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ABSTRACT 
This study examines the performance of a solar assisted drying system in the nettle drying process. The drying 

process works by using thermal energy obtained from solar air collectors and PV modules. The experimental were 

carried out in October 2022, and the room temperature, total efficiency and moisture content parameters were 

investigated. The data obtained from the drying system were modelled using machine learning algorithms such as 

artificial neural networks (ANN), support vector machines (SVM), and gradient boosting decision trees (GBDT). 

The average thermal energy transferred to the drying cabin was calculated as 154 W, with 77% of this energy was 

obtained from the air collector and the remaining 23% from the PV module.  The stinging nettle was dried from 

an initial moisture content of 11.18 g water/g dry matter to a final moisture content of 1.18 g water/g dry matter. 

The average total efficiency of the drying system was found to be 16.8%. Additionally, the results show that the 

SVM algorithm exhibits the best performance in estimating important parameters such as chamber temperature, 

moisture content, and total efficiency. Especially in total efficiency prediction. The SVM algorithm has a 

significant advantage over other algorithms. As a result, it was concluded that the SVM algorithm can be used 

effectively utilized in solar energy-supported drying systems and can be a precious choice for the optimization of 

the drying process. 
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Yoğunlaştırılmış Havalı Kolektör ve Yoğunlaştırılmış Fotovoltaik 

Termal Destekli Bir Kurutma Sistemi ile Isırgan Otunun Kurutulması 

ve Sistem Verilerinin Makine Öğrenmesi ile Modellenmesi 
 

ÖZ 
Bu çalışma, ısırgan otu kurutma sürecinde güneş enerjisi destekli bir kurutma sisteminin performansını 

incelemektedir. Kurutma işlemi, havalı güneş kolektöründen ve PV modüllerden elde edilen termal enerjiyi 

kullanarak çalışmaktadır. Deneyler, 2022 yılı ekim ayında gerçekleştirilmiş ve oda sıcaklığı, toplam verimlilik ve 

nem içeriği parametrelerin değişimi incelenmiştir. Kurutma sürecinde elde edilen veriler, yapay sinir ağı (YSA), 

destek vektör makinesi (SVM) ve gradyan artırıcı karar ağacı (GBDT) gibi makine öğrenmesi algoritmaları 

kullanılarak modellenmiştir. Isırgan otu başlangıçta 11,18 gr su / gr kuru madde nem içerirken, 1,18 gr su /gr kuru 

madde miktarına kadar kurutulmuştur. Kurutma kabinine aktarılan ortalama termal enerji 154 W olarak 

hesaplanmıştır. Bu enerjinin %77 kolektörden geri kalan %23 kısımda FV modelden elde edilmiştir. Kurutma 

sisteminin ortalama toplam verimi %16,8 olarak hesaplanmıştır. Isırgan otu başlangıçta 11,18 gr su / gr kuru madde 

nem içeriğinden 1,18 gr su /gr kuru madde miktarına kadar kurutulmuştur. Ayrıca elde edilen sonuçlar, kabin 
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sıcaklığı, nem içeriği ve toplam verim gibi önemli parametrelerin tahmin edilmesinde SVM algoritmasının en iyi 

performansı sergilediğini göstermektedir. Özellikle toplam verim tahmininde SVM algoritması, diğer 

algoritmalara göre önemli bir üstünlük sağlamıştır. Sonuç olarak, güneş enerjisi destekli kurutma sistemlerinde 

SVM algoritmasının etkili bir şekilde kullanılabileceği ve kurutma sürecinin optimize edilmesinde değerli bir araç 

olabileceği sonucuna varılmıştır. 

 

Anahtar Kelimeler: Güneş enerjisi destekli kurutma sistemleri, Makine öğrenme algoritmaları, Kurutma prosesi 

optimizasyonu 

 
Nomenclature  

A Area (m2) 
ANN Artificial Neural Networks 
Cp Specific heat (kJ/(kg K)) 
GBDT Gradient Boosting Decision Trees  
GPR Gaussian Process Regression 
LM Levenberg-Marquardt  
ML Machine Learning  
MAPE Mean Absolute Percentage Error  
PTSC Parabolic Trough Solar Collectors 
RSM Response Surface Methodology  
RMSE Root Mean Square Error  
R2 Coefficients Of Determination 
SVM Support Vector Machines  
SAC Solar Air Collector 
I(t) Solar radiation (W/m2) 
L Latent heat (kJ/kg) 
m Mass (kg) 
PV Photovoltaic 
PV/T Photovoltaic-thermal 
𝑻 Temperature (°C) 
𝑸 Thermal energy (kJ) 
𝑾 Electrical energy input (kJ) 
 
Subscripts 
 

 

a Ambient 
i Initial 
in Inlet 
L Liquid 
out Outlet 
w  water 

 

 

I. INTRODUCTION 
 

Considering that Türkiye is in an extremely advantageous position, especially in terms of solar energy, 

the use of this resource is of much greater importance than industrial and critical importance. The 

increasing energy demand and limited fossil fuel reserves have led humanity to search for different 

energy sources. As a result of studies and research, many new approaches have been developed for heat 

energy and electricity production using solar energy, a renewable energy source. The solar energy usage 

has become extensive in many areas such as heating, cooling, and air conditioning systems [1], [2], [3], 

electricity production [4], [5], clean water production [6], agricultural areas [7], [8], and drying of 

products [9], [10], [11], [12]. 

 

Solar energy-supported drying systems are emerging as an environmentally friendly and sustainable 

option for drying agricultural products. These systems include solar air collectors, PV panels, and air 

circulation systems to dry products using solar. Drying products with high water content can reduce 

energy costs and minimize environmental impact using renewable energy sources. Drying agricultural 

and industrial products under the sun has been used since ancient times. However, this method lacks 
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control over the drying process and cannot provide a hygienic environment against environmental 

effects such as rain and dust. Therefore, it is important to use closed systems where the process is 

controlled and homogeneous drying is ensured, instead of drying under the sun [13]. Traditional drying 

systems require the development of new systems and methods due to high electricity costs. 

 

Concentrated solar energy drying of agricultural and industrial products is widely utilized, aiming to 

minimize energy consumption by eliminating disadvantages encountered in sun drying and traditional 

methods. Enclosed cabinet solar-powered drying systems offer advantages over sun drying systems, 

including protection of the product against pollutants and pests, reduction of external factors such as 

rain, ensuring homogeneous temperature and humidity distribution, and control over the desired 

temperature level. Among solar energy-supported drying systems, air collector dryers with solar 

collectors are the most prevalent. These systems consist of a solar-powered air collector, a circulation 

fan, and a drying chamber. A typical solar-powered air collector comprises an absorber plate, parallel 

plates through which air flows, a glass or plastic covering at the top, and an insulated casing at the 

bottom and sides [14]. Despite being produced in various designs, solar-powered air collectors operate 

on the same principle. Plates with different surface profiles serving as absorbers are stacked with gaps 

in between, allowing air passing through the gaps to absorb heat upon contact with the absorber surface. 

As a result of this contact, the air exits the collector as hot air. Numerous significant studies concerning 

solar energy-supported systems for agricultural and industrial product drying exist. Some studies related 

to hot air production, product drying systems, and convective heat transfer could be found below.  
 
Uçar and Oral conducted an experimental analysis of a cabin heating system using a solar air collector 

(SAC). This system employed two SACs with solar energy storage and a thermal storage tank. When 

heating was needed in the cabin, the required heat was retrieved from the insulated storage tank. The 

analysis revealed that the thermal energy storage in the tank averaged 2.15 kW per day, with an energy 

efficiency of 83% [15]. 

 

Kaya et al. conducted theoretical and experimental research on a solar collector drying system with heat 

pipes and heat recovery. Experiments carried out in Karabuk climate conditions showed that at an 

average irradiance of 770 W/m2, the temperature of the drying chamber was 49% higher than the ambient 

temperature. Furthermore, the average efficiency of the system was 24% [16]. 

 

Machine learning (ML) has recently become a useful technology that can develop high-accuracy models 

in various fields, especially data analysis. This technology works by mimicking the human brain's ability 

to discern patterns and establish relationships between input and output data without prior assumptions 

[17]. Artificial neural network models (ANNs) that mimic the functioning of the Human Brain can 

effectively predict PV parameters and optimize drying processes. Their ability to simulate process 

variables, self-tune, and improve performance for a specific task is promising. Additionally, machine 

learning can be used to better understand the drying processes of agricultural and industrial products 

and to model nonlinear processes. Machine learning algorithms have been used to eliminate the 

complexity in the drying process of various agricultural products such as banana [18], dragon fruit [19], 

and pumpkin [20]. When the literature was examined, studies emerged in which various mathematical 

and ML methods were used to examine solar drying systems. Some of these studies are highlighted 

below. 

 

Saydam et al. conducted the design and experimental analysis of a SAC with a double-pass V-type 

absorber surface. An attempt was made to estimate the SAC exit temperature using three different 

artificial neural network algorithms. Their analysis revealed an average thermal efficiency of 56% with 

a maximum temperature difference of 36°C between the collector inlet and outlet. The best results 

among the ANN models were obtained using the Levenberg-Marquardt (LM) learning algorithm [21]. 

 

In another study, Özdemir et al. experimentally researched the convective infrared and heat recovery 

drying systems and modeled the results achieved using the Response Surface Methodology (RSM). In 

modeling, LM and Fermi transfer function algorithms estimate drying parameters such as moisture 

content and drying rate. Multiple coefficients of determination (R2), root mean square error (RMSE), 
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and mean absolute percentage error (MAPE) were used in modeling for evaluation. Additionally, the 

energy efficiency of the system was found to be 18% on average [22]. 

 

Saydam et al. investigated the drying performance of a SAC in a drying chamber. In the test results, the 

average drying rate was found to be 0.0017 g water/g dry matter. The best results in mathematical 

modeling of drying rates were obtained with sigmoid and empirical Gaussian Process Regression (GPR) 

models [23]. 

 

Şevik et al. designed and tested a new mushroom drying system using an air heat pump and solar energy 

at different air flow rates. Moisture content and drying parameters obtained from this system were 

modeled using the Levenberg-Marquardt learning algorithm and ANN. R², MAPE, and RMSE were 

taken into account to determine the statistical validity and accuracy of the models. The study concluded 

that the experimental results were consistent with the modeling results [24]. 

 

In this study, unlike the literature, the performance of a novel solar energy-assisted drying system has 

been examined, focusing on the prediction of key parameters such as cabin temperature, moisture 

content, and overall efficiency using machine learning algorithms to enhance the effectiveness of drying 

systems. Drying of nettle products using a solar energy-assisted drying system was investigated. The 

system is designed to be used even on cloudy days in summer or in winter with low irradiance. 

Additionally, research on modeling the room temperature, total efficiency and moisture content values 

obtained from this system using machine learning algorithms is presented. The aim is to facilitate 

analysis by better understanding system dynamics and drying parameters. 

 

II. Materials and Methods 
 

A. Experimental System 

 
Products were dried using airflow in a closed cabin that does not transmit solar radiation. The hot air for 

drying the products in the cabin was obtained from an SAC. Solar drying processes can be conducted 

during the summer when ambient temperatures and solar radiation are high. Therefore, experiments 

were conducted during the winter when ambient temperatures and solar radiation were lower. 

Additionally, photovoltaic panels were used in the design to meet the energy needs of electrical devices 

in the system. This allows the drying system to be used in areas without access to electricity. 

 

The system was designed to operate during winter conditions as well, so concentrators were used to 

increase the amount of solar radiation. Figure 1 shows the schematic view of the drying system, while 

the front and rear views of the assembled system are presented in Figure 2. This system, which will be 

used in the drying of agricultural and industrial products, is an indirect drying system in which 

concentrated SAC and photovoltaic modules are combined. The hot air obtained from the air collector 

was conveyed to the drying cabin with the assistance of a fan. An automation system controlled the 

humidity and temperature of the drying cabin, while other sensor data from the system was also recorded 

in real time by the same automation system. Cooling with water was implemented to prevent overheating 

of the photovoltaic module, and the hot water obtained from this process was used to preheat the inlet 

air of the air collector. A heat exchanger was used for this preheating process. The electrical energy 

generated from the photovoltaic module was stored in a solar battery and later used to meet the electricity 

needs of the fan, pump, and automation system. 

 



1917 

 

 
Figure 1. Appearance of the system 

 

 

 
Figure 2. Indirect solar-powered drying system: (a) rear view, (b) front view 

 

 

Table 1 presents the specifications of the measurement instruments used in the drying system. 

 
Table 1. Technical Specifications of Measurement Instruments in the Experimental System 

 

Equipment Specifications 

K-Type Thermocouple 
K-type TP-01 Thermocouple Measurement 

Range: -50°C to 400°C 

18b20 Temperature Probe 
Waterproof 18b20 Temperature Probe 

Measurement Range: -20°C to 105°C 

Hygrometer Humidity: 0-100%RH ±3% (Max ±5%) RH 

Solar Meter PCE, 0–2000 W/m² ±5 W/m² 
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Multimeter 

DC Voltage Range Resolution Accuracy: 

200mV- 600V 1V: ± (0.5% 2) 

DC Current Range: 20uA-10A 10mA ± (1% 

2) 

Load Cell 
Capacity: 0-5 kg ±0.002 kg Operating 

Temperature Range: -20/80°C 

 

 

B. Artificial Neural Network Algorithm 
 

ANNs are artificial intelligence models that mimic the functioning of the human brain. ANNs associate 

specific input values with output values based on given inputs [13]. ANNs have various applications, 

including pattern recognition, prediction, and classification, and are computer systems capable of 

performing human-like learning through their learning capabilities. This system consists of artificial 

neurons, and the weight value of each connection is where the information is stored. Training and testing 

data sets are typically used when creating an ANN model. These data sets are used during the model's 

learning process to evaluate its accuracy. ANNs, an important artificial intelligence technique, consist 

of three fundamental layers: the input, hidden, and output layers. Input data is directly applied to the 

input layer, so the number of neurons in the input layer is equal to the number of different input samples 

at any given time [25]. Then, these data go through operations such as summation, multiplication, and 

activation functions until they reach the output layer. Finally, the network is tested with test data that 

was not used during training, and its accuracy is determined. This study used a feedforward neural 

network as the learning function, and a backpropagation algorithm (multilayer perceptron) was used as 

the training function. 

 

C. Artificial Neural Network Algorithm 

 
Support Vector Machines, introduced by Boser and his colleagues, encompassed classification and non-

linear function estimation, which attracted the interest of many researchers [26]. For regression, the 

support vector method is formulated as a convex optimization problem, particularly a second-order 

programming (QP) problem. To achieve this, the approximate problem is transformed into a constrained 

optimization problem by using Vapnik's ε-insensitive loss function [27]. Particularly, SVM models 

exhibit excellent scalability in high-dimensional input spaces. They find applications in engineering, 

time series analysis, handwriting recognition, face recognition, speaker identification, healthcare, and 

many other fields. 

 

D. Artificial Neural Network Algorithm 

 
The decision tree algorithm in ML is a method for the classification and prediction of non-linear 

functions based on a gradient-boosting technique [28]. Gradient Boosting Decision Trees (GBDT) 

consist of a series of weak classification models that have a strong relationship among them. The number 

of these weak classification models is repeated until it reaches a predetermined value, and a strong 

classification model is obtained by training the last weak classification model. The gradient boosting 

algorithm differs from the random forest algorithm. Additionally, the gradient boosting algorithm 

predicts the error of each weak classification algorithm and gradually reduces this error. Thus, a strong 

model is obtained through hundreds of iterations. 

 

E. Comparison Statistical Metrics 

 
Three fundamental measures have been considered when evaluating the results of ANNs, SVM, and 

GBDT algorithms. These measurements include determination coefficient (R2), root mean squared error 

(RMSE), and mean absolute error (MAE). The detailed equations and explanations of these metrics are 
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provided in Table 2. In Table 2, 𝑝𝑖, 𝑒𝑖, and n represent the prediction, experimental data, and number of 

observations, respectively. 

 
Table 2. Comparison metrics 

 

Metric  Equation Description 

R2 1 −
∑(𝑒𝑖 − 𝑝𝑖)2

∑(𝑒𝑖 − 𝑒)2
 

This metric provides information about how 

well a model can predict a particular 

measured dataset. The value of R2 ranges 

from 0 to 1. As the R2 value approaches 1, it 

indicates better performance [29]. 

RMSE √
1

𝑛
∑ (𝑝𝑖 − 𝑒𝑖)2

𝑛

𝑖=1
× 100 

RMSE provides information about how well a 

model can predict a series of measured data. It 

exhibits better performance when RMSE is 

close to zero [30]. 

MAE 
1

𝑛
∑ |𝑒𝑖 − 𝑝𝑖| × 100

𝑛

𝑖=1
 

MAE evaluates the absolute magnitude of 

differences between corresponding data points 

and allows for a direct comparison between 

the predicted values and actual observations in 

a given context. A low MAE value indicates 

better prediction [13]. 

 

 

 

III. EXPERIMENTAL ANALYSIS 
 
The electrical power gain generated from the PV/T module can be calculated as follows: 

 

�̇�𝑒𝑙 = 𝑉. 𝐼           (1) 

 

Where, V is the PV module voltage, and I is the current. PV module electrical efficiency can be found 

with Equation 2 below: 

 

ηm =  
�̇�𝑒𝐼

𝐼(𝑡)𝑥𝐴
           (2) 

 

Where, I(t) refer to the solar radiation intensity, and A refers to the PV module area. The total thermal 

efficiency of the drying system can be calculated using Equation 3 below: 

 

ηtotal =  
�̇� 𝑡𝑜𝑡𝑎𝑙

𝐼(𝑡)×Asc+�̇�𝑓+�̇�𝑝
         (3) 

 

The total thermal energy gain of the system can be calculated using Equation 4. 

 

�̇�𝑡𝑜𝑡𝑎𝑙 = +�̇�𝑃𝑉 + �̇�𝐶𝑂𝐿          (4) 

 

Thermal energy obtained from the PV module can be calculated by measuring the input water 

temperature and the exit water temperature [31]. 

 

�̇�𝑃𝑉 = �̇�𝑤 × 𝑐𝑝 × (𝑇𝑃𝑉,𝑖𝑛 − 𝑇𝑃𝑉,𝑜𝑢𝑡)        (5) 

 

Thermal energy obtained from the air collector can be calculated with Equation 6 using the inlet and 

outlet air temperatures of the collector. 
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�̇�𝑆𝐴𝐶 = �̇�𝑎𝑖𝑟 × 𝑐𝑝,𝑎𝑖𝑟 × (𝑇𝑆𝐴𝐶,𝑜𝑢𝑡 − 𝑇𝑆𝐴𝐶,𝑖𝑛)       (6) 

 

Nettle moisture content values on a wet basis can be calculated using Equation 7: 

 

𝑀𝐶 =  
𝑀𝑖−𝑀𝑑

𝑀𝑑
           (7) 

 

Where, 𝑀𝑖 is the initial mass of the dried products and 𝑀𝑑 is the mass of the product in the dried state. 

 

 

IV. RESULT AND DISCUSSIONS 
 

In this section, the performance of the solar energy-assisted drying system was evaluated using stinging 

nettles in October 2022. The system's design and installation were examined, and the obtained data 

during the drying process were evaluated to assess how successfully the drying process could be 

modeled using artificial neural network models. 

 

The variation of ambient temperature and radiation intensity in the vicinity of the drying system is 

depicted in Figure 3. Throughout the study, data recorded at one-minute intervals were averaged over 

twelve-minute intervals to generate the graphs. The experiment, commencing at 11:00, saw the ambient 

temperature starting at 33.3 °C and reaching a peak of 53 °C. The average ambient temperature was 

calculated to be 42.8 °C. The right axis of the same graph displays the intensified radiation data. The 

radiation intensity peaked at 14:00 and then began to decrease. The highest radiation intensity recorded 

was 1013 W/m2, while the average solar radiation intensity was found to be 795 W/m2. 

 

 

 
Figure 3. Change of radiation with environmental temperature. 

 
Figure 4 shows the variation in drying chamber temperature, photovoltaic module rear temperature, and 

ambient temperature. Throughout the day, the temperature of the photovoltaic panel ranged from a 

minimum of 38°C to a maximum of 52°C. The average rear temperature of the photovoltaic module was 

calculated at 43°C. Despite fluctuations in the rear temperature of the photovoltaic module during the 
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experiment, the cooling process occurred. The drying cabin temperature was determined to be an 

average of 55.5°C during the drying process. Observations showed that it reached a minimum of 35°C 

and a maximum of 62°C. This drying chamber temperature facilitated the drying of the nettle. 

 

 

 
Figure 4. Change of drying cabin temperature, photovoltaic module rear temperature and ambient temperature 

 

Figure 5 shows the heat obtained from the SAC, the heat obtained from the PV module, and the heat 

transferred to the drying chamber. The average thermal energy obtained from the collector was 

calculated as 119 W, while the thermal energy obtained from the PV module was 35 W. The thermal 

energy transferred to the drying chamber was found to be 154 W. While the collector provided 77% of 

the thermal energy used in the drying process, the remaining 23% was obtained from the PV model. 

Thus, cooling is provided in the PV module, and additional thermal energy is used for drying. 
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Figure 5. SAC, PV/T and drying cabin thermal energy flows 

 

The variation in total efficiency during the experiment is shown in Figure 6. Total efficiency is expressed 

as the ratio of the thermal energy transferred to the drying chamber to the solar radiation intensity 

incident on the experimental system, as indicated in Equation 3. At the beginning of the experiment, the 

total efficiency was approximately 3.5%, and it increased as the solar radiation intensity increased. The 

total efficiency reached its highest value of 37%. Subsequently, as the solar radiation intensity 

decreased, the total efficiency also decreased. The average total efficiency was calculated as 16.8%. 

 

 

0

20

40

60

80

100

120

140

160

180

200

220

1
1

:1
0

1
1

:2
2

1
1

:3
4

1
1

:4
6

1
1

:5
8

1
2

:1
0

1
2

:2
2

1
2

:3
3

1
2

:4
5

1
2

:5
7

1
3

:0
9

1
3

:2
1

1
3

:3
3

1
3

:4
5

1
3

:5
7

1
4

:0
9

1
4

:2
1

1
4

:3
3

1
4

:4
5

1
4

:5
7

1
5

:0
9

1
5

:2
1

1
5

:3
3

1
5

:4
5

1
5

:5
6

1
6

:0
8

1
6

:2
0

1
6

:3
2

1
6

:4
4

1
6

:5
6

1
7

:0
8

1
7

:2
0

1
7

:3
2

1
7

:4
4

1
7

:5
6

Th
e 

ra
te

s 
o

f 
Th

er
m

al
 e

n
er

gy
 (

W
)

Time

QSAC QPV Qtotal



1923 

 

 
Figure 6. Change in total efficiency during the experiment 

 

Figure 7 shows the change in the nettle's moisture content during the experiment. The nettle was dried 

from a moisture content of 11.18 g water / g dry matter to 1.18 g water / g dry matter. 

 

 
Figure 7. Moisture content change during the experiment 
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A. EVALUATING AND COMPARING PREDICTION RESULTS 
 

The experimental dataset was divided into two parts, with 60% used for training and 40% for testing. 

The data was split using random sampling. The input data for the specified prediction values is 

introduced in the relevant sections of the following graphics. The data obtained from ANN, support 

vector machines, and gradient-boosting decision tree ML algorithms are presented in Table 3. 

 
Table 3. Statistical metric comparison of machine learning algorithms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

According to the statistical metrics shown in Table 3, the SVM algorithm has demonstrated a significant 

superiority in predicting the cabin temperature. The SVM algorithm has outperformed the ANN and 

GBDT algorithms in all metrics. Again, the best results are obtained with the SVM algorithm across all 

statistical metrics when predicting humidity content. Following the SVM algorithm, the GBDT 

algorithm and the ANN algorithm have succeeded. Although the GBDT algorithm did not perform as 

well as the SVM algorithm in predicting humidity content, it still yielded successful results. Finally, 

looking at the prediction of total efficiency, the SVM algorithm has shown a significant superiority over 

the other two algorithms according to the statistical metrics. While all three ML algorithms perform well 

according to the R2 statistical metric, other statistical metrics reveal their fundamental differences. 

Despite the instantaneous changes in test values, the SVM algorithm has been able to predict them quite 

well. 

 
Figure 8 shows the variation in predicted cabin temperature values using the YSA, SVM, and GBDT 

algorithms based on the data obtained from the experimental system. Time, PV module rear temperature, 

collector output temperature, PV/T output temperature, and solar radiation data were provided as inputs 

to the ML algorithms to predict the cabin temperature. When Table 3 and Figure 8 are considered 

together, it is observed that the SVM algorithm is the most successful in predicting cabin temperature. 

Additionally, it is seen that the GBDT algorithm is also quite successful, but it falls behind the SVM 

algorithm in some observation values. 

Label  Statistical Metrics ANN SVM GBDT 

Cabinet Temperature 

R2 0.94 0.98 0.95 

RMSE, % 40.30 13.31 17.20 

MAE, % 31.50 9.015 13.10 

Moisture Content 

R2 0.95 0.99 0.99 

RMSE, % 15.96 5.40 6.91 

MAE, % 12.35 3.86 5.05 

Total efficiency R2 

RMSE, % 

MAE, % 

0.94 

35.20 

26.10 

0.99 

4.60 

3.60 

0.97 

39.30 

29.20 
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Figure 8. Graph of cabin temperature according to machine learning algorithms predictions 

 

Figure 9 shows the variation in predicted moisture content values according to the YSA, SVM, and 

GBDT ML algorithms. Time, PV module rear temperature, cabin temperature, solar radiation, and 

ambient temperature data were provided as inputs to the ML algorithms to predict the moisture content. 

Based on the statistical metrics in Table 3 and the data in Figure 9, it was found that the most successful 

predictions were obtained from the SVM algorithm using the experimental system's measured data. The 

GBDT algorithm also made successful predictions, but errors in predicting actual data at the beginning 

of the experiment were observed. The YSA algorithm's significant errors in predictions towards the end 

of the experiment negatively affected its performance. 
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Figure 9. Graph of moisture content according to machine learning algorithms predictions 

 

 

The graph in Figure 10 illustrates the variation in total efficiency predicted by ML algorithms. Time, 

FV module input-output temperatures, collector input-output temperatures, cabin temperature, solar 

radiation intensity, and ambient temperature data were inputs to the ML algorithms to predict total 

efficiency. As seen in the statistical metrics in Table 3 and Figure 10, the SVM algorithm best predicted 

the total efficiency results from the data obtained from the experimental system. Although the YSA and 

GBDT algorithms made fairly close predictions, they lagged behind the SVM algorithm. 
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Figure 10. Graph of total efficiency according to machine learning algorithms predictions 

 

 

V. CONCLUSION 
 

In this study, the performance of a novel solar energy-assisted drying system has been examined, 

focusing on predicting key parameters such as cabin temperature, moisture content, and overall 

efficiency using machine learning algorithms to enhance the effectiveness of drying systems. The system 

utilized thermal energy obtained from a SAC and a PV/T to dry stinging nettle. The findings obtained 

during the experiment are summarized below: 

 

 The average solar irradiance was 795 W/m2, while the average ambient temperature was 

calculated to be 42.8 °C during the experiment. 

 Throughout the experiment, the average rear temperature of the PV module was calculated to 

be 43 °C. Additionally, the PV rear temperature ranged from a minimum of 38 °C to a maximum 

of 52 °C during the day. 

 The average cabin temperature was determined to be 55.5 °C, with observed fluctuations 

between 35 °C and 62 °C. 

 The average thermal energy transferred to the drying cabin was calculated as 154 W, with 77% 

of this energy sourced from the collector and the remaining 23% from the PV module. 

 The total efficiency of the drying system was calculated at a maximum of 37%, with an average 

total efficiency of 16.8%. 

 The SVM algorithm provided the best predictions in cabin temperature prediction, with R2, 

RMSE, and MAE statistical metric values of 0.98, 13.31%, and 9.015%, respectively. 

 For the prediction of moisture content, the SVM algorithm achieved the best results with R2 of 

0.99, RMSE of 5.4%, and MAE of 3.86%. 

 According to statistical metrics and the obtained prediction values, the SVM algorithm 

significantly outperformed others in predicting the total efficiency. 

 The SVM machine learning emerged as the best prediction algorithm compared to YSA and 

GBDT algorithms. 
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