained from the unwrapped object 

image and 𝜃𝑟𝑒𝑓 is the unwrap phase obtained from the 

reference image. 

The flowchart used for the algorithm of this method is 

presented in Figure 2. 

2.2 TFFT method with SG Filtering (SG–FFT) 

A SG (Savitzky Golay) filter can be used to solve the 

problem of noise in the fringe pattern [30]. It is a simplified 

method for calculating the discrimination and smoothing of 

data with the least squares technique. The calculation speed 

of this method is better than the least squares technique. A 

major disadvantage of the method is that some of the initial 

and final data points cannot be corrected with the original SG 

method. However, Steinier et al. and Khan overcomes this 

problem [31]. 

The filter length or frame size N is odd, whereby it is 

assumed to be 𝑁 = 2𝑀 + 1 ve 𝑁 ≥  𝑑 + 1, with 𝑑 = the 

degree of polynomial. 𝑥𝑛, if there is noisy sample, 𝑛 =
 0, 1, . . . , 𝐿 −  1 and if we convert them to smoothed outputs 

to 𝑦𝑛,  𝑛 =  0, 1, . . . , 𝐿 –  1; then the data vector 𝑥, 𝑛 = 𝐿 

entry points and each side of 𝑥 has N dimensions and M 

points; which replaces 𝑥 =
[𝑥−𝑀, … . . ,  𝑥−1, 𝑥0, 𝑥1, … . . 𝑥𝑀  ]𝑇with 𝑥 =
[𝑥0, 𝑥1, … … … … . . 𝑥𝐿−1] 𝑇. The output is described as 

follows. If we consider the state 1 output first; the first 𝑀 +
1 output 𝑦𝑖  is calculated. 

 

𝑦𝑖 = 𝑏 𝑀−𝑖
𝑇  𝑤(𝑀), 𝑖 = 0,1, … 𝑀 (10) 

 

The state vector is: 

 

𝑤(𝑀) = [

𝑥𝑁−1

.

..
𝑥0

]  (11) 

 

SG filtering is a popular method for smoothing data and 

calculating derivatives of noisy data based on local least 

squares fit of data with polynomials. SG filters are usually 

applied to equidistant data points, whereby each data point is 

based on fitting a polynomial of order n given the data in a 

(usually symmetric) k − m...k + m neighborhood of k (this 

range contains two m+1 data points). This filtering method 

was investigated in 1964 by Abraham Savitzky and Marcel 

J. E. Golay [30-32]. 

In this method, after SG Filtering, The TFFT is applied 

and the phase difference is obtained by Equation 9. The flow 

chart of SG-FFT hybrid method is presented in Figure 3. 

2.3 TFFT with Gaussian Window (W-FFT) 

In this section, an explanation will be given using the 

traditional Fourier transform method. The 1D Fourier 

transform can be described by the following equation 

 

𝐼(𝜉) = ∫ 𝑖(𝑥) 𝑒𝑥𝑝(−𝑗𝜉𝑥) 𝑑𝑥
∞

−∞

 (12) 

 

𝑖(𝑥) =
1

2𝜋
∫ 𝐼(𝜉) exp(𝑗𝜉𝑥) 𝑑𝜉

∞

−∞

 (13) 
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𝐼(𝜉) is the Fourier transform of 𝑖(𝑥). The windowed 

Fourier transform of 𝑖(𝑥) and its inverse can be written as: 

 

𝑆(𝑢, 𝜉) = ∫ 𝑖(𝑥)𝑔(𝑥 − 𝑢) 𝑒𝑥𝑝(−𝑗𝜉𝑥) 𝑑𝑥
∞

−∞

 (14) 

 

𝑖(𝑥) =
1

2𝜋
∫ ∫ 𝑆(𝑢, 𝜉)𝑔(𝑥

∞

−∞

∞

−∞

− 𝑢) 𝑒𝑥𝑝(𝑗𝜉𝑥) 𝑑𝜉 𝑑𝑢 

(15) 

 

𝑆(𝑢, 𝜉) is known as the windowed Fourier spectrum; 

𝑔(𝑥) is the window selected as the Gaussian function. 

 

𝑔(𝑥) = 𝑒𝑥𝑝 (−
𝑥2

2𝜎2
) (16) 

 

𝑔(𝑥) is the parameter that controls the length of 𝜎. With 

normal Fourier transform, 𝑖(𝑥)is converted to 𝐼(𝜉), but there 

is only frequency information. Location information is 

almost never identifiable. The frequency information in the 

spectrum is obtained from 𝐼(𝜉), but it is not known where 

these frequencies are in relation to the signal. On the 

contrary, by using W-FFT it is possible to reach not only the 

frequency component, but also the positional information. 

This transformation technique offers two advantages: 

1- Since W-FFT is performed over an area determined 

by the length of g(x) (provided that their distance is 

greater than the effective radius of the Gaussian 

window), a signal at one location will not affect a 

signal at another location in spectral analysis 

2- It is easier to study the spectrum of a signal in a 

local field than to study the entire field spectrum, 

therefore, the W-FFT spectrum is easier to interpret 

The spectrum of W-FFT can be studied in two ways: 

1- By performing thresholding, low amplitude spectral 

components are reset, thus, the noise spreads over 

the entire spectrum. As noise disappears, a high 

quality signal can be reconstructed. 

2- The frequency corresponding to the peak of the 

spectrum is considered the local frequency or 

instantaneous frequency. This approximation shows 

that the spectrum of the signal in a local area is 

simple and consists of only one frequency. 

 

Based on W-FFT, two different approaches are possible 

for fringe demodulation called the windowed Fourier 

filtering (W-FFT) method and the windowed Fourier ridges 

(W-FFR) method. W-FFT filters the fringe pattern in the 

windowed Fourier space and W-FFR provides the best match 

between the fringe pattern and computer-generated 

windowed exponentials. In this study The W-FFT method is 

used [33-34]. 

As seen in Equation 2, the fringe pattern consists of two 

exponential functions and background density. When we 

consider the carrier frequency, there are three spectrum 

components in the frequency domain. The W-FFT of 

Equation 2 can be written as follows: 

 

𝑖(𝑥) =
1

2𝜋
∫ {[𝑖(𝑥) ⊗ ℎ(𝑥, 𝜉)] ⊗

∞

−∞

ℎ(𝑥, 𝜉)}𝑑𝜉 (17) 

 

ℎ(𝑥, 𝜉) = 𝑔(𝑥)exp (𝑗𝜉𝑥) taken as and ⊗ shows the 

convolution. If W-FFT is written in a specific region, it can 

be expressed by the equation given below: 

 

𝑖(𝑥)̅̅ ̅̅ ̅ =
1

2𝜋
∫ [𝑖(𝑥) ⊗ ℎ(𝑥, 𝜉)] ⊗

𝑏

𝑎

ℎ(𝑥, 𝜉)𝑑𝜉 (18) 

 

If |𝑖(𝑥) ⊗ ℎ(𝑥, 𝜉)| is less than a certain threshold value, 

it behaves as noise and is removed at reset. Threshold 

selection is important. The integral boundaries are between 

a and b. Thus, in the 2D spectrum, only the spectrum of the 

positive frequency portion is obtained from the three 

frequency components. In this case, 2D phase can also be 

written as follows: 

 

𝜙(𝑥, 𝑦) = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑖𝑚{𝑖(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ }

𝑟𝑒{𝑖(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ }
 (19) 

 

The phase difference is obtained by substituting this 

phase in Equation 9. The flow diagram of the W-FFT method 

is presented in Figure 4: 

2.4 TFFT method with 2D-Empirical Mode 

Decomposition (2D-EMD-FFT) 

For the EMD method developed by Huang et al., the non-

stationary signal is made stationary using the signal Hilbert-

Huang transform [35]. Here it is considered that the signal 

can have more than one different simultaneous mode of 

modals (intrinsic mode functions [IMFs]). Based on this 

idea, a complex signal can be decomposed into the sum of 

several IMFs and one residue, which can be easily modelled. 

Here, IMFs are extracted based on the local characteristic 

scale of the complex signal. In EMD, the IMF and the 

residuals are used to obtain the original signal without loss 

of information and error. When creating IMFs, they must 

meet certain conditions. For example, the number of zero 

crossings must be equal to the number of endpoints or the 

difference between them must be one. The other condition is 

that the mean value of the upper envelope and lower 

envelope must be zero for each instance of the sign. 

Interpolation of upper envelope maximum points are found 

by interpolation of the minimum points in the lower 

envelope. The resulting IMFs are nearly orthogonal to each 

other [36]. They describe 1D- EMD and [37-38].2D-EMD 

and here, 2D- IMF is used. First, the IMFs of the i(x,y) sign 

are found, then the numbered IMFs are taken, they are added 

together, and the filtered signal becomes as in Equation 3. 

This signal is in the order of the traditional Fourier transform 

and the phase difference is obtained by applying the 

operations in Equations 5 and 9. 

The flow diagram of the 2D-EMD-FFT method is 

presented in Figure 5. 



 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(4), 1452-1467 

B. Özbay, Z. Saraç 

 

1456 

2.5 TFFT method with modulation (GPM-FFT) 

In this method, i(x) and g(x) Gaussian windows are 

multiplied. Then, the spatial frequency plane is passed with 

Fourier transform. Afterwards, the steps in the traditional 

Fourier transform method are applied and the phase is 

obtained. The equations of the method are presented below. 

The multiplication of the interference pattern and the 

Gaussian window obtained is as follows: 

 

𝑓(𝑥) = 𝑖(𝑥) 𝑔(𝑥) (20) 

 

The multiplication represents the modulation in the 

spatial plane. By taking the Fourier transform, Equation 21, 

the modulation process is obtained in the frequency plane. 

 

𝐹(𝜉) = ∫ 𝑓(𝑥) 𝑒𝑥𝑝(−𝑗𝜉𝑥) 𝑑𝑥
∞

−∞

 (21) 

 

 

 
Figure 2. Flowchart of TFFT Method 

 

 
Figure 3. Flowchart of the SG-FFT Method 

 

 
Figure 4. Flowchart of the W-FFT method. 

 

 
Figure 5. Flowchart of the 2D-EMD-FFT method. 

 

 
Figure 6. Flowchart of GPM-FFT Method 
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Then the signal with edge effects is removed and high 

frequency noise components eliminated. The signal is 

processed with the conventional Fourier transform (as in 

Equation 6) and the phase difference is obtained with 

Equation 9. 

 

The flow chart of the method is illustrated in Figure 6. 

 

3 Simulations and presentation of results 

In this section, simulation studies and their results will be 

presented. Three objects were selected to simulate the signal 

received from the 3D imaging system (FPP). It is assumed 

that a 3D image of the hemisphere, cone, and complex 

crested objects shown in Figure 7 are obtained from this 

system. The 2D fringe pattern captured by the camera in such 

a system (commonly a charge coupled device [CCD] is used) 

can be mathematically given by the Equation 22: 

 

𝑖(𝑥, 𝑦) = 𝑎(𝑥, 𝑦) + 𝑏(𝑥, 𝑦) 𝑐𝑜𝑠(2𝜋𝑓𝑜𝑥 + 𝜙(𝑥, 𝑦))

+ 𝑛𝑜𝑖𝑠𝑒 
(22) 

 

The 𝜙(𝑥, 𝑦) phase in this equation is the phase 

information derived from the mathematical expressions of 

the selected objects. 

𝑖(𝑥, 𝑦); is produced as an image with 512x512 pixels. 

This means camera resolution is accepted 512x512 pixels. 

In 𝑖(𝑥, 𝑦), 𝜙(𝑥, 𝑦) is produced as a 512x512 pixel image 

and is represented by Equation 23 for the hemisphere: 

 

𝜙(𝑥, 𝑦)

= 𝑅𝑒 {10 √(1 −
(𝑥 − 256)2 + (𝑦 − 256)2

2402
)} 

(23) 

 

Here, 𝑅𝑒{ } represents the real part of the complex 

expression. Spatial frequency of the fringe pattern is set to 

𝑓0 =  1/16. 𝑎(𝑥, 𝑦) background intensity, it is defined as 1. 

𝑏(𝑥, 𝑦) modulation intensity is 1. White Gaussian noise 

(WGN) was selected as the noise and the power of the noise 

samples is specified as scalar and is taken as 8 dBW. 

The original phase 𝜙(𝑥, 𝑦) for the actual hemisphere 

obtained by using equation 23 is given in Figure 7(a).  

For cone shapes, the phase expression in Equation 22 is 

taken as in Equation 24. However, phases less than 200 are 

taken as zero and replaced in phase (Equation 24): 

 

𝜙(𝑥, 𝑦) = 50 (1 −
√(𝑥 − 256)2 + (𝑦 − 256)2

200
) (24) 

 

The original phase 𝜙(𝑥, 𝑦) for the actual cone obtained 

by using equation 24 is given in Figure 7(b). 

The phase expression in Equation 22 is taken as in 

Equation 25 for a complex crested shape: 

 

 𝜙(𝑥, 𝑦) = 3 (1 − 𝑥)2 𝑒(−𝑥2−(𝑦+1)2) − 10 (
𝑥

5
−

𝑥3 − 𝑦5) 𝑒(−𝑥2−𝑦2) −
1

3
𝑒(−(𝑥+1)2−𝑦2) 

(25) 

 

The original phase 𝜙(𝑥, 𝑦) for the actual complex crested 

shape obtained by using equation 25 is given in Figure 7(c). 

Fringe patterns of objects obtained from the 3D FPP 

using these objects and the simulation results are presented 

in Figure 8. 

In addition, the simulated reference image (using 

Equation 26) obtained from the FPP without placing the 

object is presented in Figure 9. 

 

 𝑖𝑟𝑒𝑓(𝑥, 𝑦) = 𝑎(𝑥, 𝑦) + 𝑏(𝑥, 𝑦) 𝑐𝑜𝑠(2𝜋𝑓𝑜𝑥) +

𝑛𝑜𝑖𝑠𝑒 
(26) 

 

The unwrap phases ( 𝜙0, 𝜙𝑟𝑒𝑓) are calculated by using 

the simulated pattern 𝑖(𝑥, 𝑦) and 𝑖𝑟𝑒𝑓(𝑥, 𝑦) obtained from the 

FPP for a hemispherical object. The noisy phase map 

(𝜙𝑠𝑜𝑛(𝑥, 𝑦)) is obtained by Equation 27. 

 

𝜙𝑠𝑜𝑛(𝑥, 𝑦) = 𝜙0(𝑥, 𝑦) − 𝜙𝑟𝑒𝑓(𝑥, 𝑦) (27) 

 

Firstly, 𝜙𝑠𝑜𝑛(𝑥, 𝑦) is found for hemispherical object by 

TFFT in Figure 10(a). The result obtained by SG-FFT is 

given in Figure 10(b). The results calculated by using W-

FFT, 2D-EMD-FFT, and GPM-FFT hybrid methods are 

illustrated in (c), (d), and (e), respectively. 

To compare which of these methods has the least noise, 

the error (error=e) values are calculated by Equation 28. In 

here, 𝜙(𝑥, 𝑦) is calculated by Equation.23 for hemispherical 

object. The error values are presented in Figure 11 for (a) 

TFFT, (b) SG-FFT, (c) W-FFT, (d) 2D-EMD-FFT, and (e) 

GPM-FFT hybrid methods, respectively. 

 

𝑒 = 𝜙𝑠𝑜𝑛(𝑥, 𝑦) − 𝜙(𝑥, 𝑦) (28) 
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…       

Figure 7. The original phases for (a) hemisphere, (b) cone, and (c) complex crested objects. 

 

 

Figure 8. 2D images of simulated fringe patterns using relevant phases (bodies) for (a) hemisphere, (b) cone, and (c) 

complex crested shape. 

 

 

Figure 9. The image of fringe 

pattern simulated using 

reference iref(x, y).   
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Figure 10. Phase maps, ϕson(x, y)(noisy phase), obtained using (a) TFFT, (b) SG-FFT, (c) W-FFT, (d) 2D-EMD-FFT, 

and (e) GPM-FFT hybrid methods from simulated fringe patterns for the hemispherical object. 
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Figure 11. Error maps obtained by Equation 28 between actual phase and noisy phase. ϕson(x, y) was obtained with 

(a) TFFT, (b) SG-FFT, (c) W-FFT, (d) 2D-EMD-FFT, and (e) GPM-FFT hybrid methods from the simulated fringe 

pattern images for the hemispherical object. 

 

The unwrap phase, 𝜙𝑠𝑜𝑛(𝑥, 𝑦), is found for cone object 

by TFFT in Figure 12(a) by using Equation 27. The result 

obtained by SG-FFT is given in Figure 12(b). The results 

calculated by using W-FFT, 2D-EMD-FFT, and GPM-FFT 

hybrid methods are illustrated in (c), (d), and (e), 

respectively. 

To compare which of these methods has the least noise, 

the error (error=e) values are calculated by Equation 28. In 

here, 𝜙(𝑥, 𝑦) is calculated by Equation.24 for cone object. 

The error values are presented in Figure 13 for (a) TFFT, (b) 

SG-FFT, (c) W-FFT, (d) 2D-EMD-FFT, and (e) GPM-FFT 

hybrid methods, respectively. 
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Figure 12. Phase maps, ϕson(x, y)(noisy phase), obtained using (a) TFFT, (b) SG-FFT, (c) W-FFT, (d) 2D-EMD-FFT, 

and (e) GPM-FFT hybrid methods from the simulated fringe pattern images for the cone object. 
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Figure 13. Error maps obtained by Equation 28 between actual phase and noisy phase, ϕson(x, y) obtained using (a) 

TFFT, (b) SG-FFT, (c) W-FFT, (d) 2D-EMD-FFT, and (e) GPM-FFT hybrid methods from the simulated fringe pattern 

images for the cone object. 

The unwrap phase 𝜙𝑠𝑜𝑛(𝑥, 𝑦) is found for complex 

crested object by TFFT in Figure 14(a). The result obtained 

by SG-FFT is given in Figure 14(b). The results obtained by 

using W-FFT, 2D-EMD-FFT, and GPM-FFT methods are 

illustrated in (c), (d), and (e), respectively. 

To compare which of these methods has the least noise, 

the error (error=e) values are calculated by Equation 28. In 

here, 𝜙(𝑥, 𝑦) is calculated by Eq.25 for complex crested 

object. The error values were presented in Figure 15 for 

(a)TFFT, (b) SG-FFT, (c) W-FFT, (d) 2D-EMD-FFT, and 

(e)GPM-FFT hybrid methods, respectively. 
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Figure 14. Phase maps, ϕson(x, y)(noisy phase), obtained using (a) TFFT, (b) SG-FFT, (c) W-FFT, (d) 2D-EMD-FFT, 

and (e) GPM-FFT hybrid methods, from the simulated fringe pattern images for the complex crested object. 



 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(4), 1452-1467 

B. Özbay, Z. Saraç 

 

1464 

                              

                              

 

Figure 15. Error maps calculated by Equation 28 between actual phase and noisy phase, ϕson(x, y) obtained using (a) 

TFFT, (b) SG-FFT, (c) W-FFT, (d) 2D-EMD-FFT, and (e) GPM-FFT hybrid methods from the simulated fringe pattern 

images for the complex crested object. 

 

4 Conclusions and discussion  

In this paper, accuracy parameter, which show the 

performance of FPP system, is inspected and represented as 

phase error, which contains system, background, vibration 

noise etc. In addition, it is mostly affected by the fringe 

analysis methods used in phase detection. One of these 

methods, which has some disadvantages such as edge and 

discontinuities effects, is TFFT. In this paper, because of 

this, the TFFT is combined with some method and hybrid 

methods which are called as SG-FFT, W-FFT, 2D-EMD-

FFT, and GPM-FFT are formed. Here, the purpose is to show 

how such hybrid methods affect the accuracy of the system 

for the first time. In addition, it reveals how the geometric 

shape of measured object affects the phase obtained by these 

hybrid methods. In same time, which method gives the 3D 

phase map more accurately is presented by the error 

calculation. It was concluded from phase and its error values 

obtained for three objects (hemispherical, cone, complex 

crested objects) as follows: 

 

1- The phase and error values obtained for 

hemispherical object are presented in Figure 10 and 

11, respectively. As can be seen from Figures, the 

most accurate phase result for such an object is 

obtained by the 2D-EMD-FFT method (see Figure 

10(d), 11(d)). If the methods are ranked from most 

to least accurate, they would be as follows: W-FFT 

(see Figure 10(c) ,11(c)), SG-FFT (see Figure 

10(b), 11(b)), TFFT (see Figure 10(a), 11(a)) and 

lastly GPM-FFT (see Figure 10(e), 11(e)). As 

already established, the phase information obtained 

from the FPP system with the specified methods is 
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greatly affected by system noise, background, 

vibration etc. Here, it can be said that 2D-EMD-

FFT results (see Figure 10(d) and 11(d)) are better 

because this method eliminates especially the 

background noise. 

 

The best phase and error results for hemispherical object 

are obtained by 2D-EMD-FFT hybrid method. 

 

2- The results obtained for the cone object are given in 

Figure 12 and 13, respectively. As with the 

hemispherical object, 2D-EMD-FFT is the method 

that gives the most accurate results (see Figure 

12(d), 13(d)) and presents the least error. The 

second most accurate method is SG-FFT (look at 

Figure 12(b), 13(b)) followed by TFFT (Figure 

12(a),13(a)), GPM-FFT (Figure 12(e), 13(e)), and 

W-FFT (see Figure 12(c) and 13(c)). As expected, 

the 2D-EMD-FFT method gives the best results. 

 

The best phase and error results for cone are obtained by 

2D-EMD-FFT hybrid method again. 

 

3- Considering the 2D and 3D phase (see Figure 14) 

and the error values (see Figure 15) calculated using 

the fringe patterns obtained from FPP system for 

complex crested shape, W-FFT gives the best 

results (see Figure 14(c), 15(c)). The smallest error 

is observed with this method (see Figure 15(c)). W-

FFT is followed by 2D-EMD-FFT (look at Figure 

14(d), 15(d)) and SG-FFT (see Figure 14(b) and 

15(b)) in terms of effectiveness. TFFT (look at 

Figure 14(a), 15(a)) is better in every way than 

GPM-FFT (see Figure 14(e), 15(e)). 

 

Although the best phase and error results for complex 

crested shape are obtained by W-FFT hybrid Method, 2D-

EMD-FFT follows it with very small difference. This means 

that 2D-EMD-FFT is very stability. In every situation it 

gives more accurate result. 

As a result, it is seen that the effectiveness of hybrid 

methods depends on the surface properties, material and 

geometric shape of the measured object.  

First result is that the 2D-EMD-FFT method presents the 

least error in all conditions and is least affected from the 

changing environmental conditions, the geometry and 

surface structure of measured object.  

Second result is that SG-FFT hybrid method follows 2D-

EMD-FFT, but sometimes may reduce the accuracy of the 

system directly. Because SG Filter makes the smoothing 

process, which affects the properties of the surface of tested 

object. 

Third result is that GPM-FFT hybrid method gives the 

greatest error unconditionally and reduces the accuracy of 

the FPP system. It is concluded that GPM-FFT is not suitable 

for fringe analysis. 

The last result is that W-FFT is not a method that 

increases the accuracy of the system as much as suggested in 

the literature [2]. and it does not show stability. In addition, 

it can reduce very much the accuracy of the system 

depending on the geometric shape of the object being 

measured.  
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