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1. Introduction

The concept of almost paracomplex structure has been studied, since the first papers by Rashevskij [16], Libermann
[13] and Patterson [15] until now, from several different points of view. Moreover, the papers related to it have appeared
many times in a rather disperse way, and a survey of further results on paracomplex geometry (including paraHermitian
and paraKähler geometry) can be found for instance in [5, 6]. Also, other important developments have occurred in
some recent problems [2, 4, 20], where certain aspects concerning the geometry of tangent and cotangent bundles are
presented in [3,11,12,17,18,23–26]. For this reason, the study of structures remains a rich field of research, especially
in tangent or cotangent geometry, to this day.

In this paper, we construct some almost paracomplex structures on the tangent bundle with vertical rescaled metric
[8] and investigate necessary and sufficient conditions for the tangent bundle to become B-manifold and quasi-B-
manifold. Also some B-metric properties of the vertical rescaled metric are studied.

2. Preliminaries

Let T M be the tangent bundle over an m-dimensional Riemannian manifold (Mm, g) and the natural projection
π : T M → M. A local chart (U, xi)i=1,m on M induces a local chart (π−1(u), xi, yi)i=1,m on T M. We denote by ∇ is the
Levi-Civita connection on a Riemannian manifold (Mm, g) and Γk

i j are the Christoffel symbols of ∇. Let ℑr
s(M) (resp.

ℑr
s(T M)) the module over C∞(M) (resp. C∞(T M)) of C∞ tensor fields of type (r, s), where C∞(M) (resp. C∞(T M)) is

the ring of real-valued C∞ functions on M (resp. T M).
The Levi Civita connection ∇ defines a direct sum decomposition

T(x,u)T M = V(x,u)T M ⊕ H(x,u)T M,
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of the tangent bundle to T M at any (x, u) ∈ T M into vertical subspace

V(x,u)T M = Ker(dπ(x,u)) = {ξi
∂

∂yi |(x,u), ξ
i ∈ R}

and the horizontal subspace

H(x,u)T M = {ξi
∂

∂xi |(x,u) − ξ
iu jΓk

i j
∂

∂yk |(x,u), ξ
i ∈ R}.

Let X = Xi ∂
∂xi be a local vector field on M. The vertical and the horizontal lifts of X are defined by

VX = Xi ∂

∂yi ,

HX = Xi δ

δxi = Xi{
∂

∂xi − y jΓk
i j
∂

∂yk }.

For consequences, we have H( ∂
∂xi ) = δ

δxi and V( ∂
∂xi ) = ∂

∂yi , then ( δ
δxi ,

∂
∂yi )i=1,m is a local adapted frame on TT M.

In particular, we have the vertical distribution Vu and the horizontal distribution Hu on T M defined by

Vu = uiV(
∂

∂xi ) = ui ∂

∂yi ,
Hu = uiH(

∂

∂xi ) = ui δ

δxi . (2.1)

Vu is also called the canonical or Liouville vector field on T M.

Lemma 2.1 ( [1]). Let (M, g) be a Riemannian manifold and η : R+ → R be a smooth function, we have the following:
(1) HX(η(r)) = 0,
(2) VX(η(r)) = 2η′(r)g(X, u),
(3) HXg(Y, u) = g(∇XY, u),
(4) VXg(Y, u) = g(X,Y),
(5) Vu(η(r)) = 2η′(r)g(u, u),
(6) Vu(g(Y, u)) = g(Y, u),

for any vector fields X,Y on M, where r = g(u, u) .

Lemma 2.2 ( [9, 22]). Let (M, g) be a Riemannian manifold. The bracket operation of vertical and horizontal vector
fields is given by the formulas

(1) [HX, HY] = H[X,Y] − V(R(X,Y)u),
(2) [HX, VY] = V(∇XY),
(3) [VX, VY] = 0,
(4) [VY, Vu] = VY,
(5) [HY, Vu] = 0,

for all vector fields X,Y ∈ ℑ1
0(M), where ∇ is the Levi-Civita connection on a Riemannian manifold (M, g) and R is

Riemannian curvature tensor of ∇.

An almost product structure φ on a manifold M is a (1, 1) tensor field such that φ2 = idM , φ , ±idM (idM is the
identity tensor field of type (1, 1) on M). The pair (M, φ) is called an almost product manifold.

A linear connection ∇ on (M, φ) such that ∇φ = 0 is said an almost product connection. There exists an almost
product connection on every almost product manifold [7].

An almost paracomplex manifold is an almost product manifold (M, φ), such that the two eigenbundles T M+ and
T M− associated to the two eigenvalues +1 and −1 of φ, respectively, have the same rank. Note that the dimension of
an almost paracomplex manifold is necessarily even [6].

The integrability of an almost paracomplex structure is equivalent to the vanishing of the Nijenhuis tensor:

Nφ(X,Y) = [φX, φY] − φ[φX,Y] − φ[X, φY] + [X,Y].

A paracomplex structure is an integrable almost paracomplex structure. On the other hand, for an almost paracomplex
structure to be integrable, a necessary and sufficient condition is the existence of a torsion-free linear connection such
that ∇φ = 0 [18, 20].
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Let (M2m, φ) be an almost paracomplex manifold. A Riemannian metric g is said to be B-metric if

g(φX, φY) = g(X,Y),

for all X,Y ∈ ℑ1
0(M) [20]. or equivalently (purity condition with respect to the almost paracomplex structure φ)

g(φX,Y) = g(X, φY).

If (M2m, φ) is an almost paracomplex manifold with B-metric g, we say that (M2m, φ, g) is an almost B-manifold. If
φ is integrable, we say that (M2m, φ, g) is a B-manifold [20].

A Tachibana operator ϕφ applied to the B-metric (pure metric) g is given by

(ϕφg)(X,Y,Z) = φX(g(Y,Z)) − X(g(φY,Z)) + g((LYφ)X,Z) + g((LZφ)X,Y),

for all X,Y,Z ∈ ℑ1
0(M) [21].

In a B-manifold, a B-metric g is called paraholomorphic if

(ϕφg)(X,Y,Z) = 0,

for all X,Y,Z ∈ ℑ1
0(M) [20].

In [20], Salimov and his collaborators proved that for an almost B-manifold,

∇φ = 0⇔ ϕφg = 0, (2.2)

by virtue of this view, in an almost B-manifold the integrability condition of φ is equivalent to the paraholomorphicity
condition of the B-metric.

The purity conditions for a tensor field ω ∈ ℑq
0(M) with respect to the almost paracomplex structure φ given by

ω(φX1, X2, . . . , Xq) = ω(X1, φX2, . . . , Xq) = . . . = ω(X1, X2, . . . , φXq),

for all X1, X2, . . . , Xq ∈ ℑ
1
0(M) [20].

It is well known that, if (M2m, φ, g) is a B-manifold, the Riemannian curvature tensor is pure [20], and{
R(φY,Z) = R(Y, φZ) = R(Y,Z)φ = φR(Y,Z),

R(φY, φZ) = R(Y,Z), (2.3)

for all Y,Z ∈ ℑ1
0(M).

Let (M2m, φ, g) be a non-integrable almost B-manifold, if

σ
X,Y,Z

g((∇Xφ)Y,Z) = 0,

for all X,Y,Z ∈ ℑ1
0(M), where σ is the cyclic sum by three arguments, then the triple (M2m, φ, g) is a quasi-B-manifold

[10, 14]. We know that

σ
X,Y,Z

g((∇Xφ)Y,Z) = 0⇔ σ
X,Y,Z

(ϕφg)(X,Y,Z) = 0, (2.4)

which was proven in [19].

3. Vertical RescaledMetric

Definition 3.1 ( [8]). Let (Mm, g) be a Riemannian manifold and f be a strictly positive smooth function on M. We
define the vertical rescaled metric G f on the tangent bundle T M by

(1) G f (HX, HY) = g(X,Y),
(2) G f (HX, VY) = 0,
(3) G f (VX, VY) = f g(X,Y),

for all vector fields X,Y ∈ ℑ1
0(M).

Theorem 3.2 ( [8]). Let (Mm, g) be a Riemannian manifold and ∇ f be a Levi-Civita connection of (T M,G f ). Then, we
have

(1) ∇ f
HX

HY = H(∇XY) − 1
2

V(R(X,Y)u),

(2) ∇ f
HX

VY =
f
2

H(R(u,Y)X) + V(∇XY) +
X( f )
2 f

VY,
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(3) ∇ f
VX

HY =
f
2

H(R(u, X)Y) +
Y( f )
2 f

VX,

(4) ∇ f
VX

VY =
−1
2

g(X,Y) H(grad f ),

for all vector fields X,Y ∈ ℑ1
0(M), where ∇ is the Levi-Civita connection on a Riemannian manifold (Mm, g) and R is

Riemannian curvature tensor of ∇.

4. Some Almost Paracomplex Structures with B-Metrics on the Tangent Bundle

Let (M2m, φ, g) be an almost B-manifold, we consider the tensor field J ∈ ℑ1
1(T M) defined by{

JHX = H(φX)
JVX = −V(φX) (4.1)

for all X ∈ ℑ1
0(M).

Lemma 4.1. Let (M2m, φ, g) be an almost B-manifold and (T M,G f ) be its tangent bundle equipped with the vertical
rescaled metric. The couple (T M, J) is an almost paracomplex manifold .

Proof. By virtue of (4.1), we have{
J2HX = J(JHX) = J(H(φX)) = H(φ(φX)) = H(φ2X) = HX,
J2VX = J(JVX) = J(−V(φX)) = V(φ(φX)) = V(φ2X) = VX,

for any X ∈ ℑ1
0(M), then J2 = idT M .

Let {E1, . . . , Em, Em+1, . . . , E2m} be a local frame of eigenvectors on M such that φEi = Ei and φEm+i = −Em+i, for all
i = 1,m, then

TT M+ = Span (HE1, . . . ,
HEm,

VEm+1, . . . ,
VE2m),

TT M− = Span (VE1, . . . ,
VEm,

HEm+1, . . . ,
HE2m).

□

Theorem 4.2. Let (M2m, φ, g) be an almost B-manifold, (T M,G f ) be its tangent bundle equipped with the vertical
rescaled metric and the almost paracomplex structure J defined by (4.1). The triple (T M, J,G f ) is an almost B-
manifold.

Proof. From (4.1) and since g is B-metric (pure metric) with respect to φ we have

(i) G f (JHX, HY) = G f (H(φX), HY) = g(φX,Y) = g(X, φY) = G f (HX, H(φY)) = G f (HX, JHY),

(ii) G f (JHX, VY) = G f (H(φX), VY) = 0 = G f (HX, V(φY)) = G f (HX,−V(φY)) = G f (HX, JVY),

(iii) G f (JVX, HY) = G f (V(φX), HY) = 0 = G f (VX, H(φY)) = G f (VX,−H(φY)) = G f (VX, JHY),

(iv) G f (JVX, VY) = G f (−V(φX), VY) = − f g(φX,Y) = − f g(X, φY) = G f (VX,−V(φY)) = G f (VX, JVY),

for all X,Y ∈ ℑ1
0(M).

Hence, G f is pure metric with respect to the almost paracomplex structure J. □

Proposition 4.3. Let (M2m, φ, g) be an almost B-manifold, (T M,G f ) its tangent bundle equipped with the vertical
rescaled metric and the almost paracomplex structure J defined by (4.1), then we get

1. (ϕJG f )(HX, HY, HZ) = (ϕφg)(X,Y,Z),

2. (ϕJG f )(VX, HY, HZ) = 0,

3. (ϕJG f )(HX, VY, HZ) = f g(R(φX,Z)u + φR(X,Z)u,Y),

4. (ϕJG f )(HX, HY, VZ) = f g
(
R(φX,Y)u + φR(X,Y)u,Z

)
,

5. (ϕJG f )(VX, VY, HZ) = − f g((∇Zφ)X,Y),
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6. (ϕJG f )(VX, HY, VZ) = − f g((∇Yφ)X,Z),

7. (ϕJG f )(HX, VY, VZ) = (φX)( f )g(Y,Z) + X( f )g(φY,Z) + f g((∇Xφ)Y,Z),

8. (ϕJG f )(VX, VY, VZ) = 0,

for all X,Y,Z ∈ ℑ1
0(M).

Proof. We calculate Tachibana operator ϕJ applied to the pure metric G f . This operator is characterized by (2.3), then
we have

1. (ϕJG f )(HX, HY, HZ) = (JHX)G f (HY, HZ) − HXG f (JHY, HZ) +G f ((LHY J)HX, HZ
)
+G f (HY, (LHZ J)HX

)
= H(φX)G f (HY, HZ) − HXG f (H(φY), HZ) +G f (LHY JHX − J(LHY

HX), HZ
)

+G f (HY, LHZ JHX − J(LHZ
HX)
)

= (φX)g(Y,Z) − Xg(φY,Z) + g
(
[Y, φX] − φ[Y, X],Z

)
+ g
(
Y, [Z, φX] − φ[Z, X]

)
= (φX)g(Y,Z) − Xg(φY,Z) + g((LYφ)X,Z) + g(Y, (LZφ)X)
= (ϕφg)(X,Y,Z).

2. (ϕJG f )(VX, HY, HZ) = (JVX)G f (HY, HZ) − VXG f (JHY, HZ)
)
+G f ((LHY J)VX, HZ

)
+G f (HY, (LHZ J)VX

)
= −V(φX)G f (HY, HZ) − VXG f (H(φY), HZ) −G f ([HY, V(φX)] + J[HY, V(φX)], HZ

)
−G f (HY, [HZ, V(φX)] + J[HZ, VX]

)
= 0.

3. (ϕJG f )(HX, VY, HZ) = (JHX)G f (VY, HZ) − HXG f (JVY, HZ) +G f ((LVY J)HX, HZ
)
+G f (VY, (LHZ J)HX

)
= G f ([VY, H(φX)] − J[VY, HX], HZ

)
+G f (VY, [HZ, H(φX)] − J[HZ, HX]

)
= −G f (VY, V(R(Z, φX)u) + V(φR(Z, X)u)

)
= − f g(Y,R(Z, φX)u + φR(Z, X)u)
= f g(R(φX,Z)u + φR(X,Z)u,Y).

4. (ϕJG f )(HX, HY, VZ) = (JHX)G f (HY, VZ) − HXG f (JHY, VZ) +G f ((LHY J)HX, VZ
)
+G f (HY, (LVZ J)HX

)
= G f ([HY, H(φX)] − J[HY, HX], VZ

)
+G f (HY, [VZ, H(φX)] − J[VZ, HX]

)
= −G f (V(R(Y, φX)u) + V(φR(Y, X)u), VZ

)
= − f g(R(Y, φX)u,Z) − f g(φR(Y, X)u,Z)
= f g(R(φX,Y)u + φR(X,Y)u,Z).

The other formulas are obtained by the similar calculations. □

Theorem 4.4. Let (M2m, φ, g) be an almost B-manifold, (T M,G f ) be its tangent bundle equipped with the vertical
rescaled metric and the almost paracomplex structure J defined by (4.1), then the triple (T M, J,G f ) is a B-manifold if
and only if (M2m, φ, g) is flat B-manifold and f is constant.

Proof. From the Proposition 4.3, for all X,Y,Z ∈ ℑ1
0(M), we have

(ϕφg)(X,Y,Z) = 0,
f g(R(φX,Z)u + φR(X,Z)u,Y) = 0,
f g(R(φX,Y)u + φR(X,Y)u,Z) = 0,
− f g((∇Zφ)X,Y) = 0,
− f g((∇Yφ)X,Z) = 0,
(φX)( f )g(Y,Z) + X( f )g(φY,Z) + f g((∇Xφ)Y,Z) = 0.
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By virtue of (2.2) and (2.3), we get
(ϕφg)(X,Y,Z) = 0
g(R(φX,Z)u,Y) = 0
(∇Zφ)X = 0
(φX)( f )g(Y,Z) + X( f )g(φY,Z) = 0

⇔


ϕφg = 0
R = 0
f = constant.

□

Theorem 4.5. Let (M2m, φ, g) be a B-manifold, (T M,G f ) be its tangent bundle equipped with the vertical rescaled
metric and the almost paracomplex structure J defined by (4.1), then the triple (T M, J,G f ) is a quasi-B-manifold if
and only if f is constant.

Proof. From (2.4) and the Proposition 4.3, for all X,Y,Z ∈ ℑ1
0(M), we have

1. σ
HX,HY,HZ

(ϕJG f )(HX, HY, HZ) = σ
X,Y,Z

(ϕφg)(X,Y,Z) = 0,

2. σ
VX,HY,HZ

(ϕJG f )(VX, HY, HZ) = f g(R(φY,Z)u + R(φZ,Y)u, X) = 0,

3. σ
VX,VY,HZ

(ϕJG f )(VX, VY, HZ) = (φZ)( f )g(X,Y) + Z( f )g(φX,Y),

4. σ
VX,VY,VZ

(ϕJG f )(VX, VY, VZ) = 0,

then, (T M, J,G f ) is a quasi-B-manifold if and only if f is constant. □

We consider the tensor field K ∈ ℑ1
1(T M) defined by:{

KHX = −H(φX)
KVX = V(φX) (4.2)

for all X ∈ ℑ1
0(M), satisfies the followings:

1. K = −J.
2. G f is pure metric with respect to K.
3. ϕKG f = −ϕJG f .

Therefore, we have the following results.

Theorem 4.6. Let (M2m, φ, g) be an almost B-manifold, (T M,G f ) be its tangent bundle equipped with the vertical
rescaled metric and the almost paracomplex structure K defined by (4.2), then the triple (T M,K,G f ) is a B-manifold
if and only if (M2m, φ, g) is flat B-manifold and f is constant.

Theorem 4.7. Let (M2m, φ, g) be a B-manifold, (T M,G f ) be its tangent bundle equipped with the vertical rescaled
metric and the almost paracomplex structure K defined by (4.2), then the triple (T M,K,G f ) is a quasi-B-manifold if
and only if f is constant.

We consider the tensor field F ∈ ℑ1
1(T M) defined by:{

FHX = V(φX)
FVX = H(φX), (4.3)

for all X ∈ ℑ1
0(M).

Lemma 4.8. Let (M2m, φ, g) be an almost B-manifold and (T M,G f ) bet its tangent bundle equipped with the vertical
rescaled metric. The couple (T M, F) is an almost paracomplex manifold.

Proof. By virtue of (4.3), we have{
F2HX = F(FHX) = F(V(φX)) = H(φ(φX)) = H(φ2X) = HX,
F2VX = F(FVX) = F(H(φX)) = V(φ(φX)) = V(φ2X) = VX,



Some Almost B-Structures on the Tangent Bundle Equipped with a Vertical Rescaled Metric 190

for any X ∈ ℑ1
0(M), then F2 = idT M .

Let {E1, . . . , Em, Em+1, . . . , E2m} be local frame of eigenvectors on M such that φEi = Ei, φEm+i = −Em+i, for all
i = 1,m, then

TT M+ = Span (HE1 +
VE1, . . . ,

HEm +
VEm,

HEm+1 −
VEm+1, . . . ,

HE2m −
VE2m),

TT M− = Span (HE1 −
VE1, . . . ,

HEm −
VEm,

HEm+1 +
VEm+1, . . . ,

HE2m +
VE2m).

□

Theorem 4.9. Let (M2m, φ, g) be a B-manifold, (T M,G f ) be its tangent bundle equipped with the vertical rescaled
metric and the almost paracomplex structure F defined by (4.4).
The vertical rescaled metric G f is B-metric with respect to F if and only if f = 1.
Conversely, in the case of f , 1, the vertical rescaled metric G f is never pure metric with respect to F.

Now consider the almost product structure J defined by (4.1). We define a tensor field S of type (1, 2) and linear
connection ∇ on T M by,

S (X̃, Ỹ) =
1
2
(
(∇ f

JỸ
J)X̃ + J

(
(∇ f

Ỹ
J)X̃
)
− J
(
(∇ f

X̃
J)Ỹ
))
. (4.4)

∇X̃Ỹ = ∇ f
X̃

Ỹ − S (X̃, Ỹ).

for all X̃, Ỹ ∈ ℑ1
0(T M), where ∇ f is the Levi-Civita connection of (T M,G f ) given by Theorem 3.2. ∇ is an almost

product connection on T M (see [7, p.150] for more details).

Lemma 4.10. Let (M2m, φ, g) be a B-manifold, (T M,G f ) be its tangent bundle equipped with the vertical rescaled
metric and the almost product structure J defined by (4.1). Then tensor field S is as follows,

(1) S (HX, HY) = −
1
2

V(R(X,Y)u),

(2) S (HX, VY) =
f
2

H(R(u,Y)X) −
X( f )
2 f

VY −
(φX)( f )

2 f
V(φY),

(3) S (VX, HY) = − f H(R(u, X)Y) +
Y( f )
4 f

VX +
(φY)( f )

4 f
V(φX),

(4) S (VX, VY) = −
1
4

g(X,Y) H(grad f ) −
1
4

g(X, φY) H(φgrad f ),

for all X,Y ∈ ℑ1
0(M).

Proof. In Lemma 4.10, equation (1) Using (4.1) and (4.4), we have

S (HX, HY) =
1
2

(
(∇ f

JHY J)HX + J
(
(∇ f

HY J)HX
)
− J
(
(∇ f

HX J)HY
))

=
1
2

(
∇

f
H(φY)

H(φX) − J(∇ f
H(φY)

HX) + J
(
∇

f
HY

H(φX)
)
− ∇

f
HY

HX − J
(
∇

f
HX

H(φY)
)
+ ∇

f
HX

HY
)

=
1
2

(
H(∇φYφX) −

1
2

V(R(φY, φX)u) − H(φ∇φY X) −
1
2

V(φR(φY, X)u) + H(φ∇φY X) +
1
2

V(φR(Y, φX)u)

−H(∇Y X) +
1
2

V(R(Y, X)u) − H(φ∇XφY) −
1
2

V(φR(X, φY)u) + H(∇XY) −
1
2

V(φR(X,Y)u)
)

= −
1
2

V(R(X,Y)u).
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(2) By a similar calculation to equation (1), in Lemma 4.10, we get

S (HX, VY) =
1
2

(
(∇ f

JVY J)HX + J
(
(∇ f

VY J)HX
)
− J
(
(∇ f

HX J)VY
))

=
1
2

(
− ∇

f
V(φY)

H(φX) + J(∇ f
V(φY)

HX) + J
(
∇

f
VY

H(φX)
)
− ∇

f
VY

HX + J
(
∇

f
HX

V(φY)
)
+ ∇

f
HX

VY
)

=
1
2

(
2P(∇ f

VY
HX) − 2∇ f

VY
HX + P

(
∇

f
HX

VY
)
+ ∇

f
HX

VY
)

=
f
2

H(R(u,Y)X) −
X( f )
2 f

VY −
(φX)( f )

2 f
V(φY).

The other formulas are obtained by a similar calculations. □

Theorem 4.11. Let (M2m, φ, g) be a B-manifold, (T M,G f ) be its tangent bundle equipped with the vertical rescaled
metric and the almost product structure J defined by (4.1). Then the almost product connection ∇ defined by (4.2) is as
follows,

(1) ∇HX
HY = H(∇XY),

(2) ∇HX
VY = V(∇XY) +

X( f )
f

VY +
(φX)( f )

2 f
V(φY),

(3) ∇VX
HY =

3 f
2

H(R(u, X)Y) −
Y( f )
4 f

VX −
(φY)( f )

4 f
V(φX),

(4) ∇VX
VY = −

1
4

g(X,Y) H(grad f ) +
1
4

g(X, φY) H(φgrad f ),

for all X,Y ∈ ℑ1
0(M).

Proof. The proof of Theorem 4.11 follows directly from Theorem 3.2, Lemma 4.10 and formula (4.2). □

Lemma 4.12. Let (M2m, φ, g) be a B-manifold, (T M,G f ) be its tangent bundle equipped with the vertical rescaled
metric and the almost product structure J defined by (4.1) and T denote the torsion tensor of ∇, then we have:

(1) T (HX, HY) = V(R(X,Y)u),

(2) T (HX, VY) = −
3 f
2

H(R(u,Y)X) +
3X( f )

4 f
VY +

3(φX)( f )
4 f

V(φY),

(3) T (VX, HY) =
3 f
2

H(R(u, X)Y) −
3Y( f )

2 f
VX −

3(φY)( f )
4 f

V(φX),

(4) T (VX, VY) = 0,

for all X,Y ∈ ℑ1
0(M).

Proof. The proof of Lemma 4.12 follows directly from Lemma 4.10 and formula

T (X̃, Ỹ) = ∇X̃Ỹ − ∇Ỹ X̃ − [X̃, Ỹ]

= S (Ỹ , X̃) − S (X̃, Ỹ)

for all X̃, Ỹ ∈ ℑ1
0(T M). □

From Lemma 4.12, we obtain the following theorem.

Theorem 4.13. Let (M2m, φ, g) be a B-manifold, (T M,G f ) be its tangent bundle equipped with the vertical rescaled
metric and the almost product structure J defined by (4.1), then ∇ is symmetric if and only if M is flat and f is constant.
In this case, the Levi-Civita connection ∇ f and the almost product connection ∇ coincide with each other.

Let (Mm, g) be a Riemannian manifold. We define a tensor field L ∈ ℑ1
1(T M) by, LHX =

1√
f

(VX + ηg(X, u)Vu)

LVX =
√

f (HX + µg(X, u)Hu)
(4.5)
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for all X ∈ ℑ1
0(M), where η, µ : R+ → R are smooth functions.

Note that  LHu =
1√

f
(1 + ηr)Vu

LVu =
√

f (1 + µr)Hu,

where r = g(u, u).

Lemma 4.14. Let (Mm, g) be a Riemannian manifold and (T M,G f ) be its tangent bundle equipped with the vertical
rescaled metric. Then, the endomorphism L defined by (4.5) is an almost paracomplex structure if and only if

µ = −
η

1 + ηr
.

Furthermore, we have 
LHX =

1√
f

(VX + ηg(X, u)Vu)

LVX =
√

f (HX −
η

1 + ηr
g(X, u)Hu).

(4.6)

Proof. 1) Let X ∈ ℑ1
0(M),

L2(HX) = L(LHX)

=
1√

f
L(VX + ηg(X, u)Vu)

= HX + µg(X, u)Hu + ηg(X, u)(1 + µr)Hu

= HX + (η + µ + ηµr)g(X, u)Hu. (4.7)

L2(VX) = L(LVX)

=
√

f L(HX + µg(X, u)Hu)

= VX + ηg(X, u)Vu + µg(X, u)(1 + ηr)Vu

= VX + (η + µ + ηµr)g(X, u)Vu. (4.8)

From (4.7) and (4.8), we get L2 = IdT M if and only if η + µ + ηµr = 0 or equivalent to µ = −
η

1 + ηr
.

2) Let {E1, . . . , E2m} be local frame on Mm, then

TT M+ = Span (A1, . . . , A2m),

TT M− = Span (B1, . . . , B2m),

where

Ai = f
1
4 (HEi +

1
2
µg(Ei, u)Hu) + f

−1
4 (VEi +

1
2
ηg(Ei, u)Vu),

Bi = f
1
4 (HEi +

1
2
µg(Ei, u)Hu) − f

−1
4 (VEi +

1
2
ηg(Ei, u)Vu).

□

Theorem 4.15. Let (Mm, g) be a Riemannian manifold, (T M,G f ) be its tangent bundle equipped with the vertical
rescaled metric and the almost paracomplex structure L defined by (4.6). The triple (T M, L,G f ) is an almost B-
manifold if and only if

η = 0 or η = −
2
r
,

where r = g(u, u).
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Proof. For purity condition, we put for all X,Y ∈ ℑ1
0(M) and k, h ∈ {H,V}:

A(kX, hY) = G f (LkX, hY) −G f (kX, LhY).

(i) A(HX, HY) = G f (LHX, HY) −G f (HX, LHY)

= G f (
1√

f
(VX + ηg(X, u)Vu), HY) −G f (HX,

1√
f

(VY + ηg(Y, u)Vu))

= 0.

(ii) A(VX, VY) = G f (LVX, VY) −G f (VX, LVY)

= G f (
√

f (HX −
η

1 + ηr
g(X, u)Hu), VY) −G f (VX,

√
f (HY −

η

1 + ηr
g(Y, u)Hu))

= 0.

(iii) A(HX, VY) = G f (LHX, VY) −G f (HX, LVY)

= G f (
1√

f
(VX + ηg(X, u)Vu), VY) −G f (HX,

√
f (HY −

η

1 + ηr
g(Y, u)Hu))

=
1√

f
G f (VX, VY) +

1√
f
ηg(X, u)G f (Vu, VY) −

√
fG f (HX, HY) +

η
√

f
1 + ηr

g(Y, u)G f (HX, Hu)

=
√

f g(X,Y) + η
√

f g(X, u)g(Y, u) −
√

f g(X,Y) +
η
√

f
1 + ηr

g(X, u)g(Y, u)

=
2 + ηr
1 + ηr

η
√

f g(X, u)g(Y, u).

(iv) A(VX, HY) = G f (LVX, HY) −G f (VX, LHY)

= G f (
√

f (HX −
η

1 + ηr
g(X, u)Hu), HY) −G f (VX,

1√
f

(VY + ηg(Y, u)Vu))

=
√

fG f (HX, HY) −
η
√

f
1 + ηr

g(X, u)G f (Hu, HY) −
1√

f
G f (VX, VY) −

1√
f
ηg(Y, u)G f (VX, Vu)

=
√

f g(X,Y) −
η
√

f
1 + ηr

g(X, u)g(Y, u) −
√

f g(X,Y) − η
√

f g(X, u)g(Y, u)

= −
2 + ηr
1 + ηr

η
√

f g(X, u)g(Y, u).

Then, A(HX, VY) = 0 equivalent to η = 0 or η = −
2
r

. □

Hence, we have two almost paracomplex structures
LHX =

1√
f

(VX −
2
r

g(X, u)Vu
)
,

LVX =
√

f
(HX −

2
r

g(X, u)Hu
) (4.9)

or  LHX =
1√

f
VX,

LVX =
√

f HX.
(4.10)
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We shall study integrability of L. As we know that the integrability of L is equivalent to the vanishing of the
Nijenhuis tensor. The Nijenhuis tensor of L is given by

NL(X̃, Ỹ) = [LX̃, LỸ] − L[LX̃, Ỹ] − L[X̃, LỸ] + [X̃, Ỹ],

where X̃, Ỹ ∈ ℑ1
0(T M).

Lemma 4.16. Let (Mm, g) be a Riemannian manifold and (T M,G f ) be its tangent bundle equipped with the vertical
rescaled metric. The almost paracomplex structure L defined by (4.6) is integrable if and only if NL(HX, HY) = 0, for
all X,Y ∈ ℑ1

0(M).

Proof. We put LVX = HZ and LVY = HW, then we have

NL(VX, VY) = [LVX, LVY] − L[LVX, VY] − L[VX, LVY] + [VX, VY]

= [HZ, HW] − L[HZ, LHW] − L[LHZ, HW] + [LHZ, LHW]

= NL(HZ, HW),

NL(VX, HW) = [LVX, LHW] − L[LVX, HW] − L[VX, LHW] + [VX, HW]

= [HZ, LHW] − L[HZ, HW] − L[LHZ, LHW] + [LHZ, HW]

= −L[LHZ, LHW] + [LHZ, HW] + [HZ, LHW] − L[HZ, HW]

= −L(NL(HZ, HW)).

□

Lemma 4.17. Let (Mm, g) be a Riemannian manifold, (T M,G f ) be its tangent bundle equipped with the vertical
rescaled metric and the almost paracomplex structure L defined by (4.6), then

NL(HX, HY) =
1

2 f
(
X( f )HY − Y( f )HX

)
+
η

f
(
g(Y, u)VX − g(X, u)VY

)
− V(R(X,Y)u),

for all X,Y ∈ ℑ1
0(M).

Proof. We have

NL(HX, HY) = [LHX, LHY] − L[LHX, HY] − L[HX, LHY] + [HX, HY].

By the direct computations and using Lemma 2.1 and Lemma 2.2, we get

[LHX, LHY] =
η

f
(
g(Y, u)VX − g(X, u)VY

)
,

L[LHX, HY] = −H(∇Y X) +
Y( f )
2 f

HX,

L[HX, LHY] = H(∇XY) −
X( f )
2 f

HY,

[HX, HY] = H[X,Y] − V(R(X,Y)u).

□

Hence, we have the following theorems.

Theorem 4.18. Let (Mm, g) be a Riemannian manifold and (T M,G f ) be its tangent bundle equipped with the vertical
rescaled metric and the almost paracomplex structure L defined by (4.9). The triple (T M, L,G f ) is a B-manifold if and
only if f is constant and

R(X,Y)u =
−2
r f
(
g(Y, u)X − g(X, u)Y

)
for all X,Y ∈ ℑ1

0(M).
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Theorem 4.19. Let (M, g) be a Riemannian manifold, (T M,G f ) be its tangent bundle equipped with the vertical
rescaled metric and the almost paracomplex structure L defined by (4.10). The triple (T M, L,G f ) is a B-manifold if
and only if M is flat and f is constant.

Let (Mm, g) be a Riemannian manifold. We define a tensor field P ∈ ℑ1
1(T M) by,{

PHX = HX + ηg(X, u)Hu
PVX = −VX + µg(X, u)Vu (4.11)

for all X ∈ ℑ1
0(M), where η, µ : R+ → R are smooth functions.

If η = µ = 0 , then P is the almost paracomplex structure defined by (4.1), where φ = IdM .
In the following, we consider η , 0 and µ , 0.
Note that , {

PHu = (1 + ηr)Hu
PVu = (−1 + µr)Vu

such that r = g(u, u).

Lemma 4.20. Let (Mm, g) be a Riemannian manifold and (T M,G f ) be its tangent bundle equipped with the vertical

rescaled metric. Then the endomorphism P defined by (4.11) is an almost paracomplex structure if and only if η = −
2
r

and µ =
2
r

, i.e., 
PHX = HX −

2
r

g(X, u)Hu

PVX = −VX +
2
r

g(X, u)Vu
(4.12)

for all X ∈ ℑ1
0(M) and r = g(u, u).

Proof. 1) Let X ∈ ℑ1
0(M),

P2(HX) = P(P(HX))

= P(HX + ηg(X, u)Hu)

= HX + ηg(X, u)Hu + ηg(X, u)(1 + ηr)Hu

= HX + η(2 + ηr)g(X, u)Hu, (4.13)

P2(VX) = P(P(VX))

= P(−VX + µg(X, u)Vu)

= VX − µg(X, u)Vu + µg(X, u)(−1 + µr)Vu

= VX + µ(−2 + µr)g(X, u)Vu. (4.14)

From (4.13) and (4.14), then P2 = IdT M equivalent to η = −
2
r

and µ =
2
r

.
2) Let {Ei}i=1,m be a local orthonormal frame on M. Then,

T(x,p)T M+ = Span (V1, . . . ,Vm),

T(x,u)T M− = Span (W1, . . . ,Wm),

where Vi = −
HEi +

1
r

g(Ei, u)Hu , Wi = −
VEi +

1
r

g(Ei, u)Vu. □

Theorem 4.21. Let (Mm, g) be a Riemannian manifold, (T M,G f ) be its tangent bundle equipped with the vertical
rescaled metric and the almost paracomplex structure P defined by (4.12). The triple (T M, P,G f ) is an almost B-
manifold.
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Proof. For purity condition, we put for all X,Y ∈ ℑ1
0(M) and k, h ∈ {H,V}:

A(Xk, HY) = G f (PXk, HY) −G f (Xk, PHY).

(i) A(HX, HY) = G f (PHX, HY) −G f (HX, PHY)

= G f (HX −
2
r

g(X, u)Hu, HY) −G f (HX, HY −
2
r

g(Y, u)Hu)

= G f (HX, HY) −
2
r

g(X, u)g(Y, u) −G f (HX, HY) +
2
r

g(Y, u)g(X, u)

= 0,

(ii) A(VX, VY) = G f (PVX, VY) −G f (VX, PVY)

= G f (−VX +
2
r

g(X, u)Vu, VY) −G f (VX,−VY +
2
r

g(Y, u)Vu)

= −G f (VX, VY) +
2
r

g(X, u) fλg(Y, u) +G f (VX, VY) −
2
r

g(Y, φu) fλg(X, u)

= 0,

(iii) A(HX, VY) = G f (PHX, VY) −G f (HX, PVY)

= G f (HX −
2
r

g(X, u)Hu, VY) −G f (HX,−VY +
2
r

g(Y, u)Vu)

= 0,

(iv) A(VX, HY) = G f (PVX, HY) −G f (VX, PHY)

= G f (−VX +
2
r

g(X, u)Vu, HY) −G f (VX, HY +
2
r

g(Y, u)Hu)

= 0.

□

Lemma 4.22. Let (Mm, g) be a Riemannian manifold, (T M,G f ) its tangent bundle equipped with the vertical rescaled
metric, ∇ f denote the corresponding Levi-Civita connection of G f and Vu (resp. Hu) be the vertical distribution (resp.
horizontal distribution) on T M. Then,

1.∇ f
HX

Hu =
1
2

V(R(u, X)u),

2.∇ f
HX

Vu =
X( f )
2 f

Vu,

3.∇ f
VX

Hu = HX +
u( f )
2 f

VX +
f
2

H(R(u, X)u),

4.∇ f
VX

Vu = VX −
1
2

g(X, u)H(grad f ),

for all vector fields X ∈ ℑ1
0(M).

Proof. The proof of Lemma 4.22 follows directly from (2.1) and Theorem 3.2. □

Proposition 4.23. Let (Mm, g) be a Riemannian manifold, (T M,G f ) its tangent bundle equipped with the vertical
rescaled metric, the almost paracomplex structure P defined by (4.12) and ∇ f denote the corresponding Levi-Civita
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connection of G f , then:

1. (∇ f
HXP)HY = −V(R(X,Y)u) −

1
r

g(Y, u)V(R(u, X)u),

2. (∇ f
HXP)VY = − f H(R(u,Y)X) +

f
r

g(R(u,Y)X, u)Hu,

3. (∇ f
VXP)HY = −

2
r

g(Y, u)HX +
( 4
r2 g(X, u)g(Y, u) −

2
r

g(X,Y) +
f
r

g(R(u, X)Y, u)
)Hu

−
f
r

g(Y, u)H(R(u, X)u) +
(Y( f )

f
−

u( f )
r f

g(Y, u)
)VX −

Y( f )
r f

g(X, u)Vu,

4. (∇ f
VXP)VY =

(
g(X,Y) −

1
r

g(X, u)g(Y, u)
)
(grad f )H −

u( f )
r

g(X,Y) Hu

+
2
r

g(Y, u)VX +
(2

r
g(X,Y) −

4
r2 g(X, u)g(Y, u)

)Vu,

for all vector fields X ∈ ℑ1
0(M).

Proof. The proof of Proposition 4.23 follows directly from the Theorem 4.2 and the formula

∇
f
X̃

PỸ = ∇ f
X̃

(PỸ) − P∇ f
X̃

Ỹ ,

where X̃, Ỹ ∈ ℑ1
0(T M). Hence, we deduce: □

Theorem 4.24. Let (Mm, g) be a Riemannian manifold, (T M,G f ) be its tangent bundle equipped with the vertical
rescaled metric and the almost paracomplex structure P defined by (4.12). Then, the triple (T M, P,G f ) is never an
almost anti-paraHermitian manifold.
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