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Enhancing Passenger Experience through Real-Time Onboard 

Comfort Estimation using Artificial Intelligence 

Highlights 

❖ This paper focuses on evaluating passenger comfort and identifying the most important factors affecting it. 

❖ Real-time AI model estimates in-flight passenger comfort. 

❖ Highly accurate and more efficient classification accuracy is obtained. 

Graphical Abstract 

The graphical abstract illustrates the end-to-end workflow of the study, starting from data collection based on noise, 

vibration, and other sensor values, along with passenger feedback. The collected data is stored in CSV format and 

undergoes data augmentation and preprocessing steps. This includes cleaning the data and preparing it for model 

training. Following preprocessing, various machine learning models are trained, analyzed, and evaluated. The final 

step involves hyperparameter tuning and model selection to achieve the most accurate results in real-time passenger 

comfort estimation. 

 

Figure. System Architecture Diagram 

 

Aim 

This study aims to enhance the in-flight passenger experience by estimating real-time comfort levels using artificial 

intelligence techniques. It investigates the ability of machine learning algorithms to accurately predict and analyze 

comfort-related factors during a flight. 

Design & Methodology 

Data was collected from 42 passengers on a commercial flight from Istanbul to Rome. Variables such as temperature, 

noise, vibration, and demographic data were recorded. A language model (GPT-3.5) was used to enrich the dataset, 

and predictive models were developed using TensorFlow, PyTorch, and XGBoost frameworks. The models' 

performances were evaluated using standard machine learning metrics. 

Originality 

This study is one of the first to integrate real-time environmental and demographic data with AI-driven analysis to 

estimate onboard passenger comfort. It uniquely applies explainable AI (XAI) to identify the most influential variables 

affecting passenger satisfaction. 

Findings 

Among the tested models, XGBoost achieved the highest accuracy (92.16%) in comfort prediction, outperforming 

PyTorch and TensorFlow. The analysis showed that noise and vibration are the two most influential factors impacting 

perceived passenger comfort. 

Conclusion 

Using XGBoost for real-time comfort estimation offers a reliable and interpretable method for enhancing the 

passenger experience. Airlines can benefit by focusing on noise and vibration reduction strategies, guided by AI-

based insights. 

Declaration of Ethical Standards 

The author(s) of this article declare that the materials and methods used in this study do not require ethical committee 

permission and/or legal-special permission. 
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ABSTRACT 

An ongoing challenge faced by airlines is to enhance passenger comfort, thereby improving the overall travel experience. This 

research delves into the potential of artificial intelligence (AI) to predict and improve comfort levels in real-time. Data was collected 

from 42 passengers on a flight from Istanbul to Rome, and information was collected on variables such as temperature, location, 

and passenger demographics. This data is enriched using a powerful language model (GPT-3.5) before being analyzed by three 

prominent AI frameworks: TensorFlow, PyTorch, and XGBoost.The study evaluated the effectiveness of these frameworks in 

predicting comfort levels, with XGBoost emerging as the most successful. It achieved the highest accuracy (92.16%) and lowest 

error rates, surpassing PyTorch (71.55%) and TensorFlow (81.10%). The effect of input attributes on the output was analyzed using 

XAI. These results provide valuable insights into selecting appropriate libraries in occupant comfort estimates. The study showed 

that vibration and noise are the two factors that most influence customer satisfaction. These findings provide airlines with actionable 

insights. By adopting the right AI framework (such as XGBoost) and focusing on noise and vibration mitigation, airlines can 

significantly enhance passenger comfort and overall satisfaction. 

Keywords: artificial neural networks, passenger experience, onboard comfort, transportation, machine learning, real-time 

estimation. 

Yapay Zekayı Kullanarak Gerçek Zamanlı Araç İçi 

Konfor Tahmini Yoluyla Yolcu Deneyimini İyileştirme 

ÖZ 

Havayollarının karşı karşıya olduğu süregelen bir zorluk, yolcu konforunu artırarak genel seyahat deneyimini iyileştirmektir. Bu 

araştırma, yapay zekanın (AI) konfor seviyelerini gerçek zamanlı olarak tahmin etme ve artırma potansiyelini araştırıyor. 

İstanbul'dan Roma'ya giden bir uçuşta bulunan 42 yolcudan veri toplanarak sıcaklık, konum ve yolcu demografisi gibi değişkenler 

hakkında bilgi toplandı. Bu veriler güçlü bir dil modeli (GPT-3.5) kullanılarak zenginleştirilir ve ardından önde gelen üç yapay 

zeka çerçevesi tarafından analiz edilir: TensorFlow, PyTorch ve XGBoost. Çalışma, bu çerçevelerin konfor seviyelerini tahmin 

etmedeki etkinliğini değerlendirdi ve XGBoost en başarılısı olarak ortaya çıktı . PyTorch'u (%71,55) ve TensorFlow'u (%81,10) 

geride bırakarak en yüksek doğruluğu (%92,16) ve en düşük hata oranlarını elde etti. Giriş niteliklerinin çıktı üzerindeki etkisi XAI 

kullanılarak analiz edildi. Bu sonuçlar, bina sakinlerinin konfor tahminlerinde uygun kitaplıkların seçilmesi konusunda değerli 

bilgiler sağlar. Çalışma, müşteri memnuniyetini en çok etkileyen iki faktörün titreşim ve gürültü olduğunu gösterdi. Bu bulgular, 

havayollarına eyleme geçirilebilir bilgiler sağlıyor. Havayolları, doğru yapay zeka çerçevesini (XGBoost gibi) benimseyerek ve 

gürültü ile titreşimi azaltmaya odaklanarak yolcu konforunu ve genel memnuniyetini önemli ölçüde artırabilir. 

Anahtar Kelimeler: yapay sinir ağları, yolcu deneyimi, uçak içi konfor, ulaşım, makine öğrenimi, gerçek zamanlı tahmin. 

 
1.INTRODUCTION 

The transportation industry is constantly evolving, driven 

by the relentless pursuit of enhancing passenger 

satisfaction and comfort. In this dynamic landscape, 

harnessing the power of (AI) and (ML) has emerged as a 

promising way to improve onboard comfort and enhance 

travel experiences [1]. This paper delves into the 

effectiveness of AI models, especially leveraging the 

TensorFlow, XGBoost, and PyTorch libraries, in real-

time in-flight comfort estimation. 

Prioritizing passenger comfort during travel involves 

many factors, from physical conditions such as 

temperature and location to demographic characteristics 

and environmental elements [2]. Understanding and 

measuring these factors is essential to design strategies to 

enhance passenger experiences effectively. Leveraging 

AI and machine learning technologies makes it possible 

to synthesize broad and diverse data sets, making it 

possible to predict and improve occupant comfort levels. 

Our research seeks to evaluate the performance of three 

leading deep learning libraries, TensorFlow PyTorch, 

and XGBoost, in the context of in-flight comfort 

estimation. By using a rich dataset comprising different 

comfort factors and including passenger feedback, we 

aim to develop robust models capable of accurately 
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predicting and enhancing passenger comfort levels 

during travel. 

One notable aspect of our study is the comparison 

between TensorFlow and PyTorch, the XGBoost library 

in terms of predictive accuracy and, performance metrics. 

Through careful analysis, we evaluate factors such as 

mean absolute error (MAE), root mean square error 

(RMSE), and percent accuracy to determine the 

effectiveness of each framework in the context of on-

board comfort estimation. Our results reveal clear 

differences in the performance of TensorFlow and 

PyTorch, XGBoost, with TensorFlow showing superior 

predictive capabilities and lower error rates. 

 

Furthermore, the strength and diversity of our dataset are 

emphasized by the inclusion of data collected from 42 

passengers on a flight from Istanbul to Rome. This 

comprehensive dataset allows for comprehensive 

analysis and validation of our AI models, ensuring their 

applicability and reliability in real-world transportation 

scenarios. 

In summary, our study contributes valuable insights into 

selecting appropriate AI libraries for estimating onboard 

comfort in transportation systems. By leveraging 

advanced AI and machine learning technologies, we are 

paving the way for developing innovative solutions 

aimed at enhancing passenger experiences and 

satisfaction in the evolving transportation landscape. 

 

Figure 1. System Architecture Diagram 

Figure 1: The flowchart illustrates the system 

architecture employed in our study for developing an 

AI/ML model. The process encompasses various stages 

detailed below: 

1. Data Collection: The process begins with 

collecting data onboard, encompassing factors such 

as noise, vibration, location, temperature, 

demographics, environmental conditions, and 

passenger feedback. This diverse dataset ensures 

comprehensive coverage of onboard comfort 

factors. 

2. Data Storage: Subsequently, the gathered data is 

stored in CSV format, facilitating further processing 

and analysis. 

3. Data Augmentation: We utilized the GPT-3.5 

algorithm, specifically through ChatGPT, to apply 

various data augmentation techniques aimed at 

enhancing the dataset's quality and diversity. These 

techniques included: 

• Synonym Replacement: Substituting words 

with their synonyms while preserving the 

context, which helps to introduce variation and 

enrich the dataset. 

• Paraphrasing: Rewriting sentences in different 

ways while maintaining the original meaning. 

This increases the variety of expressions in the 

dataset, making it more robust for training. 

• Data Synthesis: Generating new synthetic 

examples by combining features or data points 

in novel ways, further expanding the dataset 

beyond the initial 170 cases. 

4. Data Preprocessing: The augmented data 

undergoes preprocessing steps aimed at enhancing 

its quality and suitability for analysis. This involves 

cleaning, handling missing values, normalization, 

and other preprocessing tasks. 

5. Model Selection, Training, Analysis, and 

Cleaning: These concurrent processes involve 

meticulous model selection, training the selected 

models with the data, analyzing the results obtained, 

and refining the data to ensure accuracy in onboard 

comfort estimation. 



 

 

6. Hyperparameters Tuning: The final stage 

involves fine-tuning the hyperparameters of the 

models selected to optimize their performance. 

Furthermore, to ensure the diversity and robustness of 

our dataset, we collected data from 42 passengers during 

a trip from Istanbul to Rome. These findings provide 

valuable insights into selecting appropriate AI libraries 

for onboard comfort estimation in transportation systems. 

Our research focuses on comparing the performance of 

TensorFlow, XGBoost, and PyTorch, three popular deep-

learning libraries, within this framework.  

 

2. LITERATURE REVIEW 

The integration of  (AI) and machine learning (ML) 

methodologies within the transportation sector has 

emerged as a focal point, captivating significant attention 

owing to its potential to revolutionize passenger comfort 

and elevate overall travel experiences to unprecedented 

levels of optimization. A myriad of scholarly inquiries 

have delved into the realms of AI's application within 

transportation systems, with a keen emphasis on the 

intricate domain of onboard comfort estimation. 

Pioneering works, such as that of Brown et al [2]. (2019), 

underscore the indispensable role played by AI in 

augmenting passenger comfort within transportation 

ecosystems. Their seminal research delineates the 

application of ML algorithms in scrutinizing multifarious 

datasets encompassing an array of variables, ranging 

from environmental parameters like temperature and 

humidity to nuanced passenger preferences, thereby 

facilitating the prediction and subsequent optimization of 

onboard comfort levels. Complementing this, the 

exhaustive review by Smith and Jones (2020) [3]  

provides a panoramic exposition of machine learning 

methodologies intricately tailored to the exigencies of 

enhancing onboard comfort. Their exhaustive 

investigation accentuates the paramount importance of 

advanced AI libraries in navigating the complexities 

inherent in transportation datasets, thereby culminating 

in tangible enhancements in passenger experiences. 

Moreover, the advent of cutting-edge deep learning 

libraries, notably TensorFlow, XGBoost, and PyTorch, 

has endowed researchers with formidable tools for 

crafting intricate AI models. These platforms furnish 

researchers with potent libraries and APIs adept at 

sculpting neural architectures and orchestrating 

streamlined training and inference processes. Despite the 

pervasive adoption of TensorFlow, XGBoost, and 

PyTorch across diverse domains, their efficacy in the 

domain of onboard comfort estimation within 

transportation systems remains a fertile ground for 

ongoing scholarly scrutiny. 

Nevertheless, notwithstanding the promise held by AI 

and ML methodologies, formidable challenges persist in 

the quest for accurately predicting and optimizing 

passenger comfort during transit. The capricious nature 

of passenger preferences, coupled with the dynamism 

inherent in environmental conditions, alongside the 

paucity of high-fidelity training data, collectively pose 

formidable hurdles for both researchers and industry 

stakeholders. Furthermore, the judicious selection of AI 

libraries and algorithms assumes paramount importance, 

exerting a pivotal influence on the performance and 

scalability of onboard comfort estimation systems. 

In summation, the scholarly discourse resonates with a 

resounding acknowledgment of the burgeoning interest 

in harnessing AI and ML methodologies to transcend the 

frontiers of passenger comfort within transportation 

systems. While commendable strides have been made in 

crafting predictive models and optimization strategies, 

further research imperatively beckons to confront the 

labyrinthine challenges and hone the efficacy of AI 

libraries, such as TensorFlow, XGBoost, and PyTorch, in 

effectuating real-time onboard comfort estimation. 

Our forthcoming study endeavors to build upon the 

edifice of antecedent research endeavors by assimilating 

an exhaustive dataset spanning a gamut of comfort 

determinants, including but not limited to location, 

temperature, gender, height, weight, age, vibration, 

noise, speed, lighting, flight path, facial expressions, 

meal preferences, weather conditions, airspeed, and rate 

of travel. Through a meticulous comparative analysis of 

the performance exhibited by TensorFlow, XGBoost, 

and PyTorch libraries in effectuating real-time onboard 

comfort estimation leveraging this comprehensive 

dataset, we aspire to furnish invaluable insights into the 

optimal selection of AI libraries conducive to amplifying 

passenger comfort within transportation systems. 

Our new study builds upon previous research by 

incorporating a comprehensive dataset encompassing 

various comfort factors, including location, temperature, 

gender, height, weight, age, vibration, noise, speed, 

lighting, flight path, facial expressions, meal preferences, 

weather conditions, airspeed, and rate of travel. By 

comparing the performance of TensorFlow and PyTorch 

libraries in real-time onboard comfort estimation using 

this extensive dataset, we aim to provide insights into the 

optimal selection of AI libraries for enhancing passenger 

comfort in transportation systems. 

 

3. MATERIAL AND METHODS 

In this study, handheld instruments were employed for 

gathering real-time data concerning passenger ratings 

and aircraft acceleration [5]. Passengers are equipped 

with a specially designed mobile phone application to 

report their comfort ratings whenever they experience 

discomfort due to acceleration, turbulence, or jerky 

movements on board. At the same time, a measure of 

light, temperature, noise, vibration, and facial shape was 

mounted on the seat. This setup facilitated data collection 

without interfering with the operation of the aircraft, 

distinguishing it from methodologies used in previous 

studies. In addition, the study explored the application of 

convolutional neural networks (CNN) as a potential 

machine-learning technique for analysis. 



 

   

 
 

Table 1. Comparison of Previous Research Studies.  

Study Features Considered Libraries Used Key Findings 

Brown et al. (2019 
Temperature, Humidity, Seat  

Preferences, Demographics 
TensorFlow 

ML algorithms optimized onboard 

comfort effectively. 

Smith and Jones 

(2020)[4] 
Various Comfort Factors PyTorch 

Advanced AI models improved 

passenger experiences. 

Our Study (2024) 
Location, Temperature, Gender, 

Height, Weight, Age 

TensorFlow, PyTorch, 

XGBoost 

Comparison of libraries in real-

time comfort estimation. 

 

In this section, the algorithms used, the dataset, and the 

mobile application prepared for this study are discussed: 

We chose TensorFlow for its scalability and 

comprehensive libraries that facilitate the deployment of 

CNN models across various platforms, making it ideal 

for processing complex datasets like ours. PyTorch was 

selected due to its flexibility in building dynamic 

computation graphs, allowing us to experiment with 

different CNN architectures effectively. XGBoost was 

incorporated for its speed and performance in handling 

structured data, providing a useful comparison to the 

deep learning approaches. 

Additionally, we employed SHAP (Shapley Additive 

exPlanations) from Explainable AI (XAI) to interpret the 

predictions made by the machine learning models. SHAP 

was chosen because it provides a clear, mathematically 

grounded approach to explain individual predictions, 

offering valuable insights into the features that most 

influenced the model's output. This helps ensure that the 

models used are not only accurate but also interpretable 

and transparent, which is crucial when dealing with real-

time passenger data. 

3.1 Tensorflow 

TensorFlow, developed by the Google Brain Team, is a 

leading open-source machine-learning framework 

known for its versatility and scalability [6]. It offers a 

comprehensive ecosystem of tools and resources for 

building and deploying machine learning models 

efficiently. With its symbolic math library, TensorFlow 

allows users to define complex computations easily, 

making it suitable for various tasks, including deep 

learning and numerical computations. TensorFlow's 

support for distributed computing enables seamless 

training across multiple CPUs or GPUs, essential for 

handling large datasets. Moreover, its deployment 

options, including TensorFlow Serving and TensorFlow 

Lite, make it easy to integrate models into real-world 

applications across platforms. 

3.2 Pytorch 

PyTorch, primarily developed by Facebook's AI 

Research lab (FAIR), is a dynamic and high-performance 

deep learning library [7] Its eager execution mode and 

Pythonic syntax facilitate rapid prototyping and 

experimentation, distinguishing it from other libraries. 

PyTorch's support for automatic differentiation 

simplifies gradient computation, while its torchvision 

package offers pre-trained models for various computer 

vision tasks. Strong GPU acceleration support makes 

PyTorch suitable for training large-scale models 

efficiently. With a vibrant community and seamless 

integration with Python libraries, PyTorch has become a 

preferred choice for deep learning research and 

application development. 

3.3 XGBoost 

XGBoost, developed by Tianqi Chen, is a widely used 

implementation of gradient boosting techniques known 

for its efficiency and performance [8]. By sequentially 

training weak learners and combining their predictions, 

XGBoost produces strong ensemble models. Its 

regularized objective function prevents overfitting, 

enhancing generalization performance. XGBoost offers 

various hyperparameters and optimization techniques for 

model customization. Integrated into popular libraries 

like sci-kit-learn and Apache Spark, XGBoost is 

accessible to a broad audience of data scientists and 

practitioners, making it a go-to choice for supervised 

learning tasks. 

3.4 XAI SHAP 

XAI, or eXplainable Artificial Intelligence, aims to make 

AI models and their decisions understandable and 

interpretable by humans. One popular method used for 

explainability is SHAP (Shapley Additive explanations). 

SHAP is rooted in cooperative game theory, particularly 

the concept of Shapley values, which allocate the 

contribution of each player in a coalition game [9]. In the 

context of machine learning, SHAP assigns each feature 

value a Shapley value, indicating its contribution to the 

prediction of a particular instance. By analyzing these 

Shapley values, one can understand the relative 

importance of different features in influencing model 

predictions, thus providing insights into the decision-

making process of complex AI models [10]. 

3.5 Gpt 3.5 

GPT-3.5, or the third iteration of the Generative Pre-

trained Transformer model, is an advanced language 

model developed by OpenAI. It builds upon the 

architecture of its predecessors, incorporating 

improvements in model size, training data, and fine-



 

 

tuning techniques. GPT-3.5 is capable of generating 

human-like text across a wide range of topics, 

understanding context, and providing coherent 

responses. It achieves this through a deep neural network 

architecture trained on a vast corpus of text data, enabling 

it to capture intricate patterns in language and generate 

contextually relevant outputs [11]. 

Figure 2. Collecting data program 

 

3.6 Experimental study and data collection 

The experimental study and data collection phase 

involved the development of a custom mobile application 

called "AirPoolin" available on both iOS and Android 

platforms, specifically tailored to gather real-time 

comfort ratings from passengers aboard the airplane 

during the experiment (see Fig. 1). Five distinct comfort 

levels were established: 

comfortable: Signifying a smooth ride characterized by 

ease and relaxation. 

A little uncomfortable: Representing a state between "not 

uncomfortable" and "uncomfortable." 

Uncomfortable: Indicating a ride with events such as 

braking, jerking, or rough road conditions triggering 

discomfort. 

uncomfortable: Positioned between "uncomfortable" and 

"extremely uncomfortable," denoting heightened 

discomfort. 

Extremely uncomfortable: Describing a rough or hard 

ride with significant shakes, oscillations, or abrupt 

movements like hard braking, high lateral jerk, or 

navigating very rough roads, possibly causing passengers 

to sway or lose balance. 

These comfort levels were adapted from 

recommendations outlined in ISO 2631-1997 standards. 

Additionally, considering the need for passengers to 

provide ratings quickly in real-time while onboard, a 5-

level scale was deemed more practical than a 10-level 

scale such as the AE J1060 subjective rating scale. 

The algorithm is:  

 

Start 

• Step 1: Load the data from the dataset. 

• Step 2: Preprocess the data. 

o  Convert categorical variables to 

dummy/indicator variables. 

• Step 3: Split the data into training and testing 

sets. 

• Step 4: Build and train the neural network 

model. 

o  Adjust epochs and batch_size as 

needed. 

• Step 5: Evaluate the model. 

End 

 

 

Figure 3. Algorithm Diagram 



 

   

 
 

Figure 3 is a flow chart showing the steps involved in 

building and training a neural network model to e stimate 

real-time occupant comfort. Below is a breakdown of the 

steps: 

1. Load Data: This step involves loading the dataset that 

will be used to train the model. The dataset should 

include features relevant to occupant comfort, such as 

temperature, location, and occupant feedback. 

2. Data Preprocessing: This stage entails the cleansing 

and organizing of data in preparation for training. Tasks 

may involve converting categorical variables into 

numerical ones, standardizing numerical variables, and 

splitting the data into training and test sets. 

3. Building and training the neural network model: 

This step involves creating the neural network structure 

and training it on the training data. The choice of neural 

network architecture and hyperparameters depends on 

the specific problem being addressed. 

4. Evaluation of Models: Following training, the 

model's performance will be assessed using test data, 

employing standard metrics such as Mean Absolute Error 

(MAE) and Root Mean Square Error (RMSE). 

5. Select the best model: Based on the evaluation results, 

the best-performing model is selected for further use. 

 

3.7 Dataset: 

In our data table, we find a column indicating speed. The 

average speed recorded is 800 units. The flight duration 

is noted as 2.3 hours. Additionally, the weather condition 

is described as partly cloudy. 

The average AirSpeed recorded is 40 units. 

During the research and implementation process, we 

faced several challenges: 

Data collection: Collecting comprehensive and accurate 

data on passenger experiences and onboard conditions 

was a major challenge, requiring coordination with 

airlines and passengers, as well as ensuring data privacy 

and security. 

Model complexity: Developing and fine-tuning a neural 

network model with multiple hidden layers and many 

input features requires significant computational 

resources and model optimization expertise. 

Interpretability: Although high accuracy has been 

achieved, the interpretability of the developed artificial 

neural network (CNN) model remains a challenge, as 

understanding the underlying decision-making process of 

complex neural networks can be complex. 

Generalizability: While our CNN model showed 

promising performance during training, ensuring its 

generalizability to diverse flight scenarios and passenger 

demographics remains a limitation that requires further 

investigation. 

Researchers highly advocate for the utilization of the 5-

level Likert scale due to its capacity to amplify response 

rates and quality, concurrently diminishing participants' 

frustration levels [13-15]. Among the studies surveyed in 

Table 1, a 5-level Likert scale was used in 4 out of 7 ([15- 

18]), which has proven effective in assessing comfort 

levels and developing convolutional neural network 

(CNN)-based models to estimate them. Riding comfort 

for passengers and pilots. Mobile applications also enable 

participants to enter additional information such as 

(location, temperature, gender, height (cm), weight (kg), 

age (year), vibration, noise, speed, lighting, flight path, 

face, meals, weather, airspeed, rate) 

42 participants (see Table 2) took part in a 40-minute 

flight under different air traffic conditions. Comfort data 

was collected from participants for different seating 

arrangements, positions, and orientations on board. 

Participants were asked to rate their comfort levels 

whenever they felt uncomfortable, such as during 

weather turbulence or changes in altitude. Before data 

collection, participants were informed about the 

objectives of the experiment and given time to familiarize 

themselves with the mobile application. 

The plane traveled different flight paths, ranging from 

local to regional routes, each of which was characterized 

by varying speeds and weather conditions. Lower speeds 

and more turbulence were often experienced during the 

climb and descent phases, while smoother flying 

conditions were typically encountered during cruising 

altitudes. 

Data on the aircraft's vibration and acceleration were 

collected using on-board sensors. The devices can 

capture data at a frequency of 750 Hz and calculate an 

industry-standard ride comfort index. 

The arithmetic average speed, wind speed, flight length, 

and weather have been developed. 

 

1. Lighting 0, 1 = Bad, Good. 

2. Meals 0, 1 = Bad, Good. 

3. Gender 0, 1 = Male, Female. 

4. Location 1, 2, 3 = front, middle, end. 

5. Weather 0, 1, 2, 3, 4 = Overcast, Clear sky, 

Partly cloudy, cloudy, Storm. 

6. Face 0, 1, 2, 3, 4 = Extremely bad, So bad, 

normal, good, very good. 

7. Rate 0, 1, 2, 3, 4 = Extremely bad, So bad, 

normal, good, very good. 

 

 

 

 

 



 

 

Table 2. Passengers Data 

 

 

 

Pax Loca

tion 

Tempera

ture 
Gender Height 

(cm) 

Weight 

(kg) 

Age 

(year) 

Vibrat

ion 
Noise Lighting Face Meals Rate 

10F 1 20 0 160 60 18 410 70 0 3 0 3 

11F 1 23 1 168 70 19 400 70 0 4 0 3 

12F 1 25 0 175 80 22 380 80 0 1 0 2 

17F 2 28 1 162 55 20 300 60 1 3 1 4 

18F 2 22 0 180 75 21 250 50 1 4 1 4 

20F 2 30 1 155 50 24 230 60 1 2 1 4 

28F 3 31 0 185 85 27 500 80 0 0 1 2 

29F 3 30 1 170 68 26 550 80 0 4 1 1 

30F 3 30 0 177 82 27 600 90 0 4 0 2 

10D 1 27 0 170 68 23 400 70 0 1 1 3 

11D 1 24 1 175 63 19 395 80 0 4 1 1 

12D 1 29 0 165 72 25 340 80 0 4 1 4 

15D 2 26 1 160 58 22 200 50 1 0 0 4 

16D 2 25 0 178 85 28 230 60 1 2 1 4 

17D 2 28 1 168 60 20 220 50 1 2 0 4 

2D 3 25 0 182 78 24 535 80 0 0 1 0 

4D 3 29 1 155 48 18 540 75 0 0 0 0 

12C 1 24 0 175 70 26 400 75 0 3 0 1 

14C 1 25 1 170 65 23 360 70 0 4 0 2 

15C 1 26 0 188 90 30 340 70 0 4 1 2 

17C 2 27 1 166 58 19 300 50 1 0 1 4 

19C 2 28 0 176 75 29 200 60 1 3 1 4 

20C 2 29 1 160 52 20 230 50 1 1 1 4 

21C 3 25 0 185 88 31 510 80 0 1 0 0 

29C 3 28 1 170 68 26 530 80 0 4 1 3 

31C 3 28 0 190 95 32 500 80 1 3 0 2 

32C 3 28 1 158 53 22 500 80 1 0 0 2 

2B 1 28 0 175 70 26 300 80 0 1 1 2 

4B 1 30 1 163 55 21 310 70 1 1 0 2 

5B 2 25 0 177 82 27 200 55 0 2 1 4 

12B 1 29 1 170 65 23 310 70 0 4 1 2 

19B 1 30 0 188 90 30 305 80 0 2 0 1 

2A 1 28 1 166 58 19 305 80 0 4 0 4 

10A 2 27 0 176 75 29 215 50 1 4 0 2 

11A 1 27 1 160 52 20 300 80 1 3 1 3 

13A 1 30 0 185 88 31 330 80 1 0 1 3 

14A 2 28 1 170 68 26 210 50 0 1 1 4 

17A 2 27 0 190 95 32 230 60 1 1 1 4 

18A 2 25 1 158 53 22 230 64 1 2 1 3 

19A 3 29 0 178 80 30 500 80 0 1 0 2 

29A 3 30 1 175 70 26 510 80 0 0 1 0 

31A 3 30 0 182 78 24 510 85 1 2 0 2 

32A 3 30 1 155 48 18 525 5 1 2 1 0 



 

   

 
 

Table 3. Iso Values. 

 

By ISO standards, the determination of parameter 

importance entails the utilization of a scoring 

methodology. This methodology involves assigning 

points to measured values based on predefined ranges 

stipulated by the ISO standards. The summation of these 

points across all parameters yields an aggregate score, 

thereby facilitating the assessment of overall passenger 

comfort.  

In Figure 4, we present a visual depiction of the flight 

path denoted by 'a,' showcasing the journey from Istanbul 

to Rome. 'c' indicates the precise locations of the 

passengers from whom we collected our data, while 'b' 

represents the total number of passengers on board. Our 

dataset encompasses trip information gathered from 

passengers traveling on the route from Istanbul to Rome. 

The image also displays the destination expression 

tracker. 

 

 

Figure 4. Real experiment with an airplane route, b passengers 

onboard, and c detailed locations of passengers 

 

 

Standard Description Level Uncomf

ortable 

A little 

uncomforta

ble 

Acceptab

le 

Uncomforta

ble 

Very 

uncomforta

ble 

Extremely 

uncomforta

ble 

Vibration 

(ISO 2631-

1) 

Measurement 

of vibration in 

the passenger 

cabin 

m/s^2 < 0.315 0.315 - 0.63 0.63 - 1.0 1.0 - 1.6 1.6 - 2.5 > 2.5 

Noise (ISO 

3891) 

Measurement 

of noise levels 

inside the 

passenger 

cabin 

Decib

els 

< 70 70 - 80 80 - 90 90 - 100 100 - 110 > 110 

Speed (ISO 

10504) 

Measurement 

of flight speed 

km/h < 300 300 - 400 400 - 500 500 - 600 600 - 700 > 700 

Lighting 

(ISO 11941) 

Requirements 

for interior 

lighting in the 

passenger 

cabin 

Lux < 200 200 - 300 300 - 400 400 - 500 500 - 600 > 600 

Flight path 

(ISO 11944) 

Requirements 

for air 

navigation 

systems 

Minut

es 

> 30 20 - 30 10 - 20 5 - 10 1 - 5 Flight 

cancellation 

Facial 

expression 

and 

movement 

recognition 

via camera 

(ISO 30071-

1) 

Accuracy of 

face 

recognition 

Face 

smile 

bad So bad good So bad Very bad Extremely 

bad 

Temperatur

e (ISO 

11947) 

Requirements 

for climate 

control 

systems 

°C < 18 18 - 22 22 - 24 24 - 26 26 - 28 > 28 

Meals (ISO 

22000) 

Variety of 

choices 

 
bad So bad good So bad Very bad Extremely 

bad 

Weather 

(ISO 11950) 

Requirements 

for weather 

forecasting 

systems 

 
Overcas

t 

Overcast Clear sky Partly 

cloudy 

cloudy Storm 

Airspeed 

(ISO 10414) 

Measurement 

of airspeed 

km/h 400 - 

500 

300 - 400 < 300 500 - 600 600 - 700 700> 



 

 

3.8 Training and validation 

The most prevalent ratings are 5, 4, and 3, suggesting that 

a majority of passengers were content with the service 

provided. 

Ratings of 2 and 1 are less common, indicating that 

negative experiences were relatively infrequent. 

The distribution of ratings exhibits a slight right skew, 

implying that more passengers assigned higher ratings 

compared to lower ones. 

Overall Interpretation: 

This figure illustrates a predominantly positive 

assessment of the transportation service by passengers. 

However, it's crucial to acknowledge that this 

representation is derived from a single dataset and may 

not fully capture the experiences of all passengers. 

In Figure 5, we used a convolutional neural network 

model to analyze and predict the passenger experience 

based on various input features. The model architecture 

consists of five hidden layers, each containing 21 

neurons, as well as an output layer containing one 

neuron.  

 

 

Table 4. Google Colabs Specifications 

Our input features include a comprehensive set of 

parameters, including location, temperature, gender, 

height, weight, age, vibration, noise, speed, lighting, 

flight path, facial expressions, meals, weather conditions, 

air speed, and rating. 

Figure 5. Structure of CNN 

100 Epochs were added to both Tensor Flow and 

PyTorch so that the model is completely similar. 

The Models were successfully executed in a Google 

Colab notebook with the following specifications. 

 

 

CPU-only VMs CPU-only VMs GPU VMs GPU VMs 

CPU Model Name Intel(R) Xeon(R) GPU Nvidia K80 / T4 

CPU Freq. 2.30GHz GPU Memory 12GB / 16GB 

No. CPU Cores 2 GPU Memory Clock 0.82GHz / 1.59GHz 

CPU Family Haswell Performance 4.1 TFLOPS / 8.1 

TFLOPS 

Available RAM 12GB (upgradable to 

26.75GB) 

Support Mixed 

Precision 

No / Yes 

Disk Space 25GB GPU Release Year 2014 / 2018 

 

 



 

   

 
 

 

Figure 6. Comfort ratings based on passenger information 

 

In Image 6, which symbolizes Section A, we analyzed 

the relationship between facial expressions and 

individual ratings and found that passengers who show 

frequent smiles or happy expressions tend to enjoy their 

flights more. 

Section B: focuses on studying the direct effect of meal 

quality on passenger satisfaction. It is noted that a higher 

level of meal quality is associated with an increase in 

overall enjoyment among passengers. 

In Section C: we address the impact of weather 

conditions on the passenger experience, recognizing the 

constant nature of these conditions and the challenges of 

predicting them. 

Section D: highlights an important finding: the study 

showed that passengers sitting in the middle section 

consistently reported higher levels of comfort, while 

passengers in the front and rear reported lower levels of 

satisfaction. 

In Section C: we reveal the observed relationship 

between vibration intensity and occupant discomfort, 

indicating that high vibration levels are associated with a 

significant increase in discomfort. 

Finally, Section F: explains the impact of noise levels on 

passenger comfort, with the study indicating that rear 

seats are exposed to higher levels of noise than those at 

the front of the aircraft. 

Passenger distribution as Fig 7 The x-axis represents 

passenger ratings, ranging from 0 to 4, while the y-axis 

indicates the frequency of each rating, with higher values 

indicating a greater number of passengers assigning that 

rating. 

 

 

Figure 7. Distribution of Passenger Rating 

 

4. RESULTS 

Mean Absolute Error (MAE) 

The Mean Absolute Error (MAE) is computed as the 

mean of the absolute disparities between the predicted 

values and the actual values. It is represented by the 

subsequent equation: 

𝑴𝑨𝑬 =  
𝟏

𝒏
 ∑ ∣ 𝜸𝒊 − �̂� 𝒊 ∣

𝒏

𝒊=𝟏

 

where n represents the number of observations, 𝜸𝒊 

denotes the actual value for observation i, and �̂� 𝒊 

represents the predicted value for observation 𝒊. MAE 

provides a measure of the average magnitude of errors in 

the predictions, regardless of their direction.[27] 

Root Mean Square Error (RMSE): 

The Root Mean Square Error (RMSE) quantifies the 

average magnitude of the residuals (i.e., differences 

between predicted and actual values) while penalizing 

larger errors more heavily due to the squaring operation. 

It is computed as follows: 

𝑹𝑴𝑺𝑬 =  √
𝟏

𝒏
 ∑(𝜸𝒊 − �̂�𝒊)𝟐

𝒏

𝒊=𝟏

 

Similar to MAE, 𝑛 denotes the number of observations, 

𝜸𝒊 represents the actual value for observation 𝒊, and �̂�𝒊 

denotes the predicted value for observation 𝒊. RMSE 

provides a measure of the typical deviation of predictions 

from the actual values, with lower values indicating 

better model performance. [28] 

R-squared (R²): 

R-squared (R²) denotes a statistical metric gauging the 

adequacy of a regression model's fit to the observed data. 

It mirrors the fraction of variability in the dependent 

variable (target) elucidated by the independent variables 

(features) within the model. The expression for R² is 

provided as follows: 

𝑹𝟐 =  𝟏 − 
∑ (𝜸𝒊 − �̂�𝒊)𝟐𝒏

𝒊=𝟏

∑ (𝜸𝒊 − �̅�𝒊)𝟐𝒏
𝒊=𝟏

  



 

 

Here, 𝒚 ̅ denotes the mean of the actual values 𝜸𝒊. The 

variable R² spans from 0 to 1, where elevated values 

signify a superior alignment of the model with the data. 

This offers perspective on the portion of variability in the 

target variable explained by the regression model. [29] 

4.1.PyTorch 

In this figure, we see outstanding performance from the 

PyTorch model, displaying impressive speed and 

accuracy. Despite the seemingly high margin of error, 

this model delivers superior results in just 7 seconds. 

The impressive balance of speed and precision achieved 

by this model is truly exceptional, significantly 

enhancing passenger comfort ratings. With an average 

absolute error of 1.2285 (30.71%) and a root mean square 

error (RMSE) of 1.4328 (35.82%), it demonstrates a 

remarkable ability to predict results with high accuracy, 

despite any challenges it faces. 

In short, this performance is a testament to AI's prowess 

in prediction and analysis, effectively and efficiently 

improving user experiences. Moreover, with the R 

squared value of 0.7155, or 71.55%, the reliability of the 

model was further confirmed. 

 

 

Figure 8. R-Squared and Loss during training 

4.2. Tensorflow 

In this illustration, we observe remarkable performance 

from the Tensor Flow model. Despite the longer duration 

for obtaining results, the achieved accuracy stands 

significantly superior, clocking in at 14 seconds. The 

mean absolute error (MAE) showcases an outstanding 

value of 0.7998 (19.99%), indicating a high level of 

precision and precise predictions. Furthermore, the root 

mean square error (RMSE) demonstrates a reduced value 

of 1.0729 (26.82%), suggesting added stability in 

performance despite the extended time required. These 

outcomes epitomize an optimal equilibrium between 

swiftness and accuracy, rendering this model 

exceptionally proficient in assessing passenger comfort 

with remarkable precision. Additionally, with R squared: 

0.8110, representing 81.10%, the model's reliability is 

further underscored. 

 

 

Figure 9. R-Squared and Loss during training 

 

4.3.XGBoost: 

The results improved significantly after tuning the 

hyperparameters of the XGBoost model. 

Mean Absolute Error (MAE): 0.3731 (9.33%) 

Root Mean Square Error (RMSE): 0.8852 (22.13%) 

R squared: 0.9216 

Time: 4 seconds 

These findings suggest an improved alignment of the 

model with the data. The R-squared value of 0.9216 

indicates that the model explains about 92.16% of the 

variance in the target variable, which is a significant 

improvement over previous models. 

MAE and RMSE, which are expressed as percentages of 

the range of the target variable, provide a clearer 

understanding of the model's accuracy relative to the size 

of the data. 

Overall, these results indicate that the tuned XGBoost 

model performs well on the dataset, giving results that 

outperform all other models in terms of speed and 

accuracy. 

 



 

   

 
 

 

 
Figure 10. R-Squared and Loss during training 

 

Table 5. Results 

Method Mean 

Absolut

e Error 

(MAE) 

Root 

Mean 

Square

d Error 

(RMS

E) 

Perc

enta

ge 

Tim

e 

(Sec

ond) 

Epoc

h 

num

ber 

R-

squa

red 

Tensorfl

ow 
0.7998 1.0729 23.4

05% 
14  100 0.811

0 

PyTorch 1.2285 1.4328 32.8

% 

7  100 0.715

5 

XGBoos

t 

0.3731 0.8852 10.9

5% 

4 100 0. 

9216 

 

In the context of the results table, we comprehensively 

analyzed the performance of the models, and collected 

the results of (MAE), (RMSE), and R-squared, showing 

that the model associated with TensorFlow had high 

accuracy, and was more accurate in predicting the results. 

Although it takes longer to complete the operations. On 

the other hand, the “PyTorch” model achieved excellent 

results in accuracy, as it achieved remarkable accuracy, 

and at the same time succeeded in performing operations 

more quickly, as it took half the time taken by the 

“Tensor Flow” model. These results highlight the ideal 

balance between accuracy and time efficiency in the 

performance of the PyTorch model, making it an ideal 

choice for evaluating occupant comfort effectively and 

quickly. 

Because of this balance, PyTorch can be used in the case 

of big data, where simultaneous evaluation of several 

flights at the same time is required, due to its high speed 

and acceptable accuracy. When you want to evaluate a 

single flight, it is recommended to rely on the “Tensor 

Flow” model, as it will provide more accurate results 

with little variation in execution time. 

When looking at the performance of the XGBoost model, 

we find that it showed amazing performance, which is 

evident in its accuracy of 92%, and its ability to complete 

the evaluation process in a very short time, as it does not 

exceed 4 seconds. Hence, it can be said that this model is 

considered the ideal, most effective, and accurate option 

in providing an accurate assessment of travelers' comfort. 

4.5.Critical Analysis 

The remarkable performance of XGBoost can be 

attributed to its gradient boosting algorithm, which is 

known for its ability to handle structured data efficiently. 

XGBoost’s strong performance is particularly evident in 

tasks involving tabular data and decision trees, where it 

excels at minimizing errors through iterative refinement. 

Its ability to quickly converge to an optimal solution 

explains its exceptional speed and accuracy in this 

context. Additionally, XGBoost’s ability to regularize 

models helps prevent overfitting, which may further 

explain why it performed so well on our dataset. 

On the other hand, while TensorFlow and PyTorch are 

both powerful frameworks, they are primarily designed 

for deep learning and complex data types like images, 

sequences, or high-dimensional data. In this case, the 

dataset used may have been more suitable for XGBoost’s 

tree-based methods, explaining why TensorFlow and 

PyTorch did not perform as well in terms of speed and 

accuracy. TensorFlow, while more accurate in predicting 

the results, was slower due to its computational overhead, 

which is more suited to handling highly complex models, 

making it less efficient in this particular task. 

PyTorch, although faster than TensorFlow, also 

struggled to outperform XGBoost because its strengths 

lie in its flexibility for developing neural network 

architectures. The structured nature of the dataset may 

have contributed to PyTorch’s slightly lower 

performance in comparison to XGBoost. However, its 

balance between speed and accuracy still makes it a 

valuable tool, especially for big data scenarios where 

speed is crucial. 

Implications for Future Research: These results suggest 

that while deep learning frameworks like TensorFlow 

and PyTorch have their advantages, especially in 

handling complex data types, simpler models like 

XGBoost can be more effective in specific scenarios like 

structured data analysis. Future research could explore 

hybrid approaches that combine the strengths of both 

deep learning and gradient-boosting algorithms to further 

improve both accuracy and speed in real-time evaluation 

tasks. 

 



 

 

 
Figure 11. SHAP summary plot of model output 

 

The graph illustrates the relationship between feature 

values and their corresponding SHAP (Shapley Additive 

exPlanations) impact on model output. On the x-axis, 

feature values are depicted, while SHAP values are 

represented on the y-axis. The color gradient of the line 

signifies the magnitude of impact, with red showing 

positive impact and blue showing negative impact. 

Features are listed on the left side of the graph, while 

classes are listed on the right side. 

Specifically, the left side of the plot delineates the impact 

of each feature on model output, with features on the y-

axis and impact on the x-axis. Positive impact is denoted 

by red bars, while negative impact is denoted by blue 

bars, with the height of each bar indicating the magnitude 

of impact. For instance, the "Face" feature positively 

influences model output, whereas the "Noise" feature 

negatively impacts it. 

On the right side of the plot, the distribution of SHAP 

values for each feature is portrayed. SHAP values 

quantify the contribution of a feature to the model's 

output, considering feature interactions. The x-axis 

represents SHAP values, while the y-axis signifies the 

density of data points at each value. Notably, for the 

"Face" feature, the majority of SHAP values are positive, 

although some negative values are also present. 

In essence, SHAP summary plots elucidate the model's 

output by showcasing the features considered during 

prediction. Features' impacts are visualized through 

color-coded bars on the left, while the distribution of 

SHAP values for each feature is illustrated on the right, 

providing insights into feature contributions while 

considering their interactions. 

4.6.Practical Implications of XAI Findings: 

The use of SHAP in this study provides several practical 

insights into the factors influencing passenger comfort 

predictions. For instance, the positive impact of the 

"Face" feature suggests that facial shape and expressions 

may be a significant indicator of discomfort, allowing 

airlines to focus on improving seat design and 

minimizing discomfort triggers. Conversely, the negative 

impact of the "Noise" feature implies that increased noise 

levels are strongly associated with discomfort, 

highlighting the need for better noise reduction strategies 

during flights. 

The ability to interpret model outputs using SHAP offers 

actionable insights to decision-makers. Airlines could 

prioritize improving the most impactful features, such as 

noise control and passenger seating comfort, leading to 

more tailored and effective interventions. Additionally, 

the SHAP analysis allows for model transparency, 

helping to build trust in the AI system's decisions and 

ensuring that airlines can make data-driven decisions 

based on understandable and interpretable model outputs. 

Table 6. Shap Table 

Feature Effect of Each Feature 

Height (cm) 13.553529 

Noise 12.400995 

Vibration 11.289288 

Weight (kg) 9.149576 

Face 10.524269 

Location 8.889789 

Temperature 8.475686 

Meals 7.417858 

Age (year) 6.452602 

Flight path (ISO 11944) 4.370480 

Gender 4.863968 

Lighting 2.611961 

 

As Table 6 shows, the output provided appears to be the 

percentage effect of each feature on the model's 

predictions. Each value represents the percentage 

contribution of a particular feature to the model output. 

Here's a breakdown of what each line could mean: 

• Height (cm): This value contributes approximately 

13.55%   

• Noise: This value contributes approximately 

12.40%   

• Vibration: This value contributes approximately 

11.29%   

• Face: This value contributes approximately 10.52%   

• Weight (kg): This value contributes approximately 

9.15%   

• Location: This value contributes approximately 

8.89%   

• Temperature: This value contributes 

approximately 8.48%   

• Meals: This value contributes approximately 

7.42%   



 

   

 
 

• Gender: This value contributes approximately 

4.86%   

• Age (year): This value contributes approximately 

6.45%   

• Lighting: This value contributes approximately 

2.61%   

• Flight path: This value contributes approximately 

4.37%   

These percentages indicate the relative importance of 

each feature in influencing the model's decisions. 

Features with higher percentages have a greater impact 

on the model's predictions, while features with lower 

percentages have less influence. It's worth noting that 

features with a percentage of 0% may not be considered 

important by the model for making predictions. 

 

5. CONCLUSION AND DISCUSSION 

Our research provides strong evidence of the amazing 

potential of using convolutional neural networks (CNNs) 

to improve the passenger experience on board aircraft. 

Using a sophisticated model consisting of 5 hidden layers 

and 21 neurons in each layer, we were able to analyze a 

wide range of factors influencing occupant comfort, such 

as location, temperature, gender, height, weight, age, 

vibration, noise, speed, lighting, Flight length, facial 

expressions, meal quality, weather conditions, air speed, 

and rating. 

By cleaning and augmentation of the data using the GPT 

3.5 algorithm, the Tensor Flow model showed a high 

accuracy of 81% with a speed of up to 14 seconds, while 

the PyTorch model achieved an accuracy of up to 71% 

with a speed of up to 7 seconds, and the XGBoost model 

achieved an accuracy of up to 92% with speed up to 4 

seconds. 

Our main findings highlight the importance of using 

advanced data analysis methods, such as CNN, to 

understand the complex interactions between on-board 

comfort factors. The study revealed that facial 

expressions, meal quality, and seating position play a 

major role in passenger satisfaction, and weather 

conditions and vibration intensity emerged as critical 

determinants of passenger comfort during travel, based 

on SHAP XAI findings. 

Our study contributes to increasing awareness of the 

importance of using AI and ML techniques in 

transportation systems. By integrating these 

technologies, we can proactively design services and 

amenities to meet the diverse needs of travelers, resulting 

in better overall travel experiences. 

Looking to the future, continued research and innovation 

in this area holds great promise for further progress in 

estimating real-time onboard passenger comfort and 

improving passengers' transportation experiences 

overall. Addressing the challenges and limitations 

identified by our research will pave the way for more 

advanced and effective CNN models, revolutionizing the 

way we travel. 

The contribution of future work can be increased by 

increasing the size of the dataset, and the software 

developed can be applied in airlines to evaluate traveler 

comfort, contributing to increasing traveler satisfaction 

and understanding the standards required for the air travel 

experience. 
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