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Abstract
Let A be the affine group, Φ1,Φ2 be Young functions. We study the Orlicz amalgam spaces
W (LΦ1(A), LΦ2(A)) defined on A, where the local and global component spaces are the
Orlicz spaces LΦ1(A) and LΦ2(A), respectively. We obtain an equivalent discrete norm on
the amalgam space W (LΦ1(A), LΦ2(A)) using the constructions related to the affine group.
Using the discrete norm we compute the dual space of W (LΦ1(A), LΦ2(A)). We also prove
that the Orlicz amalgam space is a left L1(A)-module with respect to convolution under
certain conditions. Finally, we investigate some inclusion relations between the Orlicz
amalgam spaces.
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1. Introduction
An amalgam space consists of functions whose norm distinguishes between local and

global properties. The first appearance of amalgam spaces was due to Wiener in his
studies of generalized harmonic analysis [21–23]. Amalgam spaces of Lebesgue spaces are
investigated by many authors [2–4, 14]. The most general definition of Wiener amalgam
spaces was introduced by Feichtinger in 1980s [7–10].

Amalgam spaces have turned out to be very fruitful within pure and applied mathe-
matics. In fact, these spaces are nowadays present in investigations that concern problems
on pseudo differential operators, Strichartz estimates [6,20] and mostly considered for the
Lebesgue spaces on the real line. On the other hand, for 1 ≤ p < ∞, Heil and Kutyniok
studied amalgam spaces W (L∞(A), Lp(A)) on the affine group A [12, 13], which is not
abelian unlike the real line. They proved a useful convolution relation on the amalgam
space W (L∞(A), L1(A)).

Convolution relations have been intensively studied on IN groups, i.e., locally compact
groups with a compact and invariant neighbourhood of identity. IN groups include all
abelian groups as well as some non-abelian groups such as the reduced Heisenberg group
which is important for time-frequency analysis. Unfortunately, the affine group which is
important for wavelet theory is not an IN group. However, even for the affine group there
are interesting, but more complicated, convolution relations.

An Orlicz space is a type of function space which generalizes the Lebesgue spaces Lp

significantly. Besides the Lp spaces, a variety of function spaces arises naturally in analysis
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in this way such as L log+ L which is a Banach space related to Hardy-Littelewood maximal
functions. Orlicz spaces contain certain Sobolev spaces as subspaces.

In [1], the spaces W (LΦ(A), L1(A)) and W (L∞(A), LΦ(A)) are defined on the affine
group A and studied some properties such as translation invariance, inclusions and con-
volution.

The aim of this paper is to extend the results in [1] to a more general Orlicz amalgam
space W (LΦ1(A), LΦ2(A)). In order to do this we are motivated to study discrete norms
on W (LΦ1(A), LΦ2(A)) using a specific partition of unity of the affine group. Using the
discrete norm we prove duality and convolution theorems for amalgams, as well as inclusion
relations.

This paper is organized as follows. In Section 2, we present some background and
notation on weighted Orlicz spaces on locally compact groups. We also define the Orlicz
amalgam spaces on the affine group which we denote W (LΦ1(A), LΦ2(A)). In Section 3,
we construct an equivalent discrete norm on the Orlicz amalgam spaces (Proposition 3.2).
Using the equivalent discrete norm, we prove a duality theorem (Theorem 4.1) for the
Orlicz amalgam space in Section 4. In Section 5, we give certain conditions under which
the corresponding space over a non-IN group becomes a left L1(A)-module with respect to
convolution (Theorem 5.2). Finally, in Section 6, we investigate inclusion relations among
the Orlicz amalgam spaces (Theorem 6.1, Theorem 6.5). Some results are also new for
the Lebesgue spaces and the Orlicz spaces.

2. Prelimaniries
Throughout the paper, we consider the affine group A = R+ ×R with the multiplication

(a, b)(x, y) =
(
ax,

b

x
+ y

)
,

where R+ denotes the multiplicative group of positive real numbers. The identity element
and inverses of A are given by

e = (1, 0), (a, b)−1 =
(1
a
,−ab

)
for (a, b) ∈ A, respectively. It is easy to see that A is a non-abelian group under its
multiplication.

One can see that the left Haar measure on A is dµ = dx
x dy. The affine group A is not

unimodular.
Let f, g be measurable functions on A. The convolution product of f and g is defined

by

(f ∗ g)(x, y) =
∫
A
f(a, b)g((a, b)−1(x, y))da

a
db, (x, y) ∈ A,

whenever the integral exists.
We consider Orlicz spaces on the affine group A. An Orlicz space is determined by a

Young function. A function Φ : [0,∞) → [0,∞] is called a Young function if Φ is convex,
Φ(0) = 0 and limx→∞ Φ(x) = ∞. For a Young function Φ, the complementary function Ψ
of Φ is given by

Ψ(y) = sup{xy − Φ(x) : x > 0}, y ≥ 0,
and Ψ is also a Young function. So (Φ,Ψ) is called a complementary Young pair. We have
the Young inequality

xy ≤ Φ(x) + Ψ(y), x, y ≥ 0
for complementary functions Φ and Ψ.

By our definition, a Young function can have the value ∞ at a point, and hence be
discontinuous at such a point. However, we always consider the pair of complementary
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Young functions (Φ,Ψ) with Φ being real valued and continuous on [0,∞) and increasing
on (0,∞). Note that even though Φ is continuous, it may happen that Ψ is not continuous.

Let Φ1,Φ2 be two Young functions. If there exist a c > 0 and x0 ≥ 0 (depending on
c) such that Φ1(x) ≤ Φ2(cx) for all x ≥ x0, then we say that Φ2 is stronger than Φ1 and
denote this by Φ1 ≺ Φ2. If Φ1 ≺ Φ2 and Φ2 ≺ Φ1, then we write Φ1 ≍ Φ2.

A Young function Φ satisfies the ∆2 condition if there exist a constant K > 0 and an
x0 ≥ 0 such that Φ(2x) ≤ KΦ(x) for all x ≥ x0. In this case, we write Φ ∈ ∆2.

Let A be given with the left Haar measure dµ = dx
x dy. Given a Young function Φ, the

Orlicz space on A is defined by

LΦ(A)=
{
f :A→C measurable :

∫
A

Φ(α|f(x, y)|)dx
x
dy<∞ for some α>0

}
. (2.1)

Then the Orlicz space is a Banach space under the Orlicz norm ∥ · ∥LΦ(A) defined for
f ∈ LΦ(A) by

∥f∥LΦ(A) = sup
{ ∫

A
|f(x, y)g(x, y)|dx

x
dy :

∫
A

Ψ(|g(x, y)|)dx
x
dy ≤ 1

}
,

where Ψ is the complementary Young function of Φ.
Letting

BΨ[0, 1] =
{
g ∈ LΨ(A) :

∫
A

Ψ(|g(x, y)|)dx
x
dy ≤ 1

}
,

we have

∥f∥LΦ(A) = sup
{ ∫

A
|f(x, y)g(x, y)|dx

x
dy : g ∈ BΨ[0, 1]

}
.

One can also define the Luxemburg norm ∥ · ∥o
LΦ(A) on LΦ(A) by

∥f∥o
LΦ(A) = inf

{
k > 0 :

∫
A

Φ
( |f(x, y)|

k

)
dx

x
dy ≤ 1

}
.

It is known that these norms are equivalent, that is,

∥ · ∥o
LΦ(A) ≤ ∥ · ∥LΦ(A) ≤ 2∥ · ∥o

LΦ(A)

and
∥f∥o

LΦ(A) ≤ 1 if and only if
∫
A

Φ(|f(x, y)|)dx
x
dy ≤ 1.

If (Φ,Ψ) is a complementary Young pair and Φ ∈ ∆2, the dual space LΦ(A)∗ is LΨ(A).
If, in addition, Ψ ∈ ∆2, then the Orlicz space LΦ(A) is a reflexive Banach space [15,16].

Let Cc(A) denote the space of all continuous complex valued functions on A with com-
pact support. If Φ ∈ ∆2, then Cc(A) is dense in LΦ(A) [15, 16].

A normed space (Y, ∥ · ∥Y ) consisting of measurable of complex valued functions on a
measurable space X is called solid if for each measurable f : X → C satisfying |f | ≤ |g|
almost everywhere for some g ∈ Y , then f ∈ Y and ∥f∥Y ≤ ∥g∥Y . Since the Young
function Φ is increasing, the Orlicz space LΦ(A) is a solid space. That is if any measurable
function f for which there exists g ∈ LΦ(A) such that |f | ≤ |g| locally almost everywhere
belongs to LΦ(A), with ∥f∥LΦ(A) ≤ ∥g∥LΦ(A) [18]. Also, if the right derivative of a Young
function Φ at zero is positive, i.e., Φ′

+(0) > 0, then the inclusion LΦ(A) ⊆ L1(A) is valid.
This implies that there exists a constant c > 0 such that

∥f∥L1(A) ≤ c∥f∥LΦ(A) (2.2)

holds for every f ∈ LΦ(A) [19, Theorem 3.1.2].
Let us remind some basic properties of LΦ(A) which are given by [1].
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Let f ∈ LΦ(A) and (a, b) ∈ A. The left translation, right translation and re-normalized
right translation on A are defined by

L(a,b)f(x, y) = f((a, b)−1(x, y)),
R(a,b)f(x, y) = f((x, y)(a, b)−1),
A(a,b)f(x, y) = aR(a,b)f(x, y) = af((x, y)(a, b)−1)

for all (x, y) ∈ A.

Lemma 2.1. For f ∈ LΦ(A), the following hold.
(a) ∥L(a,b)f∥LΦ(A) = ∥f∥LΦ(A),
(b) ∥R(a,b)f∥LΦ(A) = 1

a∥f∥LΦ(A),

(c) ∥A(a,b)f∥LΦ(A) = ∥f∥LΦ(A).

Lemma 2.2. Let Φ be a Young function with Φ′
+(0) > 0. Then LΦ(A) is a left Banach

algebra with respect to convolution, that is,
∥f ∗ g∥LΦ(A) ≤ ∥f∥LΦ(A)∥g∥LΦ(A)

holds for all f, g ∈ LΦ(A).

Let us note that, without any condition on the Young function Φ, LΦ(A) is a left
L1(A)-module with respect to convolution, i.e.,

∥f ∗ g∥LΦ(A) ≤ ∥f∥L1(A)∥g∥LΦ(A), f ∈ L1(A), g ∈ LΦ(A).

Lemma 2.3. Let Φ be a Young function with Φ′
+(0) > 0. Then, the equality

∥A(a,b)f ∗ g∥LΦ(A) = ∥f ∗ L(a,b)g∥LΦ(A)

holds for all f, g ∈ LΦ(A).

Orlicz spaces are a kind of generalization of Lebesgue spaces. If the Young function Φ
is xp

p or xp for 1 < p < ∞, then the space LΦ(A) becomes the classical Lebesgue space
Lp(A) and the norm ∥ · ∥LΦ is equivalent to the classical norm ∥ · ∥Lp .

If p = 1, then we obtain the space L1(A). In this case, the complementary Young
function of Φ(x) = x is

Ψ(x) =
{

0, 0 ≤ x ≤ 1,
∞, x > 1,

(2.3)

and ∥f∥LΦ = ∥f∥L1 for all f ∈ L1(A). If p = ∞, then for the Young function Φ given in
(2.3), the space LΦ(A) is equal to the space L∞(A) and we have ∥f∥LΦ = ∥f∥L∞ for all
f ∈ L∞(A).

There are other examples of complementary Young pairs.
(i) If Φ(x) = eax − 1 with a > 0, then Ψ(x) = 1

a ln(y
a)y − y

a + 1.
(ii) If Φ(x) = ex − x− 1, then Ψ(x) = (1 + x) ln(1 + x) − x.
(iii) If

Φ(x) =
{
x, 0 ≤ x ≤ 1,
∞, x > 1,

then

Ψ(x) =
{

0, 0 ≤ x ≤ 1,
x− 1, x > 1.

Note that if we take Φ(x) = exβ − 1 with β > 0, then the Orlicz space LΦ becomes the
Zygmund space expLβ.

For further information on Orlicz spaces, the reader is referred to [18] and [19].
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Let us now define the Orlicz amalgam space W (LΦ1(A), LΦ2(A)) consisting of functions
that are locally in LΦ1(A) and globally in LΦ2(A). In our results, the translation invariance
and solidity of LΦ1(A) and LΦ2(A) will play important roles. In light of this, we start with
the following.

Definition 2.4. Let Q be a fixed compact subset of A with nonempty interior. The Orlicz
amalgam space W (LΦ1(A), LΦ2(A) consists of all measurable functions f : A → C such
that fχ(x,y)Q ∈ LΦ1(A) for each (x, y) ∈ A and the control function

Ff (x, y) = FQ
f (x, y) = ∥fχ(x,y)Q∥LΦ1 (A)

is in LΦ2(A). The Orlicz amalgam norm on W (LΦ1(A), LΦ2(A)) is defined by
∥f∥W (LΦ1 (A),LΦ2 (A)) := ∥Ff ∥LΦ2 (A) =

∥∥∥fχ(x,y)Q∥LΦ1 (A)
∥∥

LΦ2 (A). (2.4)

Similar to that in Orlicz spaces, we define the Luxemburg norm ∥ · ∥o
W (LΦ1 (A),LΦ2 (A)) on

W (LΦ1(A), LΦ2(A)) by
∥f∥o

W (LΦ1 (A),LΦ2 (A)) =
∥∥∥fχ(x,y)Q∥o

LΦ1 (A)
∥∥o

LΦ2 (A).

By the equivalence of the Orlicz norm and the Luxemburg norm in Orlicz spaces [18],
we have

∥f∥o
W (LΦ1 (A),LΦ2 (A)) ≤ ∥f∥W (LΦ1 (A),LΦ2 (A)) ≤ 4∥f∥o

W (LΦ1 (A),LΦ2 (A)). (2.5)

Throughout the paper, we consider the Orlicz norm on W (LΦ1(A), LΦ2(A)).
Note that W (LΦ1(A), LΦ2(A)) is a Banach space and its definition is independent of

the choice of the compact subset Q ⊂ A, in the sense that different compact subsets yield
equivalent Orlicz amalgam space norms. By using the completeness and the translation
invarinace of the Orlicz spaces LΦ1(A), LΦ2(A), the proofs can be done to that of [1,
Theorem 4.2, Theorem 4.3].

Our reason for studying Orlicz amalgam spaces comes from the fact that they generalize
the Orlicz spaces. In particular, setting Φ1 ≍ Φ2 will actually result in an Orlicz space.
Hence, we can give the following proposition in [1].

Proposition 2.5. Let (Φ,Ψ) be a complementary Young pair with Φ′
+(0) > 0 and

Ψ′
+(0) > 0. Then W (LΦ(A), LΦ(A)) = LΦ(A).

There is also a Hölder inequality for Orlicz amalgam spaces similar to that in Orlicz
spaces. It can be extended to a duality theorem. However, the duality of Orlicz amalgam
spaces will be proved after having defined discrete norms in the next section. For now we
state Hölder inequality for Orlicz amalgam spaces.

Proposition 2.6. Let (Φ1,Ψ1), (Φ2,Ψ2) be a complementary Young pairs. Then, we have
∥fg∥L1(A) ≤ ∥f∥W (LΦ1 (A),LΦ2 (A))∥g∥o

W (LΨ1 (A),LΨ2 (A)) (2.6)

for all f ∈ W (LΦ1(A), LΦ2(A)) and g ∈ W (LΨ1(A), LΨ2(A)).

Proof. Let f ∈ W (LΦ1(A), LΦ2(A) and g ∈ W (LΨ1(A), LΨ2(A)). By using the Hölder
inequality in the Orlicz spaces [18], we obtain

∥fg∥W (L1,L1) =
∥∥∥(fχ(x,y)Q)(gχ(x,y)Q)∥L1

∥∥
L1 ≤ ∥f∥W (LΦ1 ,LΦ2 ) ∥g∥o

W (LΨ1 ,LΨ2 ).

The result then follows from the fact that W (L1(A), L1(A)) = L1(A) [11]. □
Let us remark that by (2.5), we have

∥fg∥L1(A) ≤ 4∥f∥W (LΦ1 (A),LΦ2 (A))∥g∥W (LΨ1 (A),LΨ2 (A)) (2.7)

for all f ∈ W (LΦ1(A), LΦ2(A)) and g ∈ W (LΨ1(A), LΨ2(A)).
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3. Discrete norms
In this section, we construct an equivalent discrete norm on the Orlicz amalgam space

W (LΦ1(A), LΦ2(A)) using partitions of unity of A. This allows to prove some basic proper-
ties of the Orlicz amalgam spaceW (LΦ1(A), LΦ2(A)) such as duality and inclusion relations
for the Orlicz amalgam spaces based on the global components. In particular, by using the
equivalent discrete norm, we want to prove the Orlicz amalgam space W (LΦ1(A), LΦ2(A))
is a left L1(A)-module in Section 5.

For our goal, we need the following notation and lemma which we use in [1].
Let {Qh}h>0 denote a fixed family of increasing, exhaustive neighborhoods of identity

in A and we will take Qh = [e−h, eh) × [−h, h). As above, (x, y)Qh is the set Qh left
translated by (x, y) ∈ A, i.e.,

(x, y)Qh =
{(
xa,

y

a
+ b

)
: a ∈ [e−h, eh), b ∈ [−h, h)

}
.

The Haar measure of the translated set (x, y)Qh is

µ((x, y)Qh) = µ(Qh) =
∫ h

−h

∫ eh

e−h

dx

x
dy = 4h2. (3.1)

Given h > 0, for k, j ∈ Z, we define particular translates of Qh and Q2h, by

Bjk = (e2jh, 2khe−h)Qh,

B′
jk = (e2jh, 2khe−h)Q2h.

Let us note that Bjk ⊆ B′
jk.

To obtain an equivalent discrete norm on these spaces the following lemma is a key
observation.

Lemma 3.1 ([12]). If h > 0, then
(a)

⋃
j,k∈ZBjk = A,

(b) given m,n ∈ Z, the box B′
mn can intersect at most N = 5(2e3h + 1) boxes B′

jk for
j, k ∈ Z.

Hence the set X = {(e2jh, 2khe−h) : j, k ∈ Z} for h > 0 becomes a well-spread family
[9, 10].

By Urysohn’s lemma, there exist continuous functions ϕjk : A → R such that 0 ≤
ϕjk(x, y) ≤ 1, supp(ϕjk) ⊆ B′

jk and ϕjk(x, y) = 1 for (x, y) ∈ Bjk. Define

ψjk = ϕjk∑
m,n∈Z

ϕmn
.

Thus {ψjk}j,k∈Z is a bounded uniform partition of unity (BUPU). Then, by [7, Theorem
2] we have the following equivalence on W (LΦ1(A), LΦ2(A))

∥f∥W (LΦ1 (A), LΦ2 (A)) ≈
∥∥∥∥ ∑

j,k∈Z
∥fψjk∥LΦ1 (A)χB′

jk

∥∥∥∥
LΦ2 (A)

. (3.2)

On the other hand, {Bjk}j,k∈Z is a partition of A and {χ
Bjk

}j,k∈Z becomes a BUPU [12].
Therefore, if we take compact sets Bjk instead of the sets B′

jk in (3.2), then we obtain the
following proposition which gives us an equivalent discrete norm.

Proposition 3.2. Let Φ1, Φ2 be Young functions. Then, we have

∥f∥W (LΦ1 (A),LΦ2 (A)) ≈
∥∥∥(

∥fχ
Bjk

∥LΦ1 (A)
)

j,k∈Z

∥∥∥
ℓΦ2
.

In other words, W (LΦ1 , LΦ2) = W (LΦ1 , ℓΦ2).



Orlicz Amalgam spaces on the affine group 7

Proof. Let us take the well-spread family X = {(e2jh, 2khe−h) : j, k ∈ Z} for h > 0.
Then we have a BUPU {ψjk}j,k∈Z. Since χ

Bjk
≤ Nψjk ≤ Nχ

B′
jk

by Lemma 3.1, by using
a property of a well-spread family, we have

1
N

∑
j,k∈Z

∥fχ
Bjk

∥LΦ1 (A) ≤
∑

j,k∈Z
∥fψjk∥LΦ1 (A)

≤
∑

j,k∈Z
∥fχ

B′
jk

∥LΦ1 (A) ≤ N
∑

j,k∈Z
∥fχ

Bjk
∥LΦ1 (A).

(3.3)

By using (3.2), (3.3) and a property of the Bochner integral [5, Appendix E.11], we obtain∥∥∥∥ ∑
j,k∈Z

∥fψjk∥LΦ1 (A)χBjk

∥∥∥∥
LΦ2 (A)

= sup
{ ∫

Bjk

∑
j,k∈Z

∥fψjk∥LΦ1 (A)|g(z)|dµ(z) :
∑

j,k∈Z

∫
Bjk

Ψ2(|g(z)|)dµ(z) ≤ 1
}

= sup
{ ∑

j,k∈Z
∥fψjk∥LΦ1 (A)

∫
Bjk

|g(z)|dµ(z) :
∑

j,k∈Z
Ψ2(

∫
Bjk

|g(z)|dµ(z)) ≤ 1
}

≤ N
∥∥∥(

∥fχ
Bjk

∥LΦ1 (A)
)

j,k∈Z

∥∥∥
ℓΦ2
.

On the other hand, by using the left side of (3.3), we obtain∥∥∥∥ ∑
j,k∈Z

∥fψjk∥LΦ1 (A)χBjk

∥∥∥∥
LΦ2 (A)

≥ 1
N

∥∥∥(
∥fχ

Bjk
∥LΦ1 (A)

)
j,k∈Z

∥∥∥
ℓΦ2
.

Hence, by the equivalence (3.2), we find

∥f∥W (LΦ1 (A), LΦ2 (A)) ≈
∥∥∥(

∥fχ
Bjk

∥LΦ1 (A)
)

j,k∈Z

∥∥∥
ℓΦ2
.

□

In particular, if we consider the Young functions

Φ1(x) =
{

0, 0 ≤ x ≤ 1,
∞, x > 1,

and Φ2(x) = xp for 1 ≤ p < ∞ in Proposition 3.2, then we obtain the following equivalent
norm on W (L∞(A), Lp(A))

∥f∥W (L∞(A),Lp(A)) ≈
∥∥∥(

∥fχ
Bjk

∥L∞(A)
)

j,k∈Z

∥∥∥
ℓp

which is given in [12, Proposition 3.3].

4. Duality
To prove the following duality theorem for the space W (LΦ1(A), LΦ2(A)), the equivalent

discrete norm in Proposition 3.2 will play a key role.

Theorem 4.1. Let (Φ1,Ψ1), (Φ2,Ψ2) be complementary Young pairs with Φ1,Φ2 ∈ ∆2.
Then, the dual space W (LΦ1(A), LΦ2(A))∗ is W (LΨ1(A), LΨ2(A)).

Proof. Define the following map for f ∈ W (LΦ1(A), LΦ2(A)) as

ϕg : W (LΨ1(A), LΨ2(A)) → W (LΦ1(A), LΦ2(A))∗

g → ϕg(f) = ⟨f, g⟩ =
∫
A

|f(x, y)g(x, y)|dx
x
dy.
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By the Hölder inequality (2.6), we have∫
A

|f(x, y)g(x, y)|dx
x
dy ≤ ∥f∥W (LΦ1 (A),LΦ2 (A)) ∥g∥o

W (LΨ1 (A),LΨ2 (A)),

which implies that ⟨f, g⟩ is well-defined and so g determines a continuous linear functional
ϕg on W (LΦ1(A), LΦ2(A)).

Let φ ∈ W (LΦ1(A), LΦ2(A))∗ be given. For simplicity, let us consider {χ
Bjk

}j,k∈Z and
fix j, k ∈ Z. Then, LΦ1(Bjk) which is the space of LΦ1(A) functions supported in Bjk, is
contained in W (LΦ1(A), LΦ2(A)), i.e.,

LΦ1(Bjk) = {h ∈ LΦ1(A) : supp(h) ⊆ Bjk} ⊆ W (LΦ1(A), LΦ2(A)).

Thus, φ restricts to a bounded linear functional φjk := φ
Bjk

on LΦ1(Bjk) for each j, k ∈ Z.
Therefore, there exists a gjk ∈ LΦ1(Bjk)∗ = LΨ1(Bjk) such that

∥gjk∥◦
LΨ1 (A) = ∥φjk∥ and ⟨h, φ⟩ = ⟨h, gjk⟩,

for all h ∈ LΦ1(Bjk), where gjk = gχ
Bjk

.
Since supp(gjk) ⊆ Bjk and the family {Bjk}j,k∈Z is a partition of A, we can define

g =
∑

j,k∈Z gjk.
It is easy to see that ∥φ∥ ≤ ∥g∥o

W (LΨ1 (A),LΨ2 (A)) by the first part of the proof.
Given ε > 0, for j, k ∈ Z, choose hεχBjk

∈ LΦ1(Bjk) such that ∥hεχBjk
∥LΦ1 (A) = 1 and

φjk(hεχBjk
) =

∣∣φ
Bjk

(hεχBjk
)
∣∣ > (1 − ε)∥φjk∥ = (1 − ε)∥gjk∥◦

LΨ1 (A). (4.1)

For an arbitrary (αjk)j,k∈Z ∈ ℓΦ2 , define f = |αjk|hεχBjk
. By using Proposition 3.2, we

have

∥f∥W (LΦ1 (A),LΦ2 (A)) ≈ ∥(∥fχ
Bjk

∥LΦ1 (A))j,k∈Z∥ℓΦ2

= ∥(|αjk|∥hεχBjk
∥LΦ1 (A))j,k∈Z∥ℓΦ2 = ∥αjk∥ℓΦ2 .

This implies that f ∈ W (LΦ1(A), LΦ2(A)).
On the other hand, by inequality (4.1), we obtain

∥φ∥∥αjk∥ℓΦ2 = ∥φ∥∥f∥W (LΦ1 (A),LΦ2 (A)) ≥ |φ(f)|

=
∣∣∣ ∑

j,k∈Z

∫
Bjk

|αjk|hεχBjk
gdµ

∣∣∣
=

∑
j,k∈Z

|αjk|φ
Bjk

(hεχBjk
) ≥ (1 − ε)

∑
j,k∈Z

|αjk|∥gχ
Bjk

∥◦
LΨ1 (A).

Since (αjk)j,k∈Z is arbitrary in ℓΦ2 , it follows that (1 − ε)∥gχ
Bjk

∥◦
LΨ1 (A) is in ℓΨ2 and

has norm not bigger than ∥φ∥. Since ε > 0 is arbitrarily small, we obtain ∥φ∥ ≥
∥g∥o

W (LΨ1 (A),LΨ2 (A)). □

Corollary 4.2. Let (Φ1,Ψ1), (Φ2,Ψ2) be complementary Young pairs. If Φi,Ψi, i = 1, 2
satisfy the ∆2 condition, then W (LΦ1(A), LΦ2(A)) is reflexive.

Note that if we take the Young functions Φ1(x) = xp and Φ2(x) = xq for 1 ≤ p, q < ∞
in Theorem 4.1, then we obtain the following result [11].

Corollary 4.3. Let 1 ≤ p, q < ∞ and let p′, q′ be the respective dual exponents. Then, the
dual space of W (Lp(A), Lq(A)) is the space W (Lp′(A), Lq′(A)).
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5. Convolution
Feichtinger in [7, Theorem 3], gave an interesting convolution relation between Wiener

amalgams over an IN group.
That is, if B1 ∗ B2 ⊆ B3 and C1 ∗ C2 ⊆ C3, then we have W (B1, C1) ∗ W (B2, C2) ⊆

W (B3, C3). However, there are other useful convolution relations that hold for amalgam
spaces on non-IN groups; see, e.g., [13].

In this section, we give a condition on Young functions Φ1 and Φ2 for the Orlicz amalgam
space W (LΦ1(A), LΦ2(A)) on the affine group A to be a left L1(A)-module with respect
to convolution.

Let us recall that the following proposition will plays an important role [1].

Proposition 5.1. There exists a compact neighborhood Q = Q−1 of identity in A and
there exist points (an, bn) ∈ A, n ∈ N, such that the following hold.

(a) If g ∈ W (LΦ(A), L1(A)), then we find functions gn belonging to LΦ(A) with
supp(gn) ⊆ Q such that g =

∑
n∈N L(an,bn)gn.

(b) The following is equivalent norm on W (LΦ(A), L1(A)):
∥g∥W (LΦ(A), L1(A)) ≈

∥∥(∥gn∥LΦ(A))n∈N
∥∥

ℓ1 .

Let us now give the following convolution theorem on the affine group A.

Theorem 5.2. Let Φ1,Φ2 be Young functions with (Φ′
1)+(0) > 0 and (Φ′

2)+(0) > 0. Then,
W (LΦ1(A), LΦ2(A)) is a left L1(A)-module with respect to convolution.

Proof. Let f ∈ L1(A) and g ∈ W (LΦ1(A), LΦ2(A)). Let Q, (an, bn) and gn be as given
by Proposition 5.1.

For (z, w) ∈ (x, y)Q, we know that if gn((u, v)−1(z, w)) ̸= 0, then (u, v) ∈ (x, y)Q2

[1, Theorem 5.6]. Hence
gn((u, v)−1(z, w))χ(x,y)Q(z, w) = L(u,v)gn(z, w)χ

(x,y)Q2 (u, v). (5.1)

Moreover, by Lemma 2.1, we have L(anbn)gn ∈ LΦ1(A). Since LΦ1(A) is a left L1(A)-
module, we obtain f ∗ L(anbn)gn ∈ LΦ1(A) for all f ∈ L1(A).

By using Lemma 2.3,
FQ

f∗L(anbn)gn
(x, y) = ∥(f ∗ L(anbn)gn)χ(x,y)Q∥LΦ1 (A)

= ∥(A(anbn)f ∗ gn)χ(x,y)Q∥LΦ1 (A).
(5.2)

Hence, for every ε > 0, there exists a function hε ∈ BΨ1 [0, 1] such that
∥(A(anbn)f ∗ gn)χ(x,y)Q∥LΦ1 (A) − ε

<

∫
A

|(A(anbn)f ∗ gn)(z, w)χ(x,y)Q(z, w)hε(z, w)|dz
z
dw.

(5.3)

By using (5.1) and Fubini’s Theorem, we obtain∫
A

|(A(anbn)f ∗ gn)(z, w)χ(x,y)Q(z, w)hε(z, w)|dz
z
dw

≤
∫
A

(∫
A

|A(anbn)f(u, v)gn((u, v)−1(z, w))|du
u
dv

)
|χ(x,y)Q(z, w)hε(z, w)|dz

z
dw

=
∫
A

|A(anbn)f(u, v)|
(∫

A
|L(u,v)gn(z, w)χ

(x,y)Q2 (u, v)hε(z, w)|dz
z
dw

)
du

u
dv

≤ ∥L(u,v)gn∥LΦ1 (A) ∥(A(anbn)f)χ
(x,y)Q2 ∥L1(A).

By (5.3) and Lemma 2.1 (a), for every ε > 0, we have
∥(A(anbn)f ∗ gn)χ(x,y)Q∥LΦ1 (A) − ε < ∥gn∥LΦ1 (A) ∥(A(anbn)f)χ

(x,y)Q2 ∥L1(A).
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From (5.2), we find

FQ
f∗L(anbn)gn

(x, y) ≤ ∥gn∥LΦ1 (A)F
Q2

A(anbn)f (x, y).

By the solidity of L1(A),

∥FQ
f∗L(anbn)gn

∥L1(A) ≤ ∥gn∥LΦ1 (A) ∥FQ2

A(anbn)f ∥L1(A).

By the definition of the amalgam space, the fact that W (L1(A), L1(A)) = L1(A) and
[13, Lemma 2.1], we obtain

∥f ∗ L(anbn)gn∥W (LΦ1 (A), L1(A)) ≤ ∥gn∥LΦ1 (A)∥f∥L1(A). (5.4)

On the other hand, by hypothesis on Φ2, we have LΦ2(A) ⊆ L1(A). This implies that
W (LΦ1(A), LΦ2(A)) ⊆ W (LΦ1(A), L1(A)), so there exists a constant K1 > 0 such that

∥f ∗ L(anbn)gn∥W (LΦ1 (A), LΦ2 (A)) ≤ K1∥f ∗ L(anbn)gn∥W (LΦ1 (A), L1(A)). (5.5)

Combining (5.4) and (5.5),

∥f ∗ L(anbn)gn∥W (LΦ1 (A),LΦ2 (A)) ≤ K1∥gn∥LΦ1 (A) ∥f∥L1(A). (5.6)

Now, by using Proposition 5.1 and (5.6), we have

∥f ∗ g∥W (LΦ1 (A), LΦ2 (A)) =
∥∥∥∥f ∗

∑
n∈N

L(an,bn)gn

∥∥∥∥
W (LΦ1 (A), LΦ2 (A))

≤ K1
∑
n∈N

∥gn∥LΦ1 (A) ∥f∥L1(A)

≤ K1K2∥f∥L1(A) ∥g∥W (LΦ1 (A),L1(A)) (5.7)

for some K2 > 0. Then, we have W (LΦ1(A), LΦ2(A)) ⊆ W (LΦ1(A), L1(A)). Hence there
exists a constant K3 > 0 such that from (5.7)

∥f ∗ g∥W (LΦ1 (A), LΦ2 (A)) ≤ K∥f∥L1(A) ∥g∥W (LΦ1 (A),LΦ2 (A)),

where K = K1K2K3. Thus, the Orlicz amalgam space W (LΦ1(A), LΦ2(A)) is a left L1(A)-
module. □

6. Some inclusion relations
In this section, we investigate inclusion properties among the Orlicz amalgam space

W (LΦ1(A), LΦ2(A)) with respect to the local and global components.
We first show that inclusion relations on the local components affect the inclusion

relations for the Orlicz amalgam spaces.
Let us note that if K is a compact subset of A, then Φ1 ≺ Φ2 implies that LΦ2(K) ⊆

LΦ1(K).

Theorem 6.1. Let Φ,Φ1,Φ2 be Young functions. If Φ1 ≺ Φ2, then we have W (LΦ2(A), LΦ(A)) ⊆
W (LΦ1(A), LΦ(A)).

Proof. Let f ∈ W (LΦ2(A), L1(A)) and Q be a compact subset of A with nonempty
interior and (x, y) ∈ A. Then

∥f∥W (LΦ2 (A),LΦ(A)) =
∥∥∥fχ(x,y)Q∥LΦ2 (A)

∥∥
LΦ(A) < ∞.
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By hypothesis, we have ∥fχ(x,y)Q∥LΦ1 (A) ≤ K∥fχ(x,y)Q∥LΦ2 (A). By using the solidity of
LΦ(A), we obtain

∥f∥W (LΦ1 (A), LΦ(A)) =
∥∥∥fχ(x,y)Q∥LΦ1 (A)

∥∥
LΦ(A)

≤ K
∥∥∥fχ(x,y)Q∥LΦ2 (A)

∥∥
LΦ(A)

= K∥f∥W (LΦ2 (A),LΦ(A)).

Thus we have f ∈ W (LΦ1(A), LΦ(A)). □

Taking Φ2 ≺ Φ1 in Theorem 6.1, we have W (LΦ1(A), LΦ(A)) ⊆ W (LΦ2(A), LΦ(A)).
Hence, we conclude the following result.

Corollary 6.2. Let Φ,Φ1,Φ2 be Young functions. If Φ1 ≍ Φ2, then we have W (LΦ1(A), LΦ(A)) =
W (LΦ2(A), LΦ(A)).

Remark 6.3. The converse of Theorem 6.1 is not true in general.

Example 6.4. Let us take Φ1(x) = xp1
p1

and Φ2(x) = xp2
p2

and Φ(x) = xq

q for 1 ≤ p1 ≤ p2 <

∞, 1 ≤ q < ∞. Then the Orlicz spaces LΦ1(A) and LΦ2(A) become the Lebesgue spaces
Lp1(A) and Lp2(A), respectively. We know that if p1 < p2, we have W (Lp2(A), Lq(A)) ⊆
W (Lp1(A), Lq(A)).

However, the relation Φ1 ≺ Φ2 does not hold. Assuming that Φ1 ≺ Φ2, there exists a
constant K > 0 such that Φ1(x) ≤ Φ2(Kx) for every x ≥ 0. Thus

xp1

p1
≤ (Kx)p2

p2
⇒ 1

xp2−p1
≤ p1K

p2

p2
.

Taking limits as x → 0, we obtain

+∞ = lim
x→0

1
xp2−p1

≤ lim
x→∞

p1K
p2

p2
< +∞,

and this is a contradiction.

An equivalent discrete norm gives us an easier way of understanding the inclusion rela-
tion between the Orlicz amalgam spaces W (LΦ1(A), LΦ2(A)) based on the global compo-
nent.

Theorem 6.5. Let Φ,Φ1,Φ2 be Young functions. If Φ1 ≺ Φ2, then we have W (LΦ(A), LΦ1(A)) ⊆
W (LΦ(A), LΦ2(A)).

Proof. Let f ∈ W (LΦ(A), LΦ1(A)) and {Bjk}j,k∈Z be given as in Lemma 3.1. By Propo-
sition 3.2, we have

∥f∥W (LΦ(A), LΦ1 (A)) ≈
∥∥∥(

∥fχ
Bjk

∥LΦ(A)
)

j,k∈Z

∥∥∥
ℓΦ1

< ∞. (6.1)

Since Φ1 ≺ Φ2, we have ℓΦ1 ⊆ ℓΦ2 [17]. Hence there exists a constant K > 0 such that

∥(∥fχ
Bjk

∥LΦ(A))j,k∈Z∥ℓΦ2 ≤ K
∥∥∥(

∥fχ
Bjk

∥LΦ(A)
)

j,k∈Z

∥∥∥
ℓΦ1

(6.2)

for all (∥fχ
Bjk

∥LΦ(A))j,k∈Z ∈ ℓΦ1 . By using (6.1) and (6.2), we obtain

∥f∥W (LΦ(A),LΦ2 (A)) ≈
∥∥∥(

∥fχ
Bjk

∥LΦ(A)
)

j,k∈Z

∥∥∥
ℓΦ2

≤ K
∥∥∥(

∥fχ
Bjk

∥LΦ(A)
)

j,k∈Z

∥∥∥
ℓΦ1

≈ K∥f∥W (LΦ(A),LΦ1 (A)),

which implies that f ∈ W (LΦ(A), LΦ2(A)). □
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Taking Φ2 ≺ Φ1 in Theorem 6.5, we have W (LΦ(A), LΦ2(A)) ⊆ W (LΦ(A), LΦ1(A)).
Thus we deduce the following result.

Corollary 6.6. Let Φ,Φ1,Φ2 be Young functions. If Φ1 ≍ Φ2, then we have W (LΦ(A), LΦ1(A)) =
W (LΦ(A), LΦ2(A)).

Let us now give inclusion relation between the Orlicz amalgam space and its global and
local components.

Theorem 6.7. Let Φ1,Φ2 be Young functions with (Φ′
i)+(0) > 0, (Ψ′

i)+(0) > 0 for i = 1, 2.
(i) If Φ1 ≺ Φ2, then LΦ1(A) ∪ LΦ2(A) ⊆ W (LΦ1(A), LΦ2(A)).
(ii) If Φ2 ≺ Φ1, then W (LΦ1(A), LΦ2(A)) ⊆ LΦ1(A) ∩ LΦ2(A).

Proof. (i) Let f ∈ LΦ2(A). By Theorem 2.5 and Theorem 6.1, we have
∥f∥W (LΦ1 (A),LΦ2 (A)) ≤ K1∥f∥W (LΦ2 (A),LΦ2 (A)) ≤ K2∥f∥LΦ2 (A) < ∞,

which implies that LΦ2(A) ⊆ W (LΦ1(A), LΦ2(A)). Similarly the inclusion LΦ1(A) ⊆
W (LΦ1(A), LΦ2(A)) can be easily proved by using Theorem 2.5 and Theorem 6.5.

(ii) By Theorem 2.5 and Theorem 6.1, we have
∥f∥LΦ2 (A) ≤ K1∥f∥W (LΦ2 (A),LΦ2 (A)) ≤ K2∥f∥W (LΦ1 (A),LΦ2 (A)) < ∞,

which implies thatW (LΦ1(A), LΦ2(A)) ⊆ LΦ2(A). SimilarlyW (LΦ1(A), LΦ2(A)) ⊆ LΦ1(A)
is obtained by using Theorem 2.5 and Theorem 6.5. □

Note that if we consider the Young functions Φ1(x) = xp and Φ2(x) = xq for 1 < p, q <
∞ in the case Lp(A) ⊆ L1(A) and Lq(A) ⊆ L1(A), then we obtain the following corollary.

Corollary 6.8. Let 1 < p, q < ∞. Following hold:
(i) If p ≤ q, then Lp(A) ∪ Lq(A) ⊆ W (Lp(A), Lq(A)).
(ii) If q ≤ p, then W (Lp(A), Lq(A)) ⊆ Lp(A) ∩ Lq(A).
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