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Abstract 

Increasing environmental considerations force the logistics sector to 

develop more environmentally friendly approaches. Thus, the concept of 

"green logistics" is becoming more crucial. The use of electric vehicles, 

which become prominent with their low energy consumption, less cost 

and environmentally friendly features, is a part of green logistics. 

Moreover, taking into consideration of multi-echelon distribution 

networks can also be effective in reducing the negative outcomes of urban 

logistics. In this context, the Two-Echelon Electric Vehicle Routing 

Problem with Battery Swapping Station (2E-E-VRP-BSS) is considered 

in this study. A Mixed Integer Programming (MIP) model is presented for 

the problem in which the total cost consisting of fixed cost, transportation 

cost, battery swapping cost and handling cost is minimized. To test the 

validity of the model, three different data sets, each of different sizes, 

simulating a realistic distribution network were created. In addition, 

sensitivity analyses were carried out in order to examine the impact of 

changes in customer demand and battery capacities of electric vehicles on 

optimal solutions. The analyses indicate the applicability of the model. 

The findings suggest that fluctuations in customer demand directly impact 

the total cost, with higher demand leading to increased costs and lower 

demand resulting in cost reductions compared to the base case scenario. 

Furthermore, there is a negative correlation between the battery capacity 

of electric vehicles and the total cost, meaning that as battery capacity 

increases, the overall cost tends to decrease. 
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1. INTRODUCTION 

Global warming, air pollution, traffic accidents, noise, and other factors worldwide are causing 

environmental and social concerns. To address these issues and meet the demand for energy sources, 

there is a necessity to develop sustainable solutions in the transportation sector. Sustainable 

transportation requires the development of environmentally friendly, economical, and socially 

compatible systems. In this context, the concept of "Green Logistics" has been introduced with the aim 

of increasing the transportation sustainability by taking into account social and environmental concerns. 

Using electric vehicles instead of fossil fuel-based vehicles constitutes a considerable area of these green 

logistics efforts (Jie et al., 2019). 

Electric vehicles, which stand out as an environmentally friendly option, have found their place 

not only in individual preferences but also in the transportation sector, with many logistics companies 

starting to use electric vehicles in their operations (Pelletier et al., 2016; Qin et al., 2021). The 

environmental advantages of electric vehicles, such as zero greenhouse gas emissions, reduced noise, 

and increased energy efficiency, might contribute logistics companies obtain a green image and even 

qualify for subsidies for environmental protection (Wang & Zhou, 2021). While past charging 

technologies for electric vehicles required several hours for a full charge, advancements in fast charging 

or battery swapping stations now enable energy replenishment within a very short time (Breunig et al., 

2019). All processes related to replacing an almost exhausted battery with a fully charged battery can 

take under 10 minutes, which can be faster than charging the battery (Kim, 2011, as cited in Jie et al., 

2019). Compared to charging stations, battery swapping stations can provide a faster solution by 

significantly reducing waiting times for charging, allowing vehicles to travel longer distances more 

efficiently and enabling more flexible route planning. In some cases, the battery swapping option can 

be more cost-effective than investing in charging infrastructure. It is particularly beneficial in rural areas 

where power grids and charging stations are insufficient, ensuring uninterrupted vehicle operations. 

Moreover, charging multiple electric vehicles simultaneously can place considerable strain on the 

energy grid. Battery swapping helps alleviate this issue by allowing depleted batteries to be recharged 

during off-peak hours, thereby reducing grid stress. Integrating battery swapping stations into routing 

problems is crucial for ensuring continuous and faster operations, lowering costs, improving customer 

satisfaction and significant competitive advantage. Therefore, this approach is an important and 

promising solution for logistics companies that have or aim to acquire electric vehicles in their fleets 

(Li, 2014). 

One of the solutions developed to reduce/eliminate the social and environmental negative 

impacts of urban logistics is the use of two-echelon (multi-echelon) distribution networks. In such 

distribution systems, instead of delivering products directly from warehouses to customers, products are 

first delivered to satellites located outside the city center (the first echelon), and then from the satellites 

to customers (the second echelon). While large trucks are used in the first echelon of distribution, 
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relatively more environmentally friendly and smaller vehicles are preferred in the second echelon. This 

prevents the entry of large trucks into city centers and aims to solve some of the problems created by 

urban logistics, such as noise, traffic congestion, and environmental pollution (Li et al., 2018; Zhou et 

al., 2018). The Two-Echelon Vehicle Routing Problem (2E-VRP) is a type of problem aimed at 

determining vehicle routes that minimize objective functions such as total time, total distance, total fuel 

consumption, etc., for delivering products to customers in two-echelon distribution networks. 

2E-VRP, compared to the Vehicle Routing Problem (VRP) referring to single-echelon 

distribution networks, is a more recent and therefore less researched area. The problem, when electric 

vehicles are utilised instead of fossil fuel-based vehicles in one or both echelons of distribution, is 

referred to as Two-Echelon Electric Vehicle Routing Problem (2E-E-VRP). Due to the limited driving 

range of electric vehicles depending on the capacities of their batteries, they need to be charged on the 

road or have their batteries replaced. This may require planned visits to charging stations or battery 

swapping stations, making the problem more challenging (Breunig et al., 2019; Goli et al., 2022; Wu & 

Zhang, 2023). 

Studies focusing on VRPs have generally centered around traditional vehicles, with only a 

limited number of studies aiming to investigate routing problems for electric vehicles. Therefore, routing 

electric vehicles still require more attention and research (Agardi et al., 2019). Furthermore, although 

the number of studies on 2E-VRP is increasing, only a small part of them consider electric vehicles. In 

this context, this study was conducted with the motivation to address the challenges brought about by 

using of electric vehicles in routing problems and to contribute to the gap in the relevant literature. In 

the problem referred to as 2E-E-VRP-BSS, traditional vehicles are used in the first echelon, whereas 

electric vehicles with relatively lower load-carrying capacity and limited driving range are used in the 

second echelon. Thus, the distribution network includes a central warehouse, satellites, customers, and 

battery swapping stations. The objective of the problem is to set optimal routes for primary and 

secondary echelon vehicles to minimize the total cost, which consists of fixed costs of vehicles, 

transportation costs, battery swapping costs for electric vehicles, and handling costs at satellites. 

Sensitivity analyses were conducted in the research to examine the effects of changes in customer 

demand levels and battery capacities of electric vehicles on optimal solutions. 

The contributions of this study are threefold: (1) We propose a 2E-E-VRP-BSS model that 

integrates battery swapping stations into a two-echelon logistics system, a relatively underexplored area 

in the literature. (2) We conduct extensive sensitivity analyses to assess the impact of key parameters 

such as customer demand fluctuations and battery capacity variations on cost efficiency. (3) We validate 

the model with realistic datasets and provide practical insights for logistics operators on optimal vehicle 

routing and BSS placement. By addressing these aspects, the study offers a structured framework for 

improving the efficiency of green logistics operations. 
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The study consists of six sections. The second section gives information about relevant studies 

from the literature. The problem definition and mathematical model are presented in the third section. 

The details of the application are conveyed in the fourth section titled "Application Design". Findings 

from the study are mentioned in the fifth section, and conclusions are given in the final section. 

2. LITERATURE 

Vehicle routing optimization is a heavily researched field that has been the subject of many 

studies in various sectors such as manufacturing and transportation (Agardi et al., 2019). Over time, 

various authors have studied new variants of the basic capacitated VRP by making changes to some of 

its assumptions. These variants include the multi-depot VRP, heterogeneous VRP, VRP with time-

windows, periodic VRP, electric VRP (E-VRP), and 2E-VRP. 

This study involves the intersection of two fundamental areas of VRPs – namely, 2E-VRP and 

E-VRP. In this context, particular emphasis will be placed on studies focusing on 2E-E-VRP. 

2E-VRP studies, which represent a specialized form of multi-echelon distribution networks 

where products flow from a central warehouse to satellites and then to customers instead of directly 

from the central depot to customers, are increasingly gaining attention. 2E-VRP is a problem type 

addressed to solve some of the problems created by urban logistics, such as noise, traffic congestion, 

and environmental pollution. Distribution is carried out using large vehicles in the first echelon, while 

relatively smaller/environmentally friendly vehicles are used in the second echelon (Cuda et al., 2015; 

Soysal et al., 2015). 

Two-echelon distribution networks, resulting from the interaction between the two tiers of the 

logistics network, involve more complex planning models and require coordination and synchronization 

of vehicle fleets and operations compared to single-echelon networks (Crainic & Sgalambro, 2014). 

Various exact solution methods and/or heuristic/metaheuristic algorithms have been presented for 

solving the 2E-VRP. From exact solution methods, one can observe studies utilizing dynamic 

programming (Baldacci et al., 2013; Wang et al., 2020), branch and cut algorithm (Jepsen et al., 2013; 

Perboli et al., 2009; Perboli et al., 2018; Wei et al., 2020), branch and price algorithm (Santos et al., 

2013), logical constraint programming (Sitek & Wikarek, 2014), and various mathematical models 

(Babaee Tirkolaee et al., 2019; Babagolzadeh et al., 2019; Soysal et al., 2015). On the other hand, 

because of the NP-hardness of the problem (Belgin et al., 2018; Soysal et al., 2015; Wang et al., 2017), 

there are studies focusing on providing solutions through heuristic and/or metaheuristic algorithms such 

as fast clustering heuristic (Crainic et al., 2012), multi-start heuristic (Crainic et al., 2011), adaptive 

large neighborhood search heuristic (Grangier et al., 2016; Hemmelmayr et al., 2012; Zhou et al., 2024), 

island-based memetic algorithm (Bevilaqua et al., 2019), ant colony optimization algorithm (Meihua et 

al., 2011), and others. Cuda et al. (2015) and Sluijk et al. (2023) have conducted detailed examinations 

on 2E-VRP in their studies. 
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With increasing environmental awareness, there has been a shift towards using vehicles that 

operate with alternative fuels such as natural gas and biodiesel, which cause relatively lower greenhouse 

gas emissions in comparison of traditional fossil fuel-consuming vehicles. Additionally, the use of 

electric vehicles has become more widespread since the mid-2000s. As electric vehicles gradually 

integrate into distribution activities, E-VRP has emerged (Koç & Özceylan, 2018). The literature on E-

VRP has been extensively examined by Pelletier et al. (2016), Erdelic and Caric (2019), Kucukoğlu et 

al. (2021), and Qin et al. (2021). 

While there are numerous studies on the VRP and its versions in the literature, research 

specifically focusing on the 2E-E-VRP is quite limited. Agardi et al. (2019) analyzed the 2E-E-VRP in 

a distribution network comprising a central depot, satellites, customers, and charging stations for electric 

vehicles. They employed constructive and improvement heuristics to generate solutions, considering 

electric vehicles only in the second echelon. Breunig et al. (2019) proposed both exact mathematical 

programming and metaheuristic algorithms based on large neighborhood search to minimize the total 

cost. They conducted tests with various types of instances to analyze the performance of the 

recommended algorithms and concluded that the approach was beneficial. Jie et al. (2019) addressed 

electric vehicles with battery driving ranges, battery swapping costs, power consumption rates and 

varying load capacities. The authors recommended a hybrid algorithm incorporating an integer 

programming model and column generation with adaptive large neighborhood search in their study. 

Additionally, sensitivity analysis was conducted to investigate the interaction between battery driving 

range and vehicle emissions. Another study conducted by Wang et al. (2019) involved the delivery of 

products to customers using electric vehicles in a two-echelon distribution network. Considering time 

windows, the study aimed to minimize total costs encompassing transportation, handling, battery 

swapping, fixed, and penalty costs. Numerical experiments were conducted with randomly generated 

14 instances to assess the effectiveness of the developed mixed integer linear programming (MILP) 

model. Li et al. (2020) focused on satellites located on streets in a two-echelon urban logistics system. 

They employed time windows and satellite transfer constraints to regulate interaction between the two 

echelons. Additionally, an economic analysis was performed on the difference between diesel and 

electric vehicles. In the study by Wang and Zhou (2021), the time-windows and battery replacement 

station-based 2E-E-VRP problem was addressed. Conventional vehicles were used in the first echelon 

of the distribution network, while electric vehicles were employed in the second echelon. They proposed 

a MILP model to minimize the total cost comprised of transportation costs for both echelon, fixed costs, 

handling costs at satellites, and battery swapping costs for electric vehicles. Additionally, they 

developed a metaheuristic procedure based upon the large neighborhood search algorithm to generate 

solutions for large instances. In another study by Akbay et al. (2022), focusing on a two-echelon 

distribution network where electric vehicles were used in the second echelon and considering time 

windows for customer deliveries, a MILP model was introduced to solve the problem. They proposed a 
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constructive heuristic algorithm based on the Clarke and Wright savings algorithm for solution 

generation. In the study by Goli et al. (2022), they developed the MILP model and improved moth-flame 

optimization algorithm for solving the problem where electric vehicles were routed in both echelons. 

They found that the algorithm had an approximate error of about 1.2% for small and medium-sized 

problems. Sensitivity analyses were made to observe the impact of changes in demand and time window 

parameters. In the study by Wu and Zhang (2023), where conventional vehicles were routed in the first-

tier and electric vehicles in the second-tier, a column-generation algorithm was presented for solving 

the problem. The effectiveness of the algorithm was demonstrated using small and medium-sized 

examples. The study investigated the effect of the density of charging stations, battery capacity, and 

fixed costs of electric vehicles on the optimal solution. An overview on 2E-E-VRP is provided in Table 

1, summarizing the type of problem addressed, solution method, objective function, and assumptions 

included in the studies. 

Table 1. Studies on 2E-E-VRP 

Author(s) 
Acronym of 

Problem Studied 

Acronym of 

Solution Method 

Objective Function 

(Minimization) 

Assumption 

Numbers 

Agardi et al. (2019) 2E-VRP-RS 
NNA, AIA 

HCA, GA 
Route length 3, 4, 6 

Breunig et al. (2019) E-2E-VRP 
MPA 

LNS 
Total cost (fixed and travel costs) 3, 4, 6, 7, 8 

Jie et al. (2019) 2E-CEVRP-BSS 
IP, CGA 

ALNSA 

Total cost (travel, handling and battery 

swapping costs) 
2, 3, 5, 6, 7, 9 

Wang et al. (2019) 
2E-EVRP-TW-

BSS 
MILP 

Total cost (travel, handling, battery 

swapping, fixed and penalty costs) 
1, 3, 5, 6, 7 

Li et al. (2020) 2E-CLS-OS 

MILP 

VNSA 

SA 

Total time (running times of vehicles 

and waiting times at customers) 

Total fuel consumption 

1, 3, 6 

Wang and Zhou 

(2021) 

2E-EVRP-TW-

BSS 

MIP 

VNSA 

Total cost (travel, fixed, handling and 

battery swapping costs) 
1, 3, 5, 6, 7 

Akbay et al. (2022) 2E-EVRP-TW 
MILP, SA 

VNSA 
Total distance 1, 3, 4, 6, 7 

Goli et al. (2022) E-2E-VRP 
MILP 

IMFOA 

Total cost (travel, handling and battery 

swapping costs) 
1, 2, 3, 4, 6, 7 

Wu and Zhang 

(2023) 
E-2E-VRP 

BPA, CGA 

LA 
Total cost (fixed and travel costs) 3, 4, 6, 8 

This study 2E-E-VRP-BSS MIP 
Total cost (fixed, travel, handling and 

battery swapping cost) 
3, 5, 6, 7 

*2E-VRP-RS: Two-Echelon Vehicle Routing Problem with Recharge Stations, E-2E-VRP: Electric Two-Echelon Vehicle 

Routing Problem, 2E-CEVRP-BSS: Two-Echelon Capacitated Electric Vehicle Routing Problem with Battery Swapping 

Stations, 2E-EVRP-TW-BSS: Two-Echelon Electric Vehicle Routing Problem with Time Windows and Battery Swapping 

Stations, 2E-CLS-OS: Two-Echelon City Logistics System with On-Street Satellites, 2E-EVRP-TW: Two-Echelon Electric 

Vehicle Routing Problem with Time-Windows,  NNA: The Nearest Neighbor Algorithm, AIA: Arbitrary Insertion Algorithm, 

HCA: Hill Climbing Algorithm, GA: Genetic Algorithm, MPA: Mathematical Programming Algorithm, LNS: Large 

Neighborhood Search, IP: Integer Programming, CGA: Column Generation Algorithm, ALNSA: Adaptive Large 

Neighborhood Search Algorithm, MILP: Mixed Integer Linear Programming, VNSA: Variable Neighborhood Search 

Algorithm, SA: Savings Algorithm, MIP: Mixed Integer Programming, IMFOA: Improved Moth-Flame Optimization 

Algorithm, BPA: Branch-and-Price Algorithm, LA: Labeling Algorithm, 1: Time windows are present, 2: Electric vehicles 

are used in the first echelon, 3: Electric vehicles are used in the second echelon, 4: Electric vehicles are charged, 5: Batteries 

of electric vehicles are swapped, 6: Electric vehicles have limited driving range, 7: Charging or battery swapping facilities are 

available at depots and/or satellites, 8: Sequential visits to charging stations are prevented, 9: Primary and secondary echelon 

vehicles can use the same stations. 
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As mentioned before, the number of studies on 2E-E-VRP is quite limited. When Table 1 is 

examined, it is seen that the studies generally adopt heuristic or metaheuristic solution approaches. It is 

observed that almost all of the studies that address the exact solution method use the mixed integer linear 

programming model. Various objective functions are taken into account in the studies, but they generally 

focus on total cost minimization. These studies were built upon various assumptions, including the 

presence of time windows, the driving range limitations of electric vehicles, and the necessity for 

charging or battery replacement at specific intervals to ensure operational feasibility. Some studies 

assume that electric vehicles are used exclusively in the second echelon, while others consider their use 

in both echelons. Additionally, while some studies focus on charging electric vehicles, others 

incorporate battery swapping as an energy replenishment method. Despite the growing interest in 

electric vehicle routing problems in two-echelon distribution network, only three studies have 

incorporated the battery replacement approach. This indicates a significant research gap that requires 

further exploration to fully understand the implications of battery swapping on cost efficiency, route 

optimization and overall logistics performance. From this point of view, in addition to proposing a 

methodological framework, this research was undertaken to focus on a deeper understanding of the 

challenges associated with integrating the battery swapping approach of electric vehicles into multi-

echelon logistics networks. By exploring how key factors such as customer demand fluctuations and 

battery capacity variations influence routing decisions and cost structures, we offer a more 

comprehensive perspective on the efficiency drivers in electric vehicle-based distribution networks. 

Moreover, this study bridges the gap between theory and practice by validating the model with realistic 

datasets in Turkey, ensuring that the findings reflect real-world operational conditions. Through this in-

depth analysis, we not only highlight the critical constraints and trade-offs in electric vehicle routing but 

also provide valuable insights for optimizing sustainable logistics strategies. 

3. 2E-E-VRP-BSS DEFINITION AND MODEL FORMULATION 

The problem definition and MIP model for 2E-E-VRP-BSS are presented in this section of the 

study. 

3.1. Problem Definition 

In the problem considered in the study, product deliveries are made from a central depot to a set 

of customers through a certain number of satellites. In the distribution network consisting of two 

echelons, in the first echelon, deliveries are made from the central depot to the satellites; in the other 

echelon, deliveries are made from the satellites to the customers. While travels between satellites are 

allowed in the first echelon, they are prevented in the second echelon. In the problem given on a 

complete network G (V,A), there is one central depot (V0 = 0),  a certain number of satellites 

(VU={1,2,…,u}), customers (VM={1,2,…,m}) and battery swapping stations (VB={1,2,…,b}). A1 and 

A2 respectively denote the sets of arcs for the first and second echelons (A1={(i, j) | i, j ϵ V0 U VU , i ≠ 
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j},  A2={(i, j) | i, j ϵ VU U VM U VB , i ≠ j} \ A2
'  ,  A2

'  = {(i, j) | i, j ϵ VU} U {(i, j) | i, j ϵ VB}). In the first 

echelon of distribution, conventional vehicles start their route from the depot, visit one or more satellites, 

and then return back to the depot. In the second echelon, electric vehicle travelling starts from a satellite, 

may stop at a battery swapping station if necessary, visit one or more customers, and then return back 

to the same satellite. In the first echelon of distribution, multiple vehicles can visit a single satellite, but 

a vehicle cannot visit the same satellite more than once. In the second echelon, each customer is 

prevented from being visited by multiple vehicles. K1={1,2,…,k
1
} and K2={1,2,…,k

2
} define the sets, 

E1 and E2 denote the capacities, while f
1
 and f

2
 represent the fixed costs of first and second echelon 

vehicles, respectively. Satellite capacities are expressed by the number of vehicles that can be directed 

from there, and ku
2
 symbolizes the maximum number of second echelon vehicles that can be used at each 

satellite. Handling costs arise from unloading products from first echelon vehicles at the satellites and 

loading them onto second echelon vehicles. In this context, hu represents the unit handling cost at 

satellite u. The customer demand quantities, denoted by ti, are deterministic and known in advance. 

di j represents the distance between nodes i and j. ci j
1  and ci j

2   are the travel costs for primary and 

second echelon vehicles, respectively. r2 denotes the charge consumption rate of the electric vehicle in 

the second echelon. It is assumed that travel costs and charge consumption rate are linear functions of 

distance (α, β, θ >0, ci j
1 =α.di j (i, j) ϵ A1, ci j

2 =β.di j (i, j) ϵ A2, ri j
2 =θ.di j (i, j) ϵ A2). s2 represents the battery 

swapping cost for the electric vehicles, while W2denotes the battery capacity. 

It is assumed that the electric vehicles' battery is fully charged whenever they visit any satellite 

or battery swapping station. Sequential visits to battery swapping stations are prohibited. Each satellite 

and battery swapping station in the distribution network do not have to be utilized. 

To assist the reader, all the notations used in the problem are demonstrated in Table 2. The 

distribution network example of 2E-E-VRP-BSS is illustrated in Figure 1.  

 Figure 1 represents the central depot as a square, satellites as hexagons, customers as circles, 

and battery swapping stations as triangles. Additionally, the numbers on the arcs indicate the distance 

between two nodes, while the numbers on the vehicle indicate the driving range (battery capacity) when 

departing from the respective node. In the first echelon, load distribution is carried out from the central 

depot to the satellites. In the second echelon, distribution is directed from the satellites to the customers 

for delivery. During the second echelon of distribution, the vehicle serving customers 6, 7, and 8 departs 

from the satellite with a fully charged battery (driving range = 65,000 m). The vehicle first delivers 

products to customer 6. Upon departing from this customer, the battery capacity is reduced to 45,000 m 

(65,000 - 20,000, θ=1). Since the battery would not be sufficient, the vehicle visits customer 7 and then 

stops at a battery swapping station, where a battery replacement is performed. After leaving the station 
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with a fully charged battery, the vehicle continues its route, delivers products to customer 8, and then 

returns to the satellite point where it started, completing its route. 

Figure 1. An Example of 2E-E-VRP-BSS Distribution Network  

 

Table 2. Sets, Parameters and Decision Variables in the 2E-E-VRP-BSS Model 

Group Symbol Definition 

S
et

s 

V0 Depot, V0={0} 

VU Sets of satellites, VU={1,2,…,u} 

VM Sets of customers, VM={1,2,…,m} 

VB 

V1 

V2 

Sets of battery swapping stations, VB={1,2,…,b} 

V0 U VU 

VU U VB U VM 

A1 Sets of the first echelon arcs, A1={(i, j) | i, j ϵ V0 U VU , i ≠ j} 

A2 Sets of the second echelon arcs, A2={(i, j) | i, j ϵ VU U VM U VB , i ≠ j} \ A2
'  ,  A2

'  = {(i, j) | 

i, j ϵ VU} U {(i, j) | i, j ϵ VB} 

K1 Sets of the first echelon vehicles, K1={1,2,…, k1
} 

K2 Sets of the second echelon vehicles, K2={1,2,…, k2
} 
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P
a

ra
m

et
er

s 

k
1
 Number of first echelon vehicles  

k
2
 Number of second echelon vehicles  

ku
2
 Maximum number of second echelon vehicles that can be routed at the satellite u, u ϵ VU  

hu Unit handling cost at satellite u, u ϵ VU  

E1 Vehicle capacity of first echelon vehicles  

E2 Vehicle capacity of second echelon vehicles 

f
1
 Fixed cost of first echelon vehicles  

f
2
 Fixed cost of second echelon vehicles 

ti Demand of customer i, i ϵ VM  

ci j
1  Transportation cost of first echelon vehicle travels on arc (i, j), (i, j) ϵ  A1  

ci j
2  Transportation cost of second echelon vehicle travels on arc (i, j), (i, j) ϵ  A2  

di j Distance of arc (i, j)  

ri j
2  Charge consumption rate of electric vehicles on arc (i, j) 

s2 Battery swapping cost of electric vehicles 

W2 Battery capacity of electric vehicles 

D
ec

is
io

n
 V

a
ri

a
b

le
s 

xi j k Binary decision variable that takes a value of 1 if vehicle k travels from i to j, and 0 

otherwise, (i, j) ϵ  A1, k ϵ  K1 

vu k Amount of cargo transported to satellite u by vehicle k, u ϵ VU, k ϵ  K1 

zi j k
1  The load on vehicle k when departing from node i, (i, j) ϵ  A1, k ϵ  K1 

y
i j u k

 Binary decision variable that takes a value of 1 if vehicle k dispatched from satellite u travels 

from node i to j, and 0 otherwise, (i, j) ϵ  A2, u ϵ VU, k ϵ  K2 

q
u
 The total demand transported from satellite u, u ϵ VU 

zi j u k
2  The load on vehicle k when departing from node i directed from satellite u, (i, j) ϵ  A2, u ϵ 

VU, k ϵ  K2 

p
i u k
2+  The residual battery power when the vehicle k directed from satellite u arrives at node i in 

the second echelon 

p
i u k
2 -  The residual battery power when the vehicle k directed from satellite u departs from node i 

in the second echelon 

3.2. Mathematical Model 

The 2E-E-VRP-BSS model inspired by the studies of Jepsen et al. (2013), Jie et al. (2019), and 

Wang et al. (2019) is presented below. 

              Min ∑ ∑ ci j
1  xi j k  

(i, j) ϵ A1 kϵK1

+ ∑ ∑ ∑ ci j
2  y

i j u k  

 (i, j) ϵ A2 u ϵ VUkϵK2

+ ∑ ∑ f
1 x0 j k  

 j ϵ VU kϵK1

+ 

             ∑ ∑ ∑ f
2 y

u j u k  

(u, j) ϵ A2 u ϵ VU kϵK2

+ ∑ ∑ ∑ ∑ s2 y
i j u k  

j ϵ VuU VMi ϵ VBu ϵ VUkϵK2

+ ∑ huq
u

u ϵ VU

                        (1) 

subject to 

           ∑ x i j k   = ∑ x j i k      

(i, j) ϵ A1

                                        Ɐ i ϵV1 , kϵK1

(i, j) ϵ A1

                               (2) 

           ∑ x i j k  ≤ 1                                                                 Ɐ j ϵ V0 ∪VU, kϵK1 

(i, j) ϵ A1

                     (3) 

(Table 2 cont.) 

Group Symbol Definition 
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            vi k  = ∑ zj i k
1    -  ∑ zi j k

1                

(i, j) ϵ A1(i, j) ϵ A1

                      Ɐ i ϵVU, kϵK1                                 (4) 

            zi j k
1  ≤   E1 x i j k                                                                 Ɐ (i, j) ϵ A1, kϵK1                            (5) 

         ∑ zi j k
1   ≤ 0                                                                    Ɐ j ϵ V0, kϵK1 

(i, j) ϵ A1

                              (6) 

           ∑ v i k  =   q 
i  

                                                                  Ɐ  i ϵ VU 

kϵK1

                                       (7) 

           ∑ ∑ ∑  y
i j u k  

 (i, j) ϵ A2 

= 1 

u ϵ VUkϵK2

                                          Ɐ  j ϵ VM                                        (8) 

         ∑ y 
i j u k 

  = ∑ y 
j i u k 

     

(i, j) ϵ A2

                                      Ɐ i ϵ V2, u ϵ VU, kϵK2

(i, j) ϵ A2

                    (9) 

         ∑ ∑  y
u j u k  

 (u, j) ϵ A2 

≤ 

u ϵ VU

 1                                                  Ɐ kϵK2                                           (10) 

     ∑ ( ∑ y 
u j ū k 

(u,j) ϵ A2

+ ∑ y 
i u ū k 

(i,u) ϵ A2

)    = 0               Ɐ u ϵ VU, kϵK2

ū ϵ VU\ {u} 

                              (11) 

        ∑ ∑  y
u j u k  

 (u, j) ϵ A2 

≤ 

kϵK2

 ku
2
                                                    Ɐ u ϵ VU                                        (12) 

         ∑ ∑ ∑  y
u j u k  

 (u, j) ϵ A2 

≤  

u ϵ VUkϵK2

k
2
                                                                                                   (13) 

        ∑ ∑ ∑  zi j u k
2

 (i, j) ϵ A2 

  

u ϵ VUkϵK2

= ∑ ∑ ∑  zj i u k
2

 (i, j) ϵ A2 

  

u ϵ VUkϵK2

-  t i   Ɐ  i ϵ VM                                           (14) 

      ∑ zi j u k
2   = ∑ zj i u k

2  

(i, j) ϵ A2

                                                Ɐ i ϵ VB, u ϵ VU, kϵK2

(i, j) ϵ A2

                    (15) 

        zi j u k
2  ≤   E2 y 

i j u k 
                                                               Ɐ (i, j) ϵ A2, u ϵ VU, kϵK2                (16) 

        q 
u  

=  ∑ ∑  z u j u k
2

 (u, j) ϵ A2 kϵK2

                                                    Ɐ u ϵ VU                                          (17) 

       ∑ q 
u 

 =   ∑ t i                                                                 

 i ϵ VM 

                

u ϵ VU

                                    (18) 

        p
i u k
2 -   =  W2                                                                          Ɐ i ϵ VUU VB, u ϵ VU, kϵK2             (19) 

        p
i u k
2 -   =  p

i u k
2 +                                                                         Ɐ i ϵ VM, u ϵ VU, kϵK2                    (20) 
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        p
j u k
2 +   ≤  p

i u k
2 -   -  ri j

2  y 
i j u k 

 +  W2  (1- y 
i j u k 

)                      Ɐ (i, j) ϵ A2, u ϵ VU, kϵK2              (21) 

        p
j u k
2 +   ≥  p

i u k
2 -   -  ri j

2  y 
i j u k 

 -  W2  (1- y 
i j u k 

)                       Ɐ (i, j) ϵ A2, u ϵ VU, kϵK2              (22) 

        xi j k  ϵ {0,1}                                                                          Ɐ (i, j) ϵ A1, kϵK1                            (23) 

        y
i j u k  

ϵ {0,1}                                                                        Ɐ (i, j) ϵ A2, u ϵ VU, kϵK2               (24) 

        vu k  ≥ 0                                                                                 Ɐ u ϵ VU, kϵK1                                (25) 

        q
u  

≥ 0                                                                                   Ɐ u ϵ VU                                           (26) 

        zi j k
1  ≥ 0                                                                                 Ɐ (i, j) ϵ A1, kϵK1                             (27) 

        zi j u k
2  ≥ 0                                                                               Ɐ (i, j) ϵ A2, u ϵ VU, kϵK2                (28) 

        p
i u k
2 + ≥ 0                                                                                 Ɐ i ϵ VUU VMU VB, u ϵ VU, kϵK2   (29) 

        p
i u k
2 - ≥ 0                                                                                  Ɐ i ϵ VUU VMU VB, u ϵ VU, kϵK2   (30) 

The objective function, denoted by (1), minimizes the total cost, comprising of first and second-

echelon transportation costs, fixed costs of first and second-echelon vehicles, battery swapping costs for 

second echelon vehicles, and handling costs at satellites. Constraints (2) -(6) concern the first echelon. 

Constraints (7) relate to the synchronization of the first and second echelons. Constraints (8) -(22) 

pertain to the second echelon. Additionally, constraints (19) -(22) regulate the battery powers of second 

echelon electric vehicles. Constraints related to defining decision variables are provided in (23) -(30). 

Constraints (2) regulate flow conservation for vehicles. Constraints (3) indicate that each first echelon 

vehicle can visit depots and satellites at most once. The load flow of each vehicle at satellites is regulated 

through constraints (4). Constraints (5) guarantee that capacity of vehicles are not exceeded. Constraints 

(6) mandate that each vehicle must distribute all its load upon returning to the depot. Constraints (7) 

balance the flow of goods in satellites by equalizing the amount of goods coming from the first echelon 

and distributed to the second echelon. Each customer is ensured to be visited exactly once through 

constraints (8). Constraints (9) ensure flow conservation for second echelon vehicles. The constraints 

(10) allow second echelon vehicles to go out for distribution at most once. Constraints (11) prevent 

vehicles in the second echelon from traveling from satellite to satellite. The number of satellites and 

vehicles available in the second echelon is regulated by constraints (12) -(13). Constraints (14) -(15) 

guarantee flow conservation at customers and battery swapping stations. Second echelon vehicle 

capacities are controlled through constraints (16). Constraints (17) -(18) regulate the quantity of 

products sent from satellites. Constraints (19) ensure that the battery of a second echelon vehicle is fully 

charged when it leaves a satellite or a battery swapping station. Constraints (20) ensure that the battery 

power remains the same for each second echelon electric vehicle when visiting a customer. Constraints 

(21) -(22) control the battery powers of electric vehicles traveling from node i to node j. These 
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constraints guarantee that electric vehicles have enough battery power to travel remaining customers 

and return back to the satellite. 

4. APPLICATION DESIGN 

Applications using real/realistic data can contribute to the generalization of results by reflecting 

practical difficulties beyond theoretical models. More concrete and applicable strategies can be created. 

Studies with real/realistic data are important to test the validity of theoretical findings in practice. 

Therefore, the datasets used in this research were designed to simulate realistic multi-echelon 

distribution networks with electric vehicles and battery swapping stations to ensure the generalizability 

of the findings and test the accuracy of the model. For this purpose, three different datasets, each 

representing the real distribution network of a health and personal care products company operating in 

Türkiye with varying sizes, have been considered. This diversity allows for analyzing the model’s 

performance under various operational conditions, including different numbers of customers, satellites 

and battery swapping stations.  

In the first dataset, there is 1 depot, 2 satellites, 2 battery swapping stations, and 5 customers. 

The second dataset consists of 1 depot, 3 satellites, 3 battery swapping stations, and 8 customers. Finally, 

the third dataset includes 1 depot, 4 satellites, 4 battery swapping stations, and 11 customers. The number 

of batteries swapping stations has been determined based on the recommendation in the literature, which 

suggests that the number of batteries swapping stations should be 1/5 of the total number of nodes in the 

distribution network (Schneider et al., 2014). The locations of nodes (depot, satellites, battery swapping 

stations, and customers) have been determined using the central depot of the company, along with 

intermediate depots and store locations in three metropolitan cities, as reference points. These locations 

have been randomly marked on a map to ensure distributed representation. Distances between nodes 

have been obtained from Google Maps, ensuring geographical accuracy.  

The numbers of primary and second echelon vehicles are, respectively, 2 and 4 for dataset 1, 3 

and 6 for dataset 2, and 4 and 8 for dataset 3. The maximum number of second echelon vehicles that can 

be used at satellites is the same for each dataset. Traditional vehicles are utilized in the first echelon of 

distribution, while in the second echelon, relatively smaller and thus environmentally friendly electric 

vehicles with lower carrying capacities are used. The data on vehicle capacities and purchase prices 

(fixed costs) were sourced from sahibinden.com, an online marketplace in Türkiye, ensuring that the 

values reflect real-world market conditions (Sahibinden, n.d.). The capacity of the first echelon vehicle 

is 3,500 kg for all datasets, while the capacity of the second echelon vehicle is 1,700 kg. The fixed costs 

of the first and second echelon vehicles are 3,400,000 TL and 2,100,000 TL, respectively, for all 

datasets. 

Since obtaining precise real-world data for certain parameters is challenging, some values were 

selected randomly, while others were derived from relevant literature. Customer demands have been 
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randomly generated to not exceed vehicle capacities, within the range of (0, 1700]. Customer demand 

quantities for each dataset are presented in Table 3 below. The handling cost per unit at all satellites is 

5 TL. To the best of our knowledge, there are no battery swapping stations in Türkiye. Therefore, the 

battery swapping cost was chosen randomly. The battery swapping cost for electric vehicles is 1,000 

TL. The battery capacities of electric vehicles have been considered to be 1.3 times the maximum second 

echelon distance in the distribution network (Jie et al., 2019; Schneider et al., 2014). For all datasets, α, 

β, and θ values are taken as 1 (Jie et al., 2019). 

Table 3. Customer Demand Quantities (kg) 

Data Set M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 Total 

1 800 600 300 1,000 1,300 - - - - - - 4,000 

2 1,200 300 1,000 500 300 900 500 400 - - - 5,100 

3 500 700 200 300 1,000 350 250 400 900 100 150 4,850 

* M: Customer 

5. RESULTS OF ANALYSIS 

The optimal results of three different-sized samples, whose details were shared in the previous 

section, are presented in this section. These analyses are referred to as "base case analysis" throughout 

the rest of the study. In addition to the base case analysis, sensitivity analyses were conducted to examine 

whether changes in customer demand quantities and battery capacities of electric vehicles affect the 

optimal results, and to what extent and in which direction. The relevant results are discussed in 

subsections 5.2 and 5.3. 

The solutions were obtained using SolverStudio (SolverStudio, n.d.) and Gurobi 11.0.0 (Gurobi, 

n.d.) programs on a computer equipped with an Intel(R) i7 processor running at 2.4 GHz and 6 GB of 

memory. 

5.1. Base Case Analysis 

Optimal results for all datasets were obtained within reasonable timeframes. Table 4 presents 

these optimal results, showing vehicle routes, product transportation amounts, and battery power levels 

at different nodes. 

Upon examining Table 4, it can be observed that in the optimal solutions of dataset 1, all vehicles 

in the first echelon and three out of four vehicles in the second echelon are utilized for distribution. Both 

satellites in the distribution network are utilized. More goods are delivered to satellite point 2 in the first 

echelon compared to the other satellite point, and more vehicles serve from this satellite point in the 

second echelon. Since the battery capacities of the vehicles are sufficient, all customer demands have 

been met without the need to visit any battery swapping stations. The total cost, consisting of 

transportation costs, fixed costs of vehicles, battery swapping costs for electric vehicles, and handling 

costs of products at satellites, is found to be 14,943,300 TL. 
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Table 4. Base Case Optimum Results 

Data 

Set 

Total Cost 

(TL) 

Vehicle 

No 
Optimal Route 

Amount of Product 

Transported in Arcs 

(kg) 

Battery Power of Vehicles at Nodes 

(m) 

1 14,943,300 

K1 D-U1-D 1,400-0 - 

K2 D-U2-D 2,600-0 - 

E1 U1-M1-M2-U1 1,400-600-0 37,180-32,480-21,280-4,180 

E2 U2-M4-U2 1,000-0 37,180-27,780-18,680 

E4 U2-M5-M3-U2 1,600-300-0 37,180-22,680-15,280-2.380 

2 14,788,300 

K2 D-U2-D 3,400-0 - 

K3 D-U1-D 1,700-0 - 

E2 U2-M6-M5-M7-U2 1,700-800-500-0 53,430-46,530-39,430-29,730-22,930 

E4 U2-M3-M2-B3-M8-U2 1,700-700-400-400-0 53,430-38,530-27,730-53,430-44,630-

31,730 

E6 U1-M4-M1-U1 1,700-1,200-0 53,430-37,030-30,730-19,230 

3 13,428,950 

K2 D-U3-D 1,700-0 - 

K3 D-U2-D 3,150-0 - 

E1 U2-M8-M5-M4-U2 1,700-1,300-300-0 93,990-77,090-70,690-57,690-53,490 

E2 U3-M1-M2-M7-M10-

M11-U3 

1,700-1,200-500-250-

150-0 

93,990-84,090-59,690-36,290-26,390-

21,490-12,790 

E8 U2-M9-M6-M3-U2 1,450-550-200-0 93,990-83,890-81,790-65,490-59,590 

* K: First-echelon vehicle, E: Second-echelon vehicle, D: Depot, U: Satellite, B: Battery swapping station, M: 

Customer 

In the optimal results for dataset 2, it is observed that 2 out of 3 first echelon vehicles and 3 out 

of 6 second echelon vehicles are deployed for distribution. Satellite 3 in the distribution network is not 

utilized. In other words, no goods have been transported to this point in the first echelon, and therefore, 

there is no flow of goods from here to the second echelon. In the second echelon, it is observed that 2 

out of 3 vehicles originate from satellite 2. All second echelon vehicles start their routes fully loaded. 

After servicing customer 2, second echelon vehicle 4 visits battery swapping station 3 due to insufficient 

battery capacity, replenishes its battery to full capacity (53,430 m), and continues its route. The optimal 

total cost is 14,788,300 TL. 

The optimal results for dataset 3 show that 2 first echelon vehicles and 3 second echelon vehicles 

are utilized, resulting in an optimal total cost of 13,428,950 TL. Out of the 4 satellite points in the 

distribution network, only two (U2 and U3) are utilized. More goods are delivered to satellite point 2, 

and consequently, more vehicles serve from there. Similar to the results of dataset 1, the vehicles 

complete their routes without the need to visit any battery swapping stations. 

In order for the reader to interpret the results more easily, the optimal routes of vehicles for 

dataset 2 are shown in Figure 2 as an example. In the Figure, the black numbers on the vehicles represent 

the amount of load in the vehicle and the red numbers represent the battery capacity, in other words, the 

driving range, when leaving the relevant node. The numbers on the blue circles representing customer 
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locations show the customer demand amounts. The numbers on the arcs indicate the distance between 

two nodes. 

Figure 2. Representation of Optimal Routes for Data Set 2 

 

5.2. Effect of Change in Demand Quantities 

The variation of parameters within the VRP can significantly impact the optimal solutions. 

Among these parameters, customer demand plays a crucial role in shaping distribution costs. An increase 

in demand leads to a higher load per vehicle, potentially exceeding the existing fleet capacity and 

necessitating the deployment of additional vehicles. Furthermore, as vehicles operate under heavier 
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loads, fuel consumption rises, which may be particularly critical for electric vehicles, as it accelerates 

battery depletion, requiring more frequent stops for recharging or battery replacement. Consequently, 

an increase in demand not only escalates fixed costs but also raises fuel, driver, handling and 

maintenance costs, among others. In extreme cases, it may even render certain solutions infeasible. 

Conversely, a decrease in demand can have the opposite effect, leading to improved cost efficiency and 

greater feasibility in routing solutions. In this context, sensitivity analyses have been conducted for each 

dataset to examine the effect of changes in demand on the total cost. Sensitivity analyses were performed 

by varying the demand quantity for all customers within the range of -20% to +20%. The determination 

of this range was based on the research of Goli et al. (2022). Moreover, if the demand quantity increase 

for Dataset 1 exceeds 30.77%, it will result in insufficient vehicle capacity and lead to an infeasible 

solution. Detailed results for the optimal solutions are provided in Tables A1, A2, and A3 for datasets 1 

to 3, respectively, in the appendix. The change in total cost due to demand variation is summarized in 

Figure 3. 

Figure 3. Change in Total Cost Depending on Demand 

 

According to the results, as expected, it is observed that an increase/decrease in demand quantity 

causes to a corresponding increase/decrease in total cost compared to the base case for all datasets. The 

most significant change in the objective function value is caused by a 20% decrease in demand for 

dataset 1, while for datasets 2 and 3, it is caused by a 20% increase in demand. In this context, it can be 

said that dataset 1 is more sensitive to negative changes in demand, while datasets 2 and 3 are more 

sensitive to positive changes in demand. 

In cases where demand changes are highly sensitive, both the number of vehicles used and the 

vehicle routes have changed. Except for a 10% increase in demand for datasets 2 and 3, other percentage 
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changes in demand have resulted in minor changes in the objective function values without causing any 

changes in the number of vehicles or routes. 

5.3. Effect of Change in Battery Capacities 

Changes in the battery capacities (driving ranges) of electric vehicles can affect vehicle routes 

and thus the objective function value. A higher battery capacity enables vehicles to travel longer 

distances, thereby reducing the frequency of energy replenishment. In regions with limited charging 

infrastructure, high-capacity batteries offer a significant advantage by mitigating the challenges 

associated with insufficient charging or swapping stations. Moreover, a reduced need for charging can 

enhance operational efficiency by minimizing delays caused by energy replenishment times. Given these 

factors, an increase in battery capacity can contribute to both cost reduction and improvements in overall 

operational efficiency. On the other hand, as the battery capacities of vehicles decrease, they will need 

to visit charging stations or battery swapping stations more frequently. Consequently, vehicles will be 

able to make fewer customer visits on their routes, more frequent energy replenishment, longer travel 

distances, experience more time loss and more costly operations.  In this context, sensitivity analysis 

was conducted by varying the battery capacities of second echelon electric vehicles within the range of 

-20% to +20% for all datasets to analyze the impact of changes in battery capacities on the total cost. In 

choosing this range, the knowledge that decreases in battery capacity exceeding 30% compared to the 

base case in all data sets will lead to infeasible results was utilized. Detailed optimal results are provided 

in Tables A4 to A6 for datasets 1 to 3, respectively, in the appendix. The change in total cost due to 

battery capacity variation is summarized in Figure 4. 

Figure 4. Total Cost Change Depending on Battery Capacity 
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Upon examining the relevant tables and figure, in dataset 1, increases in battery capacities have 

not changed the total cost. However, decreases in battery capacities have led to an increase in the total 

cost, creating a reverse situation. Although the decreases in battery capacities have not changed the 

number of vehicles used, changes in routes are observed. Additionally, while there was no need to visit 

any battery swapping stations in the base case, a 20% decrease in capacity necessitated a visit to the 

station. In dataset 2, unlike dataset 1, an increase in battery capacities has resulted in a decrease in the 

total cost, while decreases in battery capacities have not changed the total cost. In the base case, an 

electric vehicle visits the battery swapping station, but with an increase in capacity, it completes its route 

without the need to visit the station. In dataset 3, a change in the total cost occurred only with a 20% 

decrease in battery capacity. Here, with the decrease in capacity, the vehicle had to visit the battery 

swapping station, leading to an increase in the total cost. It can be said that there is an inverse relationship 

between the battery capacity of electric vehicles and the total cost. 

In conclusion, the sensitivity analysis indicates that customer demand levels and the battery 

capacities of electric vehicles may significantly impact both fixed and variable costs. These parameters 

may influence critical factors such as the number of vehicles required, vehicle routes, energy 

consumption, and energy replenishment frequency, all of which can directly or indirectly affect overall 

costs. Analyzing the sensitivity of total costs to customer demand and battery capacity enables logistics 

companies to improve operational efficiency, reduce expenses, and establish a more sustainable 

distribution network. By leveraging these insights, companies can implement dynamic route 

optimization, ensuring that delivery schedules and fleet deployment adapt to fluctuations in demand. 

Additionally, flexible fleet management allows for optimal utilization of available vehicles, preventing 

underutilization during low-demand periods and avoiding capacity shortages during peak times. 

Furthermore, strategic investment decisions regarding battery capacity and charging infrastructure can 

be optimized, ensuring cost-effective and energy-efficient operations. Ultimately, integrating sensitivity 

analysis into decision-making processes helps logistics companies maintain resilience, minimize 

financial risks, and improve overall service quality in an increasingly competitive and environmentally 

conscious market. 

6. CONCLUSION 

Sustainability-focused VRPs aim to optimize transportation operations to minimize their 

environmental and social impacts. Towards these objectives, studies in the literature consider fuel 

consumption and/or carbon emissions, use environmentally friendly vehicles such as electric vehicles 

instead of traditional vehicles, or consider multi-echelon distribution networks. As far as is known, there 

are limited studies focusing on optimizing the routes of electric vehicles in two-echelon distribution 

network. To contribute to this gap in the literature, the 2E-E-VRP-BSS was addressed in this study. In 

the study, which considers the battery capacities of electric vehicles with limited driving range, a MIP 

model was proposed to minimize the total cost. To test the accuracy of the model, three different datasets 
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were created, each representing a realistic distribution network of different sizes. Additionally, 

sensitivity analyses were conducted to examine whether customer demands and the battery capacities 

of electric vehicles affect the optimal solutions, and if so, in what direction. Sensitivity analyses were 

performed by varying customer demands and electric vehicle battery capacities within the range of -

20% to +20% for all datasets. The results indicate that increases/decreases in customer demand lead to 

corresponding increases/decreases in the total cost in comparison with the base case scenario. 

Furthermore, there is an inverse relationship between the battery capacity of electric vehicles and the 

total cost. 

From a managerial perspective, this research can contribute to companies in managing their 

vehicle fleets, increasing operational efficiency, improving service quality, reducing costs and 

establishing a more sustainable distribution network. 

The limitations of this study are that the findings are valid within the framework of the 

assumptions used in the modeling and the data sets in the application. Although the application was 

made on real data as much as possible, precise data could not be used for some parameters and some 

were derived hypothetically. Since the method adopted in the study was MIP, the application was made 

on small/medium-sized samples and the findings were obtained. 

In the future, researchers in this field may consider incorporating customer service times, battery 

replacement times, and station capacities into their studies. Researchers may propose 

heuristic/metaheuristic methods to generate solutions for large-scale problems. Different sensitivity 

analyses can be performed to analyze the impact of various factors such as the number and location of 

battery swapping stations. 
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APPENDIX 

Table A1. Optimum Solution Results According to The Change in Demand for Data Set 1 

Change in 

Demand 

Total Cost 

(TL) 

Vehicle 

No 
Optimal Route 

Amount of Product 

Transported in Arcs (kg) 

Battery Power of Vehicles at Nodes  

 (m) 

Change 

(%) 

-20% 8,576,700 

K2 D-U1-D 3,200-0 - 

-42.605 E2 U1-M2-B1-M5-U1 1,520-1,040-1,040-0 37,180-21,980-37,180-25,580-280 

E4 U1-M3-M4-B1-M1-U1 1,680-1,440-640-640-0 37,180-21,280-14,380-37,180-28,080-22,780 

-10% 14,941,300 

K1 D-U2-D 2,340-0 - 

-0.013 

K2 D-U1-D 1,260-0 - 

E1 U2-M4-U2 900-0 37,180-27,780-18,680 

E2 U2-M5-M3-U2 1,440-270-0 37,180-22,680-15,280-2,380 

E4 U1-M1-M2-U1 1,260-540-0 37,180-32,480-21,280-4,180 

+10% 14,951,200 

K1 D-U1-D 1,540-0 - 

0.052 

K2 D-U2-D 2,860-0 - 

E2 U1-M1-M2-U1 1,540-660-0 37,180-32,480-21,280-4,180 

E3 U2-M4-M3-U2 1,430-330-0 37,180-27,780-20,380-7,480 

E4 U2-M5-U2 1,430-0 37,180-22,680-7,680 

+20% 14,953,200 

K1 D-U1-D 1,680-0 - 

0.066 

K2 D-U2-D 3,120-0 - 

E1 U2-M5-U2 1,560-0 37,180-22,680-7,680 

E2 U1-M1-M2-U1 1,680-720-0 37,180-32,480-21,280-4,180 

E3 U2-M4-M3-U2 1,560-360-0 37,180-27,780-20,380-7,480 

*Change (%) represents the percentage change in total cost compared to the base case. 

Table A2. Optimum Solution Results According to The Change in Demand for Data Set 2 

Change in 

Demand 

Total Cost 

(TL) 

Vehicle 

No 
Optimal Route 

Amount of Product 

Transported in Arcs (kg) 

Battery Power of Vehicles at Nodes  

(m) 

Change 

(%) 

-20% 14,763,800 

K1 D-U2-D 2,480-0 - 

-0.165 

K2 D-U1-D 1,600-0 - 

E1 U1-M1-M4-M2-U1 1,600-640-240-0 53,430-41,630-33,930-22,730,4,830 

E3 U2-M7-M6-U2 1,120-720-0 53,430-45,930-39,730-33,130 

E4 U2-M3-M5-M8-U2 1,360-560-320-0 58,430-38,530-33,830-28,830-15,930 

-10% 14,771,450 

K1 D-U2-D 3,240-0 - 

-0.113 
K3 D-U1-D 1,350-0 - 

E1 U2-M6-M8-M7-U2 1,620-810-450-0 53,430-46,530-37,430-28,030-21,230 

E2 U2-M5-M3-M4-U2 1,620-1,350-450-0 53,430-40,230-35,730-27,830-13,830 

https://doi.org/10.1057/s41274-016-0170-7
https://doi.org/10.1016/j.jclepro.2020.120590
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E4 U1-M2-M1-U1 1,350-1,080-0 53,430-35,430-25,230-13,730 

+10% 16,899,550 

K1 D-U1-D 3,300-0 - 

14.276 

K3 D-U2-D 2,310-0 - 

E1 U2-M5-M8-M7-U2 1,320-990-550-0 53,430-40,230-35,230-25,830-19,030 

E2 U2-M6-U2 990-0 53,430-46,530-39,930 

E3 U1-M3-M4-U1 1,650-550-0 53,430-30,330-22,430-6,530 

E4 U1-M2-M1-U1 1,650-1,320-0 53,430-35,430-25,230-13,730 

+20% 16,905,200 

K1 D-U1-D 3,000-0 - 

14.314 

K2 D-U2-D 3,120-0 - 

E1 U2-M7-M6-U2 1,680-1,080-0 53,430-45,930-39,730-33,130 

E3 U1-M3-M2-U1 1,560-360-0 53,430-30,330-19,530-1,630 

E4 U2-M4-M5-M8-U2 1,440-840-480-0 53,430-39,730-29,130-24,130-11,230 

E5 U1-M1-U1 1,440-0 53,430-41,630-30,130 

Table A3. Optimum Solution Results According to The Change in Demand for Data Set 3 

Change 

in 

Demand 

Total Cost 

(TL) 

Vehicle 

No 
Optimal Route 

Amount of Product 

Transported in Arcs (kg) 

Battery Power of Vehicles at Nodes  

(m) 

Change 

(%) 

-20% 13,421,200 

K1 D-U3-D 1,160-0 - 

-0.057 

K3 D-U2-D 2,720-0 - 

E2 U2-M7-M8-M5-M4-U2 1,560-1,360-1,040-240-0 93,990-80,290-75,990-69,590-56,590-52,390 

E7 U2-M9-M6-M3-U2 1,160-440-160-0 93,990-83,890-81,790-65,490-59,590 

E8 U3-M1-M2-M10-M11-U3 1,160-760-200-120-0 93,990-84,090-59,690-30,390-25,490-16,790 

-10% 13,425,425 

K1 D-U2-D 3,060-0 - 

-0.026 

K3 D-U3-D 1,305-0 - 

E2 U3-M1-M2-M10-M11-U3 1,305-855-225-135-0 93,990-84,090-59,690-30,390-25,490-16,790 

E5 U2-M5-M8-M7-U2 1,485-585-225-0 93,990-78,290-71,490-67,190-52,490 

E8 U2-M9-M6-M4-M3-U2 1,575-765-450-180-0 93,990-83,890-81,790-69,190-63,590-57,690 

+10% 15,554,475 

K2 D-U3-D 3,135-0 - 

15.827 

K4 D-U2-D 2,200-0 - 

E3 U3-M1-M2-M11-U3 1,485-935-165-0 93,990-84,090-59,690-27,590-18,890 

E4 U3-M8-M5-M10-U3 1,650-1,210-110-0 93,990-71,990-65,590-51,490-38,690 

E5 U2-M9-M6-M7-U2 1,650-660-275-0 93,990-83,890-81,790-73,690-58,990 

E8 U2-M4-M3-U2 550-220-0 93,990-91,690-86,090-80,190 

+20% 15,573,800 

K2 D-U3-D 2,760-0 - 

15.971 

K3 D-U2-D 3,060-0 - 

E1 U2-M9-M6-U2 1,500-420-0 93,990-83,890-81,790-66,490 

E2 U3-M1-M2-M3-U3 1,680-1,080-240-0 93,990-84,090-59,690-45,190-6,990 

E3 U3-M7-M8-M10-M11-U3 1,080-780-300-180-0 93,990-73,590-69,290-58,890-53,990-45,290 

E5 U2-M5-M4-U2 1,560-360-0 93,990-78,290-65,290-61,090 

Table A4. Optimum Solution Results According to The Change in Battery Capacities for Data Set 1 

Change in 

Battery 

Capacity 

Total Cost 

(TL) 

Vehicle 

No 
Optimal Route 

Amount of Product 

Transported in Arcs (kg) 

Battery Power of Vehicles at Nodes  

 (m) 

Change 

(%) 

-20% 14,949,700 

K1 D-U2-D 2,300-0 - 

0.042 

K2 D-U1-D 1,700-0 - 

E1 U2-M4-U2 1,000-0 29,744-20,344-11,244 

E2 U2-M5-U2 1,300-0 29,744-15,244-244 

E4 U1-M2-B1-M3-M1-U1 1,700-1,100-1,100-800-0 29,744-14,544-29,744-24,744-10,844-5,544 

-10% 14,949,200 

K1 D-U1-D 1,400-0 - 

0.039 

K2 D-U2-D 2,600-0 - 

E1 U2-M4-M3-U2 1,300-300-0 33,462-24,062-16,662-3,762 

E2 U1-M1-M2-U1 1,400-600-0 33,462-28,762-17,562-462 

E4 U2-M5-U2 1,300-0 33,462-18,962-3,962 
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+10% 14,943,300 

K1 D-U2-D 2,600-0 - 

0 

K2 D-U1-D 1,400-0 - 

E2 U1-M1-M2-U1 1,400-600-0 40,898-36,198-24,998-7,898 

E3 U2-M5-M3-U2 1,600-300-0 40,898-26,398-18,998-6,098 

E4 U2-M4-U2 1,000-0 40,898-31,498-22,398 

+20% 14,943,300 

K1 D-U2-D 2,600-0 - 

0 

K2 D-U1-D 1,400-0 - 

E2 U1-M1-M2-U1 1,400-600-0 44,616-39,916-28,716-11,616 

E3 U2-M5-M3-U2 1,600-300-0 44,616-30,116-22,716-9,816 

E4 U2-M4-U2 1,000-0 44,616-35,216-26,116 

Table A5. Optimum Solution Results According to The Change in Battery Capacities for Data Set 2 

Change in 

Battery 

Capacity 

Total Cost 

(TL) 

Vehicle 

No 
Optimal Route 

Amount of Product 

Transported in Arcs (kg) 

Battery Power of Vehicles at Nodes  

(m) 

Change 

(%) 

-20% 14,788,300 

K2 D-U2-D 3,400-0 - 

0 

K3 D-U1-D 1,700-0 - 

E2 U2-M6-M5-M7-U2 1,700-800-500-0 42,744-35,844-28,744-19,044-12,244 

E3 U1-M4-M1-U1 1,700-1,200-0 42,744-26,344-20,044-8,544 

E5 U2-M3-M2-B3-M8-U2 1,700-700-400-400-0 42,744-27,844-17,044-42,744-33,944-21,044 

-10% 14,788,300 

K2 D-U1-D 1,700-0 - 

0 

K3 D-U2-D 3,400-0 - 

E1 U1-M4-M1-U1 1,700-1,200-0 48,087-31,687-25,387-13,887 

E2 U2-M6-M5-M7-U2 1,700-800-500-0 48,087-41,187-34,087-24,387-17,587 

E4 U2-M3-M2-B3-M8-U2 1,700-700-400-400-0 48,087-33,187-22,387-48,087-39,287-26,387 

+10% 14,782,700 

K1 D-U1-D 3,400-0 - 

-0.037 

K2 D-U2-D 1,700-0 - 

E1 U1-M2-M3-M8-U1 1,700-1,400-400-0 58,773-40,773-29,573-21,573-3,273 

E2 U1-M4-M1-U1 1,700-1,200-0 58,773-42,373-36,073-24,573 

E5 U2-M6-M5-M7-U2 1,700-800-500-0 58,773-51873-44,773-35,073-28,273 

+20% 14,782,700 

K1 D-U2-D 1,700-0 - 

-0.037 

K3 D-U1-D 3,400-0 - 

E1 U1-M2-M3-M8-U1 1,700-1,400-400-0 64,116-46,116-34,916-26,916-8,616 

E4 U2-M6-M5-M7-U2 1,700-800-500-0 64,116-57,216-50,116-40,416-33,616 

E6 U1-M4-M1-U1 1,700-1,200-0 64,116-47,716-41,416-29,916 

Table A6. Optimum Solution Results According to The Change in Battery Capacities for Data Set 3 

Change 

in 

Battery 

Capacity 

Total Cost 

(TL) 

Vehicle 

No 
Optimal Route 

Amount of Product 

Transported in Arcs (kg) 

Battery Power of Vehicles at 

Nodes  

(m) 

Change 

(%) 

-20% 13,430,350 

K1 D-U3-D 1,700-0 - 

0.010 

K4 D-U2-D 3,150-0 - 

E2 U2-M8-M5-M4-U2 1,700-1,300-300-0 75,192-58,292-51,892-38,892-

34,692 

E4 U3-M1-M2-M7-M10-B4-M11-U3 1,700-1,200-500-250-150-150-0 75,192-65,292-40,892-17,492-

7,592-75,192-72,692-63,992 

E7 U2-M9-M6-M3-U2 1,450-550-200-0 75,192-65,092-62,992-46,692-

40,792 

-10% 13,428,950 

K1 D-U3-D 1,700-0 - 

0 

K3 D-U2-D 3,150-0 - 

E2 U3-M1-M2-M7-M10-M11-U3 1,700-1,200-500-250-150-0 84,591-74,691-50,291-26,891-

16,981-12,091-3,391 

E3 U2-M8-M5-M4-U2 1,700-1,300-300-0 84,591-67,691-61,291-48,291-

44,091 

E7 U2-M9-M6-M3-U2 1,450-550-200-0 84,591-74,491-72,391-56,091-

50,191 

+10% 13,428,950 

K2 D-U2-D 3,150-0 - 

0 
K4 D-U3-D 1,700-0 - 



 

 

434 

E1 U2-M8-M5-M4-U2 1,700-1,300-300-0 103,389-86,489-80,089-67,089-

62,889 

E3 U2-M9-M6-M3-U2 1,450-550-200-0 103,389-93,289-91,189-74,889-

68,989 

E5 U3-M1-M2-M7-M10-M11-U3 1,700-1,200-500-250-150-0 103389-93,489-69,089-45,689-

35,789-30,889-22,189 

+20% 13,428,950 

K1 D-U2-D 3,150-0 - 

0 

K3 D-U3-D 1,700-0 - 

E2 U3-M1-M2-M7-M10-M11-U3 1,700-1,200-500-250-150-0 112,788-102,888-78,488-55,088-

45,188-40,288-31,588 

E4 U2-M9-M6-M3-U2 1,450-550-200-0 112,788-102,688-100,588-84,288-

78,388 

E8 U2-M8-M5-M4-U2 1,700-1,300-300-0 112,788-95,888-89,488-76,488-

72,288 

 


