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Abstract: The traditional explanation of slow dynamic subsidence and uplift of tectonic plates solely depends on 
the vertical motion of mantle density anomalies. This has been challenged by observations of rapid and short-lived 
elevation changes exceeding 100 meters per-million-year in numerous sedimentary basins. Bodur et al., (2023) have 
shown that relative tectonic plate motion and associated basal shear stress can explain those rapid and short-lived 
elevation changes. In this paper, I suggest a basic approach to quantify elevation changes resulting from basal shear 
stress by employing torque-balance calculations. The results confirm the existing flow model solution and offer a 
more robust formula for estimating the impact of plate motion on changes in Earth’s topography. Such functionality 
may prove invaluable in various applications including interpretation of stratigraphic records.

Keywords: Basal shear stress, dynamic topography, Earth’s topography, stratigraphy, tectonic plate motion, torque 
balance. 

Öz: Kıtaların dinamik olarak yavaşça alçalması ve yükselmesi, Dünya’nın mantosundaki yoğunluk anomalilerinin 
(alçalan yitmiş levha ya da manto yükselmesi) hareketine dayandırılır. Ancak, birçok sedimanter havzada milyon 
yıl başına 100 metreyi aşan hızlı ve kısa ömürlü yükseklik değişikliklerinin gözlemleri, sadece bu mekanizmanın 
dinamik dikey kıta hareketlerini tetiklediği görüşünü sorgulatmıştır. Bodur vd. (2023) tektonik yatay levha 
hareketinin ve bununla ilintili taban kayma gerilmesinin, gözlemlenen hızlı ve kısa ömürlü kıta yükselme ve 
alçalmalarını açıklayabileceğini göstermiştir. Bu makalede, taban kayma gerilmesinden kaynaklanan kıtasal 
yükseklik değişikliklerini nicelendirmek için tork-denge hesaplamalarını kullanarak temel fiziksel bir yaklaşım 
öneriyorum. Elde ettiğim sonuçlar, mevcut akış modeli çözümünü doğrulamakta ve Dünya’nın topoğrafyasındaki 
levha hareketinin etkisini tahmin etmek için daha kolay kullanılabilir bir formül sunmaktadır. Bu tür işlevsellik, 
stratigrafik kayıtların yorumlanması dahil olmak üzere birçok uygulamada faydalı olabilir.

Anahtar Kelimeler: Dünya’nın topoğrafyası, dinamik topoğrafya, kayma gerilimi, stratigrafi, tektonik levha 
hareketi, tork dengesi.
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INTRODUCTION

Cold and dense slabs sink into the Earth’s 

mantle, pulling down the base of tectonic plates. 

Simultaneously, the upward movement of the 

Earth’s hot mantle pushes against the plates, 
causing them to rise in response. Basins and 
plateaus can be formed by these processes 
extending across thousands of kilometres 
(Morgan, 1965; Pysklywec and Mitrovica, 1997; 

https://doi.org/10.25288/tjb.1459797
https://doi.org/10.25288/tjb.1459797
https://orcid.org/0000-0001-6836-0107


Ömer F. BODUR

86

Gurnis et al., 1998). The amplitudes of topography 
predicted by dynamic topography models vary 
significantly; reaching 2,000 m (e.g., Flament et 
al., 2013; Steinberger, 2007) or lower than 300 m 
(Molnar et al., 2015). The viscosity of the mantle 
limits the rate at which internal mantle flow fields 
change and nonlinear rheology tends to decrease 
dynamic topography amplitudes (Bodur and 
Rey, 2019). Although complex viscosities in the 
upper mantle can result in higher vertical surface 
motions, dynamic topography models typically 
predict vertical motions less than 100 metres 
per million years (Myr) over a duration of a few 
tens of Myr (Gurnis et al., 1998; Moucha et al., 
2008; Flament et al., 2013). During periods of 
relative sea-level and tectonic stability, there is 
direct geological evidence that phases of uplift 
and subsidence have occurred at rates exceeding 
100 m Myr−1 in less than a few Myr (e.g., Gurnis 
et al., 2020; Pedoja et al., 2011).

These rates and periods are inconsistent with 
eustasy (e.g., Miller et al., 2020), and typical 
estimates of dynamic topography based on mantle 
convection models (Petersen et al., 2010; Gurnis 
et al., 2020). That does not rule out the fact that 
dynamic topography models can predict higher 
vertical motion rates; however, they have not 
been shown to explain the brief (lasting for a few 
Myr) and rapid (>100 m Myr-1) subsidence of 
sedimentary basins during tectonic and eustatic 
stability. Bodur et al. (2023) have shown that 
variation in basal shear stress of a few MPa due 
to change in relative horizontal plate motion 
can induce brief elevation changes equivalent in 
magnitude to those induced by sea-level changes, 
and at rates of elevation change comparable 
to those measured in sedimentary basins. This 
mechanism can be considered as another type 
of dynamic topography, although it is driven by 
shear stress rather than normal stress at the base of 
tectonic plates.
In this paper, a similar approach is considered 
but a simpler solution is derived by using torque-

balance calculations for a plate-asthenosphere 
system to quantify elevation changes driven by 
basal shear stress. The results confirm the existing 
flow model solution and offer a simple formula for 
estimating the impact of plate motions on changes 
in Earth’s topography.

TILTING of PLATES by BASAL SHEAR 
STRESS

A plate which is in horizontal motion relative to 
the underlying asthenosphere will be subject to a 
basal stress. Figure 1 depicts a rigid lithosphere of 
length L experiencing a rotation (i.e., torque) due 
to applied basal stress from underneath.

Figure 1. Free body diagrams for calculating the torque 
arising from A) applied basal shear and normal stress, 
and B) gravitational load of the tilted plate.
Şekil 1. A) Levha tabanına etki eden yatay taban kayma 
gerilimi ve düşey gerilimin meydana getirdiği torkun 
hesaplanmasında kullanılan serbest cisim diyagramı. 
B) Tork sonucu eğilen levhanın yerçekimsel yükünün 
oluşturduğu dengeleyici torkun hesaplanmasında 
kullanılan serbest cisim diyagramı.
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where h(x) is the topography varying with the 
x coordinate, ρlith is the average density of the 
lithosphere, and g is the gravitational acceleration. 
According to Figure1B h(x)=sin(λ)≈λx and 
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Figure 2. Free body diagrams for calculating the 
counter-balancing torque applied to a tilted plate due to 
the buoyancy of the asthenosphere.
Şekil 2. Astenosferin kaldırma kuvvetinin eğik bir 
levha üzerinde oluşturduğu dengeleyici torkun 
hesaplanmasında kullanılan serbest cisim diyagramı.

According to Archimedes’ principle, the tilt 
of the plate induces a buoyant force applied at the 
centre of the displaced volume of the asthenosphere, 
due to the density difference between the average 
lithospheric density and asthenospheric density 
(Figure 2). This also contributes to counter-
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balancing the torque induced by the basal shear 
stress. The buoyancy torque per unit width around 
the centre of mass of the plate can be calculated by 
the integral below:
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lithosphere. Equation 5 and 11 indicate that in the absence of normal stress (Ω = 0), shear stress 

(𝜏𝜏𝑎𝑎)  on its own can produce topography. If I assume that the average density of the 
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variation arises from assumptions on the rheology 
of the plate and asthenosphere (Melosh, 1977). 
For a conservative shear stress value of 1 MPa 
acting on the base a 200 km-thick plate, I find that 
the induced topography is ~±4 m for a 2,000-km-
long plate (dashed line in Figure 3). The induced 
topography increases to ~±9 m for a shorter, 
1,000-km-long plate with the same amount of 
shear stress (Figure 3). For the same plate length 
(i.e., 1,000 km) and same plate thickness (i.e., 100 
km-thick plate), an increase in shear stress from 1 
MPa (dashed line in Figure 3) to 5 MPa (solid line 
in Figure 3) increases the amplitude of topography 
to ~±23 m. The amplitude of topography predicted 
by basal shear stress is one to two orders of 
magnitude smaller than those predicted by 
dynamic topography models (between 300 m and 
2,000 m) and oceanic residual depth anomalies 
(between 500 m and 1,000 m), (Hoggard et al., 
2016), but closer in magnitude (between 20 m and 
100 m) to the global sea-level changes (Haq et al., 
1987; Haq 2014). These indicate that fluctuations 
in basal shear stress can trigger elevation changes 
comparable to changes in sea level over a wide 
tectonic plate.

Bodur et al. (2023) have shown that the 
elevation change due to basal shear stress is 
independent of the lid viscosity for an iso-viscous 
assumption, although I note that the magnitude of 
the basal shear stress (and therefore the viscosity) 
does impact the amplitude of topography. 
The same study has also shown that the rate 
of elevation changes can exceed 100 m My-1, 
especially at longer wavelengths (>1,000 km). 
This rate is strictly determined by the viscosity 
of the lid, but the viscosity stratification in the 
lithosphere had a rather small effect (±10%) on the 
rate of elevation change at long wavelengths. The 
solution I provided here using the torque-balance 
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method cannot provide an estimate for the rate of 
uplift/subsidence due to neglecting the viscosity 
in the calculations. 

Figure 3. Elevation change in varying plate lengths 
for different basal shear stress amplitude and plate 
thickness.
Şekil 3. Farklı taban kayma büyüklüğü ve levha 
kalınlıkları için değişen levha uzunluklarında meydana 
gelen yükseklik değişimlerinin grafiği.

DISCUSSION

The traditional explanation of dynamic subsidence 
and uplift of tectonic plates through vertical 
motion of mantle density anomalies has been 
challenged by observations of rapid and short-
lived elevation changes exceeding 100 m Myr−1. 
Bodur et al. (2023) have shown that the relative 
plate motion and associated basal shear stress can 
explain rapid vertical motions of plates such as the 
brief immersion of The Eucla Basin of Australia in 
the mid-Eocene. In this paper, I derived a simple 
equation for topography induced by relative 
horizontal plate motion by employing the torque-
balance method. Eqn. 12 and Figure 3 show that 
small fluctuations in basal shear stress can induce 
elevation changes that can be significant when 
considered for various relevant Earth systems.

Brief immersions of plates can trigger 
hydrothermal activity (Zhu et al., 2011), leading 

to the alteration of rocks and the formation of 
mineral assemblages. The inherited source-to-sink 
systems can be significantly altered after a rapid 
regional or plate-scale uplift/subsidence. The 
Eucla Basin is one of the prime examples of such, 
and basal shear stress could be responsible for the 
deposition of 300 m-thick carbonate (Wilson Bluff 
Limestone) sediments (Li et al. 2003). 

The proposed model challenges conventional 
stratigraphic interpretations by emphasising 
the role of episodic tectonic events in shaping 
sedimentary records. While sea-level fluctuations 
were long considered the primary driver of 
stratigraphic sequences since the adoption of the 
Exxon eustatic model (Vail et al., 1977), extensive 
studies in the Sverdrup Basin in the Canadian 
Arctic Islands and comparisons with other global 
regions indicate that tectonic forces play a crucial 
role in forming sequence boundaries (Embry and 
Beauchamp, 2019), challenging the dominance 
of eustatic explanations. Furthermore, numerous 
studies have suggested that tectonic processes 
such as plate subduction and the presence of 
mantle density anomalies could be the primary 
factor for sedimentation patterns (e.g., Morgan, 
1965; Pysklywec and Mitrovica, 1998; Gurnis 
et al., 1998; Moucha et al., 2008; Molnar et al., 
2015), and Bodur et al. (2023) have introduced 
a novel mechanism for transient topography 
driven by basal shear stress underneath tectonic 
plates. Being independent of regional tectonic 
configuration or its vicinity to a mantle density 
anomaly, the mechanism I provided here and in 
Bodur et al. (2023) is based on horizontal tectonic 
plate motion, which is a common property of 
all tectonic plates, and therefore could have 
been driving global episodic tectonics since the 
inception of plate tectonics. This newly-proposed 
mechanism may call for a re-evaluation of 
stratigraphic frameworks and highlights the need 
for a better understanding of the interplay between 
tectonics and sedimentation.
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CONCLUSION

Basal shear driven topography challenges the 
traditional understanding of slow dynamic 
subsidence and uplift of tectonic plates. Through 
torque-balance calculations, I have provided a 
basic yet effective approach to quantify these 
elevation changes, offering a more robust formula 
for estimating the impact of horizontal plate 
motion on Earth’s topography. Future research 
directions could focus on refining and expanding 
this idea to account for additional factors such as 
the connectivity of plates and variability of plate-
motions on a global scale, and coupling with 
surface processes. Investigating the implications 
of rapid elevation changes on the formation of 
mineral assemblages and interpretation of the 
stratigraphic record will be critical for advancing 
our understanding of the Earth’s dynamic surface 
processes.
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