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Adversarial Training (AT) aims to alleviate the vulnerability of deep neural networks to adversarial 

perturbations. However, the AT techniques struggle to maintain the performance on natural samples 

while improving the deep model’s robustness. The absence of perturbation diversity in generated during 

the adversarial training degrades the generalizability of the robust models, causing overfitting to 

particular perturbations and a decrease in natural performance. This study proposes an adversarial 

training framework that augments adversarial directions from a single-step attack to address the trade-

off between robustness and generalization. Inspired by feature scattering adversarial training, the 

proposed framework computes a principal adversarial direction with a single-step attack that finds a 

perturbation disrupting the inter-sample relationships in the mini-batch during adversarial training. The 

principal direction obtained at each iteration is augmented by sampling new adversarial directions within 

a region spanning 45 degrees from the principal adversarial direction. The proposed adversarial training 

approach does not require extra backpropagation steps in adversarial direction augmentation. Therefore, 

generalization of the robust model is improved without posing an additional burden on the feature 

scattering adversarial training. Experiments on CIFAR-10, CIFAR-100, SVHN, Tiny-ImageNet, and 

The German Traffic Sign Recognition Benchmark consistently improve the accuracy on adversarial with 

an almost pristine natural performance. 
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1. INTRODUCTION 

Deep Neural Networks (DNNs) establish the best performances in various fields with challenging problems, 

including natural language processing (Alzantot, 2018), and image (Goodfellow et al., 2014; Moosavi-

Dezfooli et al., 2016) and speech (Carlini et al., 2016) recognition. Although the DNNs are versatile and 

successful, they are susceptible to imperceptible perturbations named adversarial attacks (Szegedy et al., 

2014). Adversarial attacks can force a network into misclassifying an input that was correctly classified before 

the attack. Such attacks are commonly encountered as additive perturbations that the human eye cannot catch 

in vision applications (Goodfellow et al., 2014). The vulnerability of deep models against adversarial attacks 

has raised concerns about their reliability and robustness, specifically in safety-critical applications in the 

fields, e.g., autonomous driving (Wang et al. 2021), medical diagnostics (Finlayson et al., 2019), and finance 

(Fursov et al., 2021). As the vulnerability against various adversarial attacks emerges, developing defense 

mechanisms to fortify deep models against such attacks has become of great interest to the applications 

employing DNNs. 

Adversarial Training (AT) is one of the commonly proposed approaches to defend against adversarial attacks. 

AT (Madry et al., 2018; Tramer et al., 2018) essentially trains a DNN with a training set augmented or replaced 

by the adversarial counterparts of training samples. The adversarial samples used in the AT should be generated 
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at each training iteration. Consequently, AT can be posed as a min-max optimization problem where the inner 

maximization generates the adversarial perturbation, and the model is updated via the minimization step. 

Although it is an effective defense, AT has specific challenges and limitations. When adversarial attacks are 

generated by attacking a supervised loss function with labels, correlations between the perturbations and the 

ground-truth labels might emerge during the AT leading to label leakage (Kurakin et al., 2017), degrading the 

model’s generalization. Furthermore, the insufficient diversity in adversarial perturbations generated during 

training causes catastrophic overfitting (Wong et al., 2020; Kim et al., 2021). 

Adversarial defense techniques often aim to alleviate the gap between robustness and generalization. Previous 

studies show that generating more complex (Madry et al., 2018; Schmidt, 2018) and diverse adversarial 

samples during AT may improve the robustness up to some extent (Jang, 2019). However, strong attacks may 

hurt the model's generalization to unseen natural samples (Zhang H. et al., 2019). We stress that the goal of 

adversarial robustness should not be improving the robust accuracy while sacrificing the model’s accuracy on 

the natural test samples. To alleviate this trade-off, mixup (Zhang et al., 2018) and feature scattering-based 

techniques (Zhang H. et al., 2019; Baytaş & Deb, 2023) are employed in the literature. More recently, 

augmenting the training set with millions of images synthesized by generative models has also been employed 

to improve both robust and natural performance (Wang et al., 2023). However, generating millions of images 

to train a robust model would not be sufficient with limited resources. 

This study proposes an adversarial training framework inspired by Zhang & Wang (2019), where adversarial 

perturbations are generated by disrupting the inter-sample relations in the mini-batch. On the other hand, the 

proposed approach augments the adversarial perturbations during training to improve the generalization. The 

primary motivation behind this study is to preserve the natural accuracy and avoid exacerbating the training 

complexity while enhancing the adversarial robustness. Training with strong but not diverse attacks hurts the 

model's generalization to different adversarial perturbations and natural samples. On the other hand, robust 

training with relatively weaker attacks to alleviate overfitting to specific adversarial perturbations improves 

generalization to natural samples but degrades the adversarial robustness. Therefore, this study proposes 

Perturbation Direction Augmentation for Adversarial Training (PDA-AT) to increase the attack diversity 

during training and enhance the robustness and generalization of the DNN. Contributions of the study are 

outlined below. 

• Differing from the standard feature scattering AT (Zhang & Wang, 2019), we generate perturbations that 

increase the optimal transport distance between different samples of the mini-batch instead of between the 

natural mini-batch and its randomly perturbed version. We empirically show that we can obtain more 

diverse adversarial directions at each iteration. 

• Adversarial perturbations are augmented by sampling new adversarial directions within a region spanning 

45 degrees from the principal adversarial direction obtained from the gradient of the distance between the 

mini-batch of data points measured by optimal transport. 

• Perturbation augmentation can enhance the adversarial robustness compared with the baseline AT methods 

without synthetic images. Notably, the gap between the natural and adversarial accuracies is substantially 

reduced. 

• The proposed approach addresses the trade-off between robustness and generalization. The augmented 

perturbations provide robustness without sacrificing the accuracy for the natural test samples. 

• Experimental results on CIFAR-10, CIFAR-100, SVHN, Tiny-ImageNet, and The German Traffic Sign 

Recognition Benchmark (GTSRB) datasets demonstrate consistent performance improvement for PDA-

AT with augmented perturbations compared with the baseline AT techniques in the literature. 

The following Literature Review presents related studies from the adversarial robustness literature. The 

Material and Method section explains the proposed framework and deep model architecture in detail. The 

Experimental Results section presents the performance of PDA-AT and a comparison with the baselines. The 

experimental results are interpreted in the Discussion section. The Conclusion section summarizes the 

proposed approach and key findings. 

https://doi.org/10.54287/gujsa.1458880


276 
Duygu SERBES, İnci M. BAYTAŞ  

GU J Sci, Part A 11(2) 274-288 (2024) 10.54287/gujsa.1458880  
 

 

2. LITERATURE REVIEW 

Adversarial attacks (Szegedy et al., 2014; Goodfellow et al., 2014) and robustness literature have been growing 

since it became evident that DNNs are sensitive against imperceptible but adversarially crafted perturbations. 

AT has become an effective and notable method to defend DNNs against adversarial attacks and improve 

robustness with the help of various adversarial attack algorithms. Goodfellow et al. (2014) were among the 

first studies to introduce an AT approach with Fast Gradient Sign Method (FGSM) attack. Their AT scheme 

augments the training samples in a mini-batch with adversarial samples obtained with FGSM. In other words, 

they optimize two cross-entropy terms computed with natural and adversarial samples separately. On the other 

hand, Madry et al. (2018) observed that incorporating natural samples in the AT weakens the robustness. 

Therefore, they proposed optimizing the model with only adversarial samples, given in Equation 1, generated 

by an iterative gradient-based adversarial attack named Projected Gradient Descent (PGD). 

𝐱𝑡+1 = ∏ (𝐱𝑡 + 𝜂sign(∇𝐱𝑡ℒ(𝐱, 𝑦; 𝜃)))

𝐱+𝑆

 
(1) 

where 𝑡 denotes the attack iteration, 𝑆 is the allowed perturbations set, 𝜂 is the attack step size, ∏ (∙)𝐱+𝑆  is the 

projection operator of the L-infinity ball, and 𝜃 is the parameters of a deep model. 

PGD can explore stronger attacks than a single-step adversarial attack such as FGSM. However, robustness 

literature often discusses that the trade-off between robustness and generalization inevitably grows when the 

PGD attack is used in AT (Baytaş & Deb, 2023). For this reason, various modifications and improvements are 

proposed to address the lack of generalization of PGD adversarial training (Wong & Kolter, 2018; Wang et 

al., 2019; Zhang & Wang, 2019). Nevertheless, there are challenges, such as label leaking (Kurakin et al., 

2017) and gradient masking (Athalye et al., 2018), that leads to a misleading robustness. Although training a 

deep model with powerful adversarial perturbations, such as PGD, boosts robustness more than employing 

FGSM attacks, training with PGD attacks is impractical for large-scale problems due to its increased number 

of backpropagation steps. 

To alleviate AT’s time complexity, researchers attempted to attain state-of-the-art robustness with single-step 

attacks (Zhang D. et al., 2019; Shafahi et al., 2019; Wong et al., 2020) by adopting accumulative perturbation 

and perturbation initialization. Shafahi et al. (2019) employed a single backpropagation step to update the 

model weights and generate the adversarial perturbations. On the other hand, Wong et al. (2020) identified the 

reasons behind the phenomenon where robust accuracy drops to 0 % during AT with FGSM attacks. Authors 

claimed that random initializing of the FGSM attack mitigates catastrophic overfitting and attains the desired 

level of robustness (Wong et al., 2020). On the other hand, Andriushchenko & Flammarion (2020) discussed 

the correlation between the catastrophic overfitting and local non-linearities. Consequently, the authors 

proposed a regularizer, GradAlign, to produce stronger adversarial examples by explicitly maximizing the 

gradient alignment within the attack. Furthermore, Kim et al. (2021) explained that distortions in decision 

boundaries and a highly curved loss surface due to characteristics of FGSM-based AT cause overfitting, which 

they address with an appropriate step size. However, the experimental results of these studies show that FGSM-

based AT approaches suffer from poor generalization to natural samples while their robustness does not 

significantly exceed the PGD AT’s performance by Madry et al. (2018). 

Mixup-based approaches have interested the adversarial robustness domain due to their potential to enhance 

the generalization of AT. Mixup introduces linear behavior in the data manifold by interpolating inputs and 

their labels (Zhang et al., 2018). It becomes evident in the literature that the AT with mixup might outperform 

standard AT while improving the generalization performance (Lee et al., 2020). In the literature, various mixup 

studies are proposed to support adversarial robustness. For instance, Manifold Mixup (Verma et al., 2019) 

aims to smooth decision boundaries for multiple levels of hidden representations of deep models that provide 

robustness against single-step adversarial attacks. Furthermore, Lee et al. (2020) introduced Adversarial 

Vertex Mixup, a soft-labeled data augmentation approach that interpolates the virtual adversarial vector and 

the natural input. 

https://doi.org/10.54287/gujsa.1458880
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This proposed PDA-AT is inspired by the feature scattering AT method of Zhang & Wang (2019). Feature 

scattering is based on a single-step adversarial attack that concerns the inter-sample relationships between 

adversarial and natural samples defined by the optimal transport (OT) distance. An unsupervised perturbation 

is generated by maximizing the OT of the perturbed and natural images. In addition, the authors also designed 

bilateral adversarial training (Wang & Zhang, 2019), where both images and labels are attacked during training 

with a single targeted perturbation where the target is the most mistaken class. Although the aforementioned 

AT frameworks try to address several issues of AT, there is still room for improvement. 

 

Figure 1. Proposed PDA-AT Adversarial Training Framework 

3. MATERIAL AND METHOD 

One of the widely discussed causes of the model’s susceptibility against adversarial perturbations is explained 

with overfitting. Since deep models are prone to overfitting to the training data distribution, the model’s 

predictions could be altered by the adversarial samples that can be considered out-of-distribution instances. 

Therefore, some AT approaches try to augment the training data with possible adversarial samples so that the 

model can have experience in handling adversarial perturbations. Thus, AT can be posed as the following two-

step optimization problem: 

min
𝜃

𝔼(𝐱,𝑦)~𝐷 [max
𝛿∈𝑆

ℒ(𝑓(𝐱 + 𝜹; 𝜃), 𝑦)] (2) 

where 𝑓(. ; 𝜃) is a neural network parametrized by 𝜃, 𝐱 is the natural sample, 𝜹 is an adversarial attack, the set 

𝑆 contains the possible perturbations bounded by an L-infinity norm ball with an 𝜖 maximum amount of 

perturbation, 𝑦 is the ground truth, and ℒ is the loss function, which is cross-entropy for classification tasks. 

In the optimization problem above, 𝜹, is the perturbation that maximizes the loss function, where adversarial 

directions in a single step or multiple steps are obtained. Although AT is expected to contribute to the 

generalization of the model for adversarial samples, we commonly observe several phenomena, such as 

catastrophic overfitting (Wong et al., 2020), label leaking (Kurakin et al., 2017), and gradient masking (Athalye 

et al., 2018; Ilyas et al., 2019) that result in overfitting to certain perturbations and hampering the training. One 

of the contributing factors to these challenges in AT is the adversarial sample generation based on the gradient 

of the cross-entropy loss (Baytaş & Deb, 2023). Therefore, the adversarial direction obtained via increasing 

the cross-entropy loss is insufficient to generate stronger and diverse attacks (Etmann et al., 2019). 

One of the most critical weaknesses of the traditional AT approaches is the generalization to natural samples. 

As the model's adversarial robustness improves, test accuracy on the natural samples drops below what the 

literature reports, which is unacceptable. We stress that the primary goal of a robust training framework should 

be preserving the natural performances while enhancing the robustness. Secondly, an AT training framework 

should be scalable such that the adversarial sample generation procedure should not require multiple costly 

backpropagation steps. 

This study proposes an AT approach, PDA-AT, illustrated in Figure 1, where the adversarial directions are 

generated using Optimal Transport (OT) distance, and they are augmented to reinforce the generalization. 

Thus, the goal of PDA-AT is a more generalizable AT regarding robust and natural accuracies. OT distance, 

also known as Wasserstein distance (Xie et al., 2020) or earth mover's distance, measures the distance between 

https://doi.org/10.54287/gujsa.1458880
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two distributions based on the minimum cost of transforming one probability distribution into another. OT 

distance (Villani, 2009; Cuturi, 2013) between two distributions can be defined as: 

𝒟(𝜇, 𝜈) = inf𝛾∈Π(𝜇,𝜈) 𝔼(𝑥,𝑦)~𝛾𝑐(𝑥, 𝑦) (3) 

where Π(𝜇, 𝜈) represents the joint distributions γ(𝑥, 𝑦) with marginals of μ(𝑥) and ν(𝑦). The cost function, 

c(𝑥, 𝑦) denotes 𝐾 × 𝐾 transport cost matrix 𝐶, where 𝐶𝑖𝑗 = c(𝑥𝑖, 𝑦𝑗) indicates how much it costs to transfer 

the i-th data vector in mini-batch 𝐗 to the j-th data vector in mini-batch 𝐘. 

Feature Scattering based AT, first introduced by Zhang & Wang (2019), replaces PGD attack on the cross-

entropy loss in the standard AT (Madry et al., 2018) with an FGSM attack on OT distance between the natural 

and the adversarial mini-batches. To be more specific, before the OT loss attack is generated, we need to 

compute the loss. Since a single-step attack is considered, the mini-batch of adversarial samples is obtained by 

adding a uniform random matrix sampled within the 𝜖-ball to the natural samples to compute the OT loss 

before the attack. In other words, in the standard feature scattering AT, the adversarial direction is generated 

by altering the inter-sample relationships between a natural mini-batch and its randomly shifted version to 

deepen the discrepancy between natural and adversarial distributions. 

The standard feature scattering AT obtains a perturbation by computing the gradient of the OT distance 

between the natural image and its randomly shifted counterpart. Thus, the perturbation aims to maximize the 

gap between the distributions of the mini-batch of natural and randomly shifted samples at each training 

iteration. Although training with feature scattering perturbation improves the robustness to an extent, the attack 

diversity, discussed in Section 4.4, gradually decreases during training, which is detrimental to the model’s 

generalization. Therefore, we argue that maximizing the OT distance between natural and randomly shifted 

samples may limit the attack diversity since the difference between the two sets in question is the amount and 

the direction of the random shift at each iteration. Consequently, the OT distance between the same mini-batch 

given in Equation 4 is preferred. 

𝛅OT = arg max
𝐱

𝒟(𝝂adv, 𝝂adv) 

𝒟(𝝂adv, 𝝂adv) = min
𝐓∈Π(𝝂adv,𝝂adv)

∑ ∑ 𝐓𝑖𝑗  ∙ 𝑐

𝑛

𝑗=1

𝑛

𝑖=1

(𝑓(𝐱adv)𝑖, 𝑓(𝐱adv)𝑗) 

(4) 

where 𝑐(𝑓(𝐱adv)𝑖, 𝑓(𝐱adv)𝑗), given below, is the element of the transport cost matrix which is zero for the 

same samples. 

𝑐(𝑓(𝐱adv)𝑖, 𝑓(𝐱adv)𝑗) = ‖𝑓(𝐱adv)𝑖 − 𝑓(𝐱adv)𝑗‖
2

2
 (5) 

The proposed modification aims to facilitate exploring adversarial directions that change the natural sample 

distribution more freely since we do not force the adversarial direction to specifically deepen the discrepancy 

between the natural samples and their randomly shifted versions. The proposed perturbation is intended to 

diverge the adversarial sample distribution from the distribution of the natural samples. Therefore, we claim 

that the perturbation direction should change at each iteration since the representation distribution will differ 

after each weight update. Thus, Equation 5 aims to diversify the adversarial direction at each iteration 

compared with constantly leading the adversarial direction toward increasing the disparity between the natural 

and randomly perturbed samples. In experiments, we empirically show that the proposed modification 

increases attack diversity and improves the robustness. 

https://doi.org/10.54287/gujsa.1458880
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Figure 2. Adversarial Direction Augmentation in 2-Dimensional Space 

3.1. Adversarial Direction Augmentation 

It is evident in adversarial robustness literature that presenting a wide range of perturbations to model training 

alleviates overfitting to certain perturbations. This study introduces an intuitive and effective adversarial 

perturbation augmentation approach. The perturbation 𝜹OT in Equation 4 denotes the principal adversarial 

direction that increases the OT loss. This direction contains the most distinctive information about how to 

increase the gap between the distributions of adversarial and natural data representations. Although relying 

only on the principal adversarial direction enhances the robustness of the model, the attack diversity could be 

further improved. However, increasing the attack diversity during training should not create an additional 

computational overhead since the complexity of AT is already higher than the standard training. Therefore, we 

propose to benefit from the principal adversarial direction carried in 𝜹OT to obtain new adversarial 
directions without requiring extra backpropagation steps during AT iterations. Particularly, we propose 

randomly sampling a new adversarial direction within a 45-degree angle from the principal direction as given 

below: 

𝜹rand = cos(𝛼)𝜹OT + sin(𝛼) 𝜹⊥ (6) 

where 𝛼 is a random angle between 0 and 45 degrees, and 𝜹⊥ is a randomly generated perturbation vector 

perpendicular to 𝜹OT. In addition to 𝜹rand, we generate one more adversarial direction denoted by 𝜹45 when 

𝛼 is set to 45 degrees. Thus, three adversarial directions, shown in Figure 2, can be obtained to increase the 

variety of adversarial attacks at each iteration without significantly increasing the computational cost. The 

fundamental reason behind 45 degrees is to ensure that the new sampled direction maintains its adversarial 

characteristic. As we move away from the principal adversarial direction that stems directly from the gradient 

of the OT loss, the perturbation’s strength might degrade since the new direction might be toward a decrease 

in loss. Therefore, we constrain the sampling region at 45-degree from the principal direction so that the 

sampled perturbations can still decrease the loss up to an extent. We also hypothesize that there should be more 

than one adversarial direction for each natural sample in the input space. Therefore, we propose to explore 

more adversarial directions with the sampling approach in Equation 6. it is intuitive to investigate the new 

potential adversarial attacks obtained from similar directions to the gradient of the loss. 

Finally, the mini-batch is augmented with perturbed images to update the model as follows: 

min
𝜃

1

𝑁
[∑ ℒ(𝑓(𝐱𝑖 + 𝜹OT; 𝜃), 𝑦) +

𝑁/3

𝑖=1

∑ ℒ(𝑓(𝐱𝑖 + 𝜹rand; 𝜃), 𝑦) +

𝑁/3

𝑖=1

∑ ℒ(𝑓(𝐱𝑖 + 𝜹45; 𝜃), 𝑦)

𝑁/3

𝑖=1

] 

(7) 

where the mini-batch size is denoted by 𝑁. As seen in Equation 7, the model is updated with samples perturbed 

with the principal and augmented adversarial directions. Clipping is applied to perturbations to stay inside the 

https://doi.org/10.54287/gujsa.1458880
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𝜖-ball and to the perturbed images to avoid stepping out of the input domain. The proposed PDA-AT 

framework is given in Algorithm 1. 

Algorithm 1 PDA-AT Framework. Robustness for T epochs, D dataset, 𝜃 network parameters, 𝜖 

perturbation budget, 𝜏 learning rate, 𝑛 mini-batch size, 𝛼max maximum deviation angle 

Require: 𝒟 optimal transport (OT) distance 

for t = 1, ⋯ , T do 

       for mini-batch {𝐱𝑖, 𝑦𝑖}𝑖=1
𝑛 ~D do   

             𝛿OT ← arg max
𝐱

𝒟 (𝝂adv, 𝝂adv) 

             𝛼~𝒰(0, 𝛼max) 

             𝜹rand ← cos(𝛼)𝜹OT + sin(𝛼)𝜹⊥ 

             𝜹max ← cos(𝛼max)𝜹OT + sin(𝛼max)𝜹⊥ 

             𝐱′ ← [𝐱 + 𝜹OT, 𝐱 + 𝜹rand, 𝐱 + 𝜹max] 

            model update: 

            𝜃 ← 𝜃 − 𝜏
1

𝑛
∑ ∇𝜃ℒ(𝐱′, 𝑦; 𝜃)𝑛

𝑖=1  

       end for 

end for 

4. EXPERIMENTAL RESULTS 

The PDA-AT’s robustness is evaluated in both white-box and black-box settings. Extensive experiments are 

conducted on five commonly used benchmark datasets, including CIFAR-10, CIFAR-100 (Krizhevsky & 

Hinton, 2009), The Street View House Numbers (SVHN) (Yuval et al., 2011), German Traffic Sign 

Recognition Benchmark (GTSRB) (Houben et al., 2013), and Tiny-Imagenet (Le & Yang, 2015). The selected 

datasets are widely used benchmarks in the adversarial robustness literature. Furthermore, the datasets have 

varying characteristics such as the number of categories, background, and scale. Therefore, the datasets of 

interest are suitable for evaluating the adversarial robustness of the proposed method and compare it with 

literature. 

4.1. Baselines 

The PDA-AT’s performance is compared with the common AT baseline methods that are based on gradient-

based attacks. The proposed method does not utilize synthetically generated data during training, nor do the 

baselines. Performances of the following baselines are reported: 

Natural: Standard training with natural images. 

Madry: AT with PGD attack proposed by Madry et al. (2018), accepted as one of the most effective defense 

methods. 

Bilateral: Training with both image and label adversarial perturbations (Wang & Zhang, 2019).   

Feature Scattering: Maximizes the OT distance between natural and perturbed images (Zhang & Wang, 

2019).  

Adv-Interp: Generating of adversarial samples by adversarial interpolation (Zhang & Xu, 2020). 

AV-Mixup: Adversarial training of data augmentation-based soft labeling approach (Lee et al., 2020). 

https://doi.org/10.54287/gujsa.1458880
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4.2. Datasets 

Comprehensive experiments are conducted across five publicly available datasets with various configurations. 

The CIFAR-10 dataset (Krizhevsky & Hinton, 2009) is widely recognized as the benchmark for adversarial 

training and comprises 32 × 32 RGB images of ten different object classes. The training set of CIFAR-10 

contains a total of 50K images, 5K images per class, whereas the test set has 10K images. Similarly, the 

CIFAR-100 dataset (Krizhevsky & Hinton, 2009) comprises the same number of images and dimensions as 

CIFAR-10 but includes 100 object classes, each containing 500 images in a total of 50K images in the training 

set. CIFAR-10 and 100 datasets are constructed as a subset of 80 million tiny images dataset. The categories 

in the dataset do not have overlapping samples. The CIFAR-10 and CIFAR-100 are well-known object 

recognition datasets used for benchmarking in wide-variety of problems. The SVHN dataset (Yuval et al., 

2011) is another widely used dataset in computer vision and comprises approximately 100K labeled digit 

images with varying sizes and orientations collected from Google Street View house numbers. The SVHN 

dataset is divided into 73,257 training images and 26,032 test images. Although the SVHN dataset also has 

10 categories of same sized images as CIFAR-10, the SVHN images has digits in the wild instead of objects. 

Therefore, the SVHN data characteristics are substantially different from CIFAR-10 and 100 datasets. Tiny-

ImageNet (Le & Yang, 2015) consists of 110 K images of 200 classes, each with 500 training images and 50 

validation images. The Tiny-ImageNet dataset poses a challenge due to the high number of categories with 

less number of samples from each category. Thus, we can investigate how the number of classes impact the 

robustness of AT. The GTSRB (Houben et al., 2013) comprises a collection of 43 different traffic sign classes, 

featuring a total of 39,209 training images and 12,630 test images. The images in the dataset exhibit diverse 

lighting conditions and complex backgrounds, complicating the traffic sign recognition models. The GTSRB 

is also selected since its a large-scale multi-class image dataset of completely different pattern than the above-

mentioned datasets. 

4.3. Training Scheme 

In all experiments, the WideResnet28-10 model (Zagoruyko & Komodakis, 2016) is used for the object 

recognition task. The number of epochs is set to 200 with a batch size of 60 compatible with the configurations 

in Feature Scattering AT study (Zhang & Wang, 2019). The optimizer is chosen as the Stochastic Gradient 

Descent with a weight decay of 2 × 10−4, a momentum of 0.9, and a learning rate of 0.01 and 0.1 for SVHN 

and other datasets, respectively. The learning rate decays with 0.1 at the epochs 30 and 60. 

PyTorch is used in the experiments. The codebase provided by Zhang & Wang (2019) is modified to implement 

PDA-AT. In the experiments, the maximum perturbation amount is set to 𝜖 = 8/255, which is the commonly 

accepted maximum perturbation amount by the literature for the benchmark datasets considered in this study. 

Data augmentations, random crops and flips, are used to improve the model generalization for CIFAR and 

Tiny-ImageNet datasets. Label smoothing is applied with a factor of 0.5. For all datasets except Tiny-

ImageNet, the images are randomly cropped into 32 × 32 with a padding size of 4. Meanwhile, images from 

Tiny-ImageNet are cropped to 64 × 64. To calculate the optimal transport (OT) distance, we adopted the 

Sinkhorn algorithm with a regularization parameter of 0.01 in a one-step attack configuration (Zhang & Wang, 

2019). 

4.4. Attack Diversity 

One of the essential motivations of this study is to enhance the attack diversity during AT. The proposed 

approach is based on the inter-sample relationship between adversarial samples within the mini-batch to 

augment the attacks. We investigate the attack diversity by comparing the proposed method with Feature 

Scattering AT (Zhang & Wang, 2019). In that regard, we first create adversarial directions of CIFAR-10 

training images at several epochs. Next, we sample a random direction as a reference point to compute cosine 

similarities with the generated adversarial directions. The standard deviations of the cosine similarities at 

various epochs are plotted in Figure 3. Similarly, the change in the standard deviations of the element-wise 

sum of the gradient direction tensor's elements for each sample can be seen in Figure 3. In both plots, we expect 

the proposed attack against the OT distance between the inter-samples of the mini-batch given in Equation 4 

to generate a higher standard deviation than the standard Feature Scattering attack (Zhang & Wang, 2019). 
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Figure 3 provides empirical evidence that the proposed approach can generate more diverse attack directions 

than the standard single-step OT distance attack. 

 

Figure 3. Diversity of adversarial directions in training 

4.5. Variations of Perturbation Augmentations 

This section investigates the optimal combination of the proposed perturbation augmentations. In this 

experiment, the OT distance between natural and adversarial samples is considered to obtain the primary 

adversarial direction, 𝜹FS, as in Feature Scattering AT (Zhang & Wang, 2019). Thus, we can observe the 

independent effect of the perturbation augmentation given in Table 1 below. The table demonstrates natural 

and robust test accuracies of proposed model trained with augmented adversarial perturbations. Natural column 

presents the classification accuracy of the robust model on natural test images. FGSM column demonstrates 

the performance on test images with FGSM attack, which is a single-step attack. On the other hand, PGD20 

and CW20 columns are results on test images with PGD and Carlini and Wagner (CW) (Carlini & Wagner, 

2017) attacks of 20 steps, respectively. Thus, the Table 1 investigates the contributions of different adversarial 

direction augmentations to the classification performance. 

Table 1. Performance of the proposed PDA-AT framework with various perturbation augmentations. Results 

denote classification accuracy in percentages 

Perturbation Augmentation Natural FGSM PGD20 CW20 

𝜹𝐹𝑆, 𝜹rand 92.98 92.54 62.83 58.60 

𝜹𝐹𝑆, 𝜹rand, 𝜹rand 92.44 89.27 59.74 57.40 

𝜹𝐹𝑆, 𝜹rand, 𝜹45 93.68 94.33 68.08 61.88 
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Once the primary direction 𝜹FS is identified, we augment it within a cosine similarity region of 45 degrees. 

Through various experiments, we determined that the most effective attack perturbation involved a 

combination of the primary perturbation direction and augmented directions generated by both random and 

maximum allowed perturbations. Table 1 shows that adding two random perturbation directions, 𝜹rand, could 

hurt the generalization, while augmentation with the direction within 45 degrees of the principal adversarial 

direction boosts the adversarial accuracies and brings the natural performance close to state-of-the-art. 

4.6. Robustness Against White-Box Attacks 

We evaluate the PDA-AT framework’s test accuracies for the adversarial samples and baseline methods 

against the following white-box attacks: FGSM (Goodfellow et al., 2014), PGD (Madry et al., 2018), and 

Carlini and Wagner (CW) attack (Carlini & Wagner, 2017), as well as black-box variants. We report the 

accuracy of the natural test images described as natural. Iterative attacks are denoted by PGDT and CWT, 

where T is the attack iteration. The attack step size in iterative attacks is set to 2/255 and 8/255 for single-

step attacks. All the attacks are randomly initialized. The adversarial budget is set to 𝜖 = 8/255. We 

summarize the natural and robust accuracies for the CIFAR-10, CIFAR-100, and SVHN datasets in Table 2. 

In the table, the proposed approaches are denoted by 𝜹OT and 𝜹OT,rand,45 represent AT with the single-step 

attack given in Equation 4, and AT with perturbation augmentation obtained by Equation 6, respectively. 

Performances in the cells with hyphen symbols in Table 2 are not available. The baseline results without a start 

sign are the reported results in their corresponding studies. The selected baseline studies do not report results 

for each test presented in Table 2. Some of the missing results were obtained by training the baseline approach 

from scratch. However, we prefer to compare the PDA-AT’s performance with the original results reported by 

the studies to reduce the changes in baseline performances due to issues such as random initialization. As a 

result, unavailable results are denoted by a hyphen in Table 2. 

In Table 2, when Feature Scattering (Zhang & Wang, 2019) line is compared with PDA-AT with 𝜹OT, denoted 

by PDA-AT-𝜹OT, we can conclude that using perturbations altering the distribution of the mini-batch rather 

than increasing the gap between mini-batch distributions of the natural and adversarial samples can boost the 

robustness in CIFAR-10 and SVHN datasets. On the other hand, PDA-AT-𝜹OT without perturbation 

augmentation does not contribute to the robustness of CIFAR-100. We discuss that the change in this behavior 

might be due to the higher number of classes. When the number of classes increases from 10 to 100, perturbing 

different mini-batches at each iteration might not sufficiently generalize. Moreover, it is evident in Table 2 

that the proposed perturbation augmentation significantly improves adversarial and natural accuracies 

compared with the baselines. Specifically, when comparing the proposed method with the best baseline 

performance, we can observe an increment of 13.14%, 10.28%, and 5.82% in CIFAR-10, CIFAR-100, and 

SVHN accuracies against the FGSM attack, respectively. 

Performances for Tiny-ImageNet and GTSRB datasets are provided in Table 3. Since performances for the 

two datasets are not reported by all the baselines, we present their results separately by comparing them with 

the Feature Scattering model trained from scratch using the implementation in its GitHub repository (HaicHao, 

2019). All models used in this comparison were trained with the same training and attack configurations as the 

other datasets. Since the Tiny-ImageNet dataset is quite challenging, the discrepancy between the robustness 

provided by Feature Scattering and the proposed method is not significant. However, the improvement in the 

robustness of GTSRB can be seen in Table 3. 

4.7. Results Against Black-Box Attacks 

The PDA-AT’s performance in transfer-based black-box attack settings is also evaluated (Papernot et al., 

2017). For this purpose, the models trained with only natural and adversarial samples with PGD attacks (Madry 

et al., 2018) are used to generate the gradient-based black-box attacks. The AT model has trained with PGD7. 

Feature Scattering and the proposed model, PDA-AT, are evaluated with a set of PGD and CW attacks created 

in the black-box setting. Feature Scattering (Zhang & Wang, 2019) models are trained from scratch using the 

code provided in (Zhang, 2019). As seen in Table 4 and Table 5, the robustness of the proposed method can 

generalize against black-box attacks and outperforms the Feature Scattering AT. 
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Table 2. Adversarial accuracy comparison of baselines and PDA-AT under white-box attacks. The star, *, 

symbol indicates result of training from scratch. The dagger, †, symbol denotes results taken from Baytaş 

and Deb (2023). Other values are the best results reported by the baselines 

CIFAR-10 

Defenses Natural FGSM PGD10 PGD20 PGD100 CW10 CW20 CW100 

Natural* 96.08 34.7 0.01 0.00 0.00 0.01 0.00 0.00 

Madry et al. 

(2018) † 

87.25 62.64 47.33 45.91 45.29 - 46.99 46.54 

Bilateral 91.00 70.70 63.00 57.80 55.20 - 56.20 53.80 

Feature Scattering 

(Zhang & Wang, 

2019) 

90.0 78.40 70.90* 70.50 68.60 62.60* 62.40 60.60 

Adv-Interp (Zhang 

& Xu, 2020) 

90.30 78.00 - 73.50 73.00 - 69.70 68.70 

AV-Mixup (Lee et 

al., 2020) 

93.24 78.25 62.67 58.23 - 53.63 - - 

PDA-AT-𝜹OT 90.24 78.11 73.97 72.29 71.10 62.11 59.66 57.52 

PDA-AT-

𝜹𝐎𝐓,𝐫𝐚𝐧𝐝,𝟒𝟓 

92.83 91.54 74.16 71.83 66.74 64.35 60.60 53.85 

CIFAR-100 

Natural* 79.78 5.57 0.00 0.00 0.00 0.00 0.00 0.00 

Madry et al. 

(2018) † 

59.78 32.70 23.49 22.78 22.44 - 23.05 22.87 

Bilateral 66.20 31.30 - - 22.40 - - 20.00 

Feature Scattering 

(Zhang & Wang, 

2019) 

73.90 61.00 47.60* 47.20 46.20 30.76* 34.60 30.60 

Adv-Interp (Zhang 

& Xu, 2020) 

73.60 58.30 - 41.00 40.20 - 32.40 31.2 

AV-Mixup (Lee et 

al., 2020) 

74.81 62.76 - 38.49 - - - - 

PDA-AT-𝜹OT 71.80 49.31 41.50 40.83 25.08 23.18 22.48 24.46 

PDA-AT-

𝜹𝐎𝐓,𝐫𝐚𝐧𝐝,𝟒𝟓 

75.73 73.04 49.19 48.83 48.77 35.16 34.64 33.86 

SVHN 

Natural* 96.33 45.29 1.59 0.62 0.39 1.04 0.63 0.48 

Madry et al. 

(2018) † 

90.74 64.50 44.23 41.38 40.37 - 42.46 41.60 

Bilateral 94.10 69.80 - 53.90 50.30 - - 48.90 

Feature Scattering 

(Zhang & Wang, 

2019) 

96.20 83.50 55.40* 62.90 52.00 58.18* 61.30 50.80 

Adv-Interp (Zhang 

& Xu, 2020) 

94.10 81.83 - - - - - - 

AV-Mixup (Lee et 

al., 2020) 

95.59 91.51 37.97 - - - - - 

PDA-AT-𝜹OT 96.31 95.78 71.74 66.38 55.43 67.35 60.75 48.43 

PDA-AT-

𝜹𝐎𝐓,𝐫𝐚𝐧𝐝,𝟒𝟓 

97.15 97.33 72.48 65.02 50.61 65.13 56.58 42.45 
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Table 3. The performance comparison for Tiny-ImageNet and GTRSB datasets. 

Tiny-ImageNet 

Defenses Natural FGSM PGD10 PGD20 PGD100 CW10 CW20 CW100 

Natural 69.04 2.28 0.02 0.01 0.00 0.00 0.00 0.00 

Feature Scattering (Zhang & 

Wang, 2019) 

57.42 24.42 12.54 11.25 10.33 9.11 7.97 7.55 

PDA-AT-𝜹𝐎𝐓,𝐫𝐚𝐧𝐝,𝟒𝟓 57.34 25.31 12.93 11.73 11.24 11.14 10.31 9.97 

GTSRB 

Natural 98.62 63.34 19.94 14.31 11.29 17.29 13.22 11.36 

Feature Scattering (Zhang & 

Wang, 2019) 

96.5 91.81 87.82 84.56 78.52 76.01 72.02 67.42 

PDA-AT-𝜹𝐎𝐓,𝐫𝐚𝐧𝐝,𝟒𝟓 97.01 94.86 90.46 88.27 82.66 78.56 74.76 69.35 

 

Table 4. Results against black-box attacks transferred from the naturally trained model on CIFAR-10. 

 Defenses 

Feature Scattering PDA-AT 

 PGD20 89.42 91.94 

PGD100 89.33 92.14 

CW20 89.41 91.87 

CW100 
89.34 91.88 

 

Table 5. Results against black-box attacks transferred from standard AT on CIFAR-10. 

 Defenses 

Feature Scattering PDA-AT 

 PGD20 76.60 78.40 

PGD100 76.46 77.94 

CW20 77.71 78.86 

CW100 
77.44 78.76 

5. DISCUSSION 

The performance of the proposed PDA-AT is investigated from qualitative and quantitative perspectives. 

Figure 3 indicates that the adversarial direction augmentation improves the attack diversity during training. 

We also observe that the attack diversity slightly decreases as the training epochs proceed. In Tables 2 and 3, 

we can see that the augmented attack diversity results in improved robustness and generalization. The proposed 

PDA-AT does not sacrifice the natural accuracy compared with the baseline robust training approaches. The 

PDA-AT substantially improves the robustness against the FGSM attack. Adversarial accuracy might decrease 

for CW attacks compared to the robustness against PGD attacks for some datasets. This result shows that there 

is still room to alleviate overfitting certain types of attacks. On the other hand, Tiny-ImageNet and GTSRB 

results in Table 3 show that the PDA-AT can maintain the adversarial performance against the CW attacks 

better than the Feature Scattering AT. Finally, the adversarial defense techniques are notoriously prone to 

gradient masking (Papernot, et al., 2017). Robustness against black-box attacks in Tables 4 and 5 is reported 

particularly to investigate the gradient masking effect. When gradient masking occurs, adversarially trained 

models perform well against white-box attacks but cannot stand a black-box attack (Papernot et al., 2017). 

Tables 4 and 5 show that the PDA-AT can maintain its robustness against black-box attacks better than the 

model trained with Feature scattering AT for the CIFAR10 dataset. Thus, the proposed AT approach does not 

demonstrate a gradient masking effect (Papernot, et al., 2017). 
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6. CONCLUSION 

This study proposes an adversarial training approach, PDA-AT, with adversarial direction augmentation during 

training. The PDA-AT employs alternative adversarial directions within a region spanning a 45-degree angle 

from the principal adversarial direction determined by the gradient of the optimal transport distance between 

the mini-batch samples. The principal adversarial direction generation differs from the Feature Scattering 

adversarial training, where the perturbation aims to increase OT distance between a mini-batch of adversarial 

samples and randomly perturbed natural samples. We empirically show that conditioning the adversarial 

direction to perturb the mini-batch distribution to differ from random perturbation hampers the attack diversity 

during training. Therefore, the proposed approach obtains adversarial directions that alter the natural sample 

distribution with random initializations. The extensive experimental results of the benchmark datasets, CIFAR-

10, CIFAR-100, SHVN, GTSRB, and Tiny-ImageNet, against well-known white-box and black-box attacks 

provide empirical evidence that the PDA-AT improves adversarial robustness and augmenting the adversarial 

directions further boosts the adversarial accuracy. 
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