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ABSTRACT 
Classification problems in the fields of machine learning and artificial intelligence facilitate the extraction of 

meaningful information from data by assigning inputs to specific categories. Classification processes offer 

solutions for a wide range of areas, including health, agriculture, education, and sports. However, the classification 

process typically requires a large amount of labeled data. Accessing a large volume of labeled data is costly and 

time-consuming. The few-shot learning method has been utilized to address this issue, allowing models to learn 

new tasks with minimal examples. In this article, pre-trained deep network architectures have been fed into 

prototype networks, creating representative examples for each class. Thus, the category to which new data belongs 

is determined based on its similarity to the prototypes. Experimental studies have been conducted on the Food101 

and Oxford-III Pet datasets, and the experimental results have been measured using four different evaluation 

metrics. The results have been presented and interpreted both in table form and graphically. In comparing 

classification accuracy, the metrics of Accuracy, F1_Score, Precision, and Recall were utilized. For the Oxford-

III Pet dataset, ResNet18 demonstrated the best classification performance with metric values of 0.9986, 1, 1, and 

1 for Accuracy, F1_Score, Precision, and Recall, respectively. In the case of the Food101 dataset, EfficientNetB0 

achieved the highest classification performance, with values of 0.9320, 0.93, 0.94, and 0.93 for Accuracy, 

F1_Score, Precision, and Recall, respectively. 
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Sınırlı Veri ile Derin Öğrenme: Birkaç Atışlı Öğrenme ve Prototip 

Ağlar Aracılığıyla Gelişmiş Sınıflandırma Yaklaşımları 
 

Öz 
Sınıflandırma problemleri, makine öğrenimi ve yapay zekâ alanında, girdileri belirli kategorilere atayarak 

verilerden anlamlı bilgi çıkarılmasını sağlar. Sınıflandırma işlemleri; sağlık, tarım, eğitim ve spor gibi geniş bir 

alan için çözümler sunar. Ancak, sınıflandırma işlemi yapılırken genellikle büyük miktarda etiketli veriye ihtiyaç 

duyulur. Büyük miktarda etiketli veriye ulaşmak maliyetli ve zaman alıcıdır. Bu problemin çözebilmek için birkaç 

atışlı öğrenme yöntemi ile modelin çok sınırlı örneklerle yeni görevleri öğrenmesine olanak tanınmıştır. Bu 

makalede, önceden eğitilmiş derin ağ mimarileri prototip ağlara beslenmiş ve her sınıf için temsilci örnekler 

oluşturulmuştur. Böylece, yeni verilerin hangi kategoriye ait olduğu prototiplere olan benzerliğe göre 

belirlenmiştir. Deneysel çalışmalar, Food101 ve Oxford-III Pet veri setleri üzerinde denenmiş ve deneysel sonuçlar 

dört farklı değerlendirme metriği ile ölçülmüştür. Deneysel sonuçlar hem tablo olarak hem de grafiksel olarak 

gösterilmiş ve yorumlanmıştır. Sınıflandırma doğruluğunu karşılaştırmak için Doğruluk, F1_Skoru, Kesinlik ve 

Duyarlılık metrikleri kullanılmıştır. Oxford-III Pet veri seti için, ResNet18 mimarisi sırasıyla Doğruluk, F1_Skoru, 

Kesinlik ve Duyarlılık için 0.9986, 1, 1 ve 1 değerleriyle en iyi sınıflandırma performansını göstermiştir. Food101 
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veri seti için ise EfficientNetB0 mimarisi sırasıyla 0.9320, 0.93, 0.94 ve 0.93 değerleriyle Doğruluk, F1_Skoru, 

Kesinlik ve Duyarlılık açısından en yüksek sınıflandırma performansına ulaşmıştır. 

 

Anahtar Kelimeler: Sınıflandırma, az atışlı öğrenme, transfer öğrenme 

 

 

I. INTRODUCTION 
 

Classification is an essential procedure in data science that divides data into predetermined categories. 

Sorting a given collection of input samples into preset categories is the aim of classification. 

Classification processes, as applied in various fields such as glaucoma detection using fundus images 

[1], network traffic classification to distinguish traffic [2], and atrial fibrillation detection from 

electrocardiogram recordings [3], are critically important because they automate decision-making 

processes across different field. 

 

The automatic classification of data has been accomplished using machine learning techniques known 

as supervised and unsupervised learning methods [3-5]. However, the emergence of deep neural network 

architectures has accelerated classification tasks, producing successful outcomes in this area. In the 

realm of classification, Convolutional Neural Network (CNN) architectures like AlexNet [6], 

GoogLeNet [7], VggNet [8], ResNet [9], and DenseNet [10] have had a tremendous influence and 

achieved notable accomplishments. While the ability of deep network architectures to produce 

successful results and operate quickly is viewed as advantageous, these methods also have their 

limitations. Deep network architectures require substantial hardware resources and a large amount of 

data. To address the hardware dependency issue, servers such as GoogleColab and Amazon AWS have 

been made available. However, the need for large data remains a significant constraint. Researchers 

have developed synthetic data augmentation methods, such as generative adversarial networks, to meet 

the demand for data augmentation; however, challenges remain regarding the reliability and dependency 

on large datasets. Even when a substantial amount of data is available, finding and labeling labeled data 

is quite burdensome. This process is particularly costly in terms of time with multi-class data. The 

scarcity of data leads to problems with models being unable to learn, which adversely affects model 

performance. 

 

In 2006, Fei-Fei Li et al. [11] proposed a method known as "One-Shot Learning", paving the way for 

the operation of deep neural network architectures with limited data. Subsequently, the development of 

the concept of "meta-learning" has facilitated the advancement of methods referred to as "Few-Shot 

Learning (FSL)".  FSL has been utilized in numerous areas including classification, object detection, 

and segmentation. Paeedeh et al. [12] proposed an "Adaptive Transformer Network" using few-shot 

learning. The aim of the method is to detect domain shifts between the base task and the target task. 

Zhao et al. [13] proposed a self-attention mechanism-based FSL. The objective here is to transform the 

features obtained via the transfer network and to expand the support set with query samples that have 

high reliability. Snell et al. [14] designed "Prototypical Networks (ProtoNet)" for the few-shot 

classification problem. This method generates state-of-the-art results effectively and simply, even 

without the complex extensions developed for matching networks among meta-learning methods. In 

brief, due to its simplicity and effectiveness, this network structure is considered a promising approach 

for few-shot learning. Sung et al. [15] proposed the "Relation Network" method. This network 

undergoes end-to-end training from scratch. Extensive experiments conducted across five different 

benchmarks demonstrate that it is a unified and effective approach for both zero-shot learning and few-

shot learning. Wang et al. [16] introduced the "Simple Shot" method. This method investigates the 

accuracy of nearest neighbor baselines without the need for meta-learning. As a result, it has been 

observed that simple feature transformations are sufficient to achieve competitive few-shot learning 

accuracies. Gülcü and Alkan [17] have examined the Model-Agnostic Meta-Learning (MAML) and 

ProtoNet algorithms for the few-shot learning problem. This study determined that the MAML algorithm 

yields better results than ProtoNet with fewer examples; however, ProtoNet is able to generalize better 

when there are more examples. Işık [18] explores the use of few-shot learning algorithms to improve 

classification performance in scenarios where traditional deep learning methods fail due to a lack of 
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training data. Experimental results were obtained by classifying tomato diseases in the PlantVillage 

dataset. This approach suggests the potential inclusion of attention mechanisms in feature extraction 

processes and proposes new areas of research within few-shot learning methodologies. Argüse et al. 

[19] have introduced FSL algorithms for plant leaf classification with small datasets using deep learning. 

The PlantVillage dataset was utilized in this study. FSL was benchmarked using Siamese networks and 

Triplet loss. Consequently, it has been observed that learning new plant leaf and disease types with very 

small datasets is feasible using deep learning with Siamese networks and Triplet loss. Wang et al. [20] 

proposed a few-shot learning model based on the Siamese network for classifying plant leaves. This 

metric also utilizes a k-nearest neighbors classifier. The Flavia, Swedish, and Leafsnap datasets were 

employed to evaluate the method. Experimental results demonstrate that the proposed method can 

achieve high classification accuracy with a small supervised sample size. Frikha et al. [21] focus on the 

few-shot and One-Class Classification (OCC) problem. This method aims to learn a model particularly 

suitable for the few-shot one-class classification process. The method was evaluated across 8 datasets. 

Consequently, it has been experimentally observed that the proposed data sampling technique enhances 

the performance of newer meta-learning algorithms in few-shot OCC scenarios, delivering state-of-the-

art results for this problem. Chen et al. [22] have proposed the joint use of a self-supervised learning 

approach with an embedding network for few-shot image classification. Studies conducted on four 

datasets have proven that the proposed method can achieve state-of-the-art results. Krenzer et al. [23] 

utilized deep learning architectures combined with a few-shot learning approach to automate the 

classification of polyps. They developed classification methods based on polyp shape and texture-

surface patterns. The classification method based on texture-level patterns is termed NICE. This few-

shot learning-based NICE classification achieved an accuracy of 81.13% when applied to a limited 

dataset. Liu et al. [24] have proposed a deep few-shot learning method for hyperspectral image 

classification. The aim is to facilitate hyperspectral image classification with less data. The widely used 

HSI dataset was employed for performance evaluation. Consequently, it has been demonstrated that the 

method can achieve better classification accuracy with just a few labeled examples. Kang and Cho [25] 

have proposed an integrated few-shot learning method for classification and segmentation tasks. 

Experimental results have demonstrated that the proposed method process exhibits promising 

performance and achieves state-of-the-art results on standard few-shot segmentation benchmarks. Hu et 

al. [26] have proposed a transfer-based few-shot learning method. This approach aims to preprocess 

feature vectors to approximate them to Gaussian-like distributions and utilize an algorithm based on this 

preprocessing outcome. The results have been evaluated on benchmarks. The method has provided 

accuracy in both 1-shot and 5-shot classifications and has been observed to yield significant outcomes 

with a minimal number of hyper parameters. Kim et al. [27] proposed an Edge-Labeling Graph Neural 

Network (EGNN) for few-shot learning. This method adapts the deep neural network on an edge-

labeling graph and executes this adaptation iteratively. Experimental results have shown that the 

proposed EGNN outperforms other few-shot learning algorithms in both supervised and semi-

supervised few-shot image classification tasks. 

 

This article analyzes the comparison of FSL systems inspired by transfer learning on prototypical 

networks. Table 1 illustrates the general progression of the article. 
 

Table 1. Overview of the Article Analysis 

Problem Method Challenge 

Limited labeled data Prototypical networks Can limit their flexibility in highly variable 

datasets. 

Diverse image categories Pre-trained CNNs                            Computational cost varies by model 

Few-shot recognition 5-shot-5-way FSL setup Limited scalability to larger datasets 

 

 

Here, the performance of FSL is improved by applying learned information about data classes, such as 

labeled data for multiple classes from large datasets, to new classes. This approach provides a thorough 

analysis of how well CNN architectures pre-trained on two distinct datasets inside Prototypical 

Networks perform. 
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The remainder of the paper is organized as follows. Section II contains the Materials and Methods. This 

section discusses the datasets used, the methodologies employed, and the implementation environment. 

Section III is the Experimental Results and Discussion, where the outcomes of the experimental study 

are presented and discussed. The final section concludes the paper. 

 

 

 

II. MATERIAL AND METHODS 
 

A. USING DATASETS 
 

In this study, the publicly available Oxford-III Pet [28] and Food101 [29] classification datasets were 

used to obtain the experimental results. 

 

A. 1. Oxford-III Pet Dataset  
 

The Oxford-III Pet dataset [28] focuses on pet animals. This dataset comprises 37 different categories, 

with nearly 200 images in each category [28]. Each image includes the breed (species), pixel-level 

trimap segmentation, and the head ROI (Region of Interest). The breed label identifies the pet's species 

and is used in classification tasks. The head ROI denotes the specified region of the pet's head within 

the image. Pixel-level trimap segmentation is a labeling process that indicates the likelihood of each 

pixel belonging to a specific area or class. This is a crucial component in clarifying the boundaries of 

pets in images. The diversity in images and ground truth labels also provide a rich resource for the 

development of deep learning and artificial intelligence techniques. Figure 1 showcases examples from 

the Oxford-III Pet dataset [28]. 

 

 
 

Figure 1. Examples of images from the Oxford-III Pet dataset 

A. 2.  Food101 Dataset  

 
The Food101 dataset [29] encompasses 101 food classification categories, consisting of 101,000 images; 

each class contains a total of 1,000 images. Within each class, there are 250 manually curated test images 

and 750 training images. The training images have been intentionally left uncleaned (to facilitate better 

training) and contain a minimal amount of noise [29]. All images have been resized to a maximum of 

512 × 512 pixels. Figure 2 showcases examples from the Food101 dataset [29]. 
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Figure 2. Examples of images from the Food101 dataset 

 

B. METHOD 

 
In this section, a transfer learning framework for few-shot learning is presented. The proposed 

framework consists of three primary steps. Initially, features are extracted from base class data using 

three principal pre-trained deep network architectures. In the second step, the feature extractor is 

employed to derive features from new class data, which are then provided to the prototypical network 

as support and query sets. The final step involves measuring the classification success of the model. This 

article utilizes two large-scale datasets containing base classes. The task of FSL is to solve the N-way-

K-shot problem for each class within the dataset. The flow-chart diagram of the method is presented in 

Figure 3. 

 

 
 

Figure 3. Flow-Chart Diagram  
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C. FEW SHOT LEARNING 

 
Few-shot learning is a learning method that addresses the limited data problem. In this approach, the 

model aims to quickly adapt to new environments with extremely few examples. FSL is a significant 

research area for classification, object recognition, and other tasks. It operates over base and novel class 

sets. The base class is the one with a large number of labels. The novel class is the part with very few 

training examples. Here, the objective is to enable the recognition of new classes with even a minimal 

number of examples. The model is trained on the base classes and extracts general features from the 

examples it sees. Then, the model is tested on the novel class. Here, for each novel class, the model 

receives a few “support” examples and a set of “query” examples. Support consists of the few examples 

used for training. Query includes the test examples that the model needs to classify. ProtoNets are 

utilized to overcome the overfitting problem caused by the scarcity of data in labeled classes. ProtoNets 

extract features from a few support examples of each new class and calculate the average of all examples 

within a class, thereby selecting a representative feature for each class. These selected representative 

features are termed as “prototypes.” Hence, acting as a representative for the respective category, they 

rapidly classify new examples and provide generalization. Prototype networks have proven their success 

in few-shot classification by achieving high performance, demonstrating their effectiveness [30-32]. 

Figure 4 represents a visual for prototype networks. In Figure 4, an embedding space and the points 

within this space are shown. The embedding space is a mathematical space used to obtain a more 

manageable, typically lower-dimensional representation of the data. The colored regions in the figure 

represent data examples belonging to a specific class, and at the center of each class, the "prototype" of 

that class is located. During the learning process, the model uses these prototypes to classify new 

examples. A point (i.e., a test example) in the embedding space is labeled as belonging to the class 

whose region it falls into. 

 

 

 
 

Figure 4. Prototypical network [14] 

 

 

C. TRANSFER LEARNING 

 

Transfer learning is the reuse of a model trained for one task for another task. It occurs in two stages. In 

the first stage, there is an original dataset and a task for which this dataset will be applied. In the second 

stage, there is a secondary dataset and a new task for which this dataset will be applied. If the data 

transfer is made between similar domains, it is classified as homogeneous learning; if made between 

different domains, it is classified as heterogeneous learning. The advantage of transfer learning is that it 

reduces overfitting and improves the model's generalization. In deep network architectures, the training 

of models is accelerated and faster convergence is achieved in new tasks by using previously trained 

network architectures. The ImageNet dataset [33], which contains more than 1.2 million natural images, 

includes pre-trained CNN architectures. The transfer learning approaches used in this article are the 
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ResNet18 [9], EfficientNetB0 [34], and MobileNetV3 [35] architectures. Detailed information about 

these trained architectures is presented in Table 2. The ResNet18 [9] architecture has 18 layers. In deep 

network architectures, as the depth increases, the vanishing gradient problem emerges. It has been 

proposed to overcome this problem. This architecture consists of structures called “Residual Blocks.” 

In traditional deep network architectures, each layer is given as input to the next layer. However, if there 

are residual blocks, each layer feeds not only the next layer but also distant layers through skip 

connections. The EfficientNetB0 [34] architecture, unlike other traditional deep network architectures, 

uses the “Compound Scaling” method. This method finds the optimal structure for the model by scaling 

the resolution, depth, and width dimensions together. The architecture also efficiently reduces the 

number of parameters using blocks called Mobile Inverted Bottleneck Convolution (MBConv). The 

MobileNetV3[35] architecture has a lightweight network structure, making it preferable for hardware 

with limited computational power. Unlike traditional deep network structures, it utilizes depth wise 

separable convolutions (DSC), squeeze-and-excitation (SE) blocks, and inverted residual blocks. DSC 

performs the convolution operation by dividing it into depth and point operations. SE emphasizes 

important features by modeling the relationships between channels, focusing on the channel dimension 

and disregarding the spatial dimension of the target information. Inverted residual blocks are used to 

connect input and output features to the same channel, thus preventing excessive memory consumption. 

 

Table 2. Deep learning architectures used transfer learning. 

Model Size 

[MB] 

Number of parameters Depth 

ResNet18 [9] 45 11.7M 18 

EfficientNetB0 [34] 20.5 5.3M 224 

MobileNetV3 [35] 9.8 2.5M 14 

 

 

D. IMPLEMENTATION DETAILS 

 

In this study, the Prototypical Network from FSL network structures was utilized. The implementation 

was carried out in Python, leveraging the Torch library and the easyfsl library designed for few-shot 

learning. A Flatten layer was used as the convolutional network layer. Table 3 displays the fixed 

parameters determined for FSL. Table 4 provides the training details of the deep network architectures 

used for transfer learning. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.  Few-Shot Learning Constants for the Food101 and Oxford-III Pet Datasets  

 

Parameter(s) Value(s) 

Way 5 

Shot 5 

Query 10 

Evaluation Task 100 

Table 4.   Training Information for the Food101 and Oxford-III Pet Datasets  

Parameter(s) Value(s) 

Training  Episodes 60000 

Validation task 100 

Optimizer Adam 

Learning rate --- 

Criterion Cross entropy loss 
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E. EVALUATION METRIC 

 

Evaluation metrics assess the performance of conducted experimental studies, allowing for the 

comparison of methods and determination of their success rates. In this article, the four most commonly 

used evaluation metrics have been employed. These metrics are accuracy, precision, recall, and 

F1_Score. Accuracy (Acc) measures the proportion of correctly predicted examples within the total 

samples, serving as the most fundamental metric in classification problems. It gauges the model's ability 

to correctly classify all classes. Precision (Pr) represents the ratio of positive examples correctly 

classified by the model to all examples classified as positive. Recall (R) denotes the ratio of true positive 

examples to the sum of true positive and false negative examples identified by the model, aiming to 

reduce false negatives. The F1_Score, or Dice, is the harmonic mean of precision and recall, indicating 

the balance between them. The mathematical expressions for these evaluation metrics are provided 

sequentially from Equation (1) to (4). 

 

 

𝐴𝑐𝑐 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
      (1) 

 

𝑃𝑟 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
     (2) 

 

𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
     (3) 

 

𝐹1_𝑆𝑐𝑜𝑟𝑒 = 2 × (
Precision×Recall

Precision+Recall
)     (4) 

 

 

 

III. EXPERIMENTAL RESULT and DISCUSSING 
 

 

The experimental results of the classification study performed with FSL using transfer learning are 

presented in this section. Each CNN was tested over two datasets with 60,000 iterations, and the loss 

function was recorded at every epoch. Figure 5 displays the loss functions during the training phase. 

According to these graphs, the value of the loss showed a rapid decline at the beginning of the training. 

This can be interpreted as an indicator that the model began learning quickly. A general look at the 

graphs indicates that after approximately 10,000 training segments, there is a deceleration in the rate of 

decrease of the loss value for every CNN architecture. This has been interpreted as the model reaching 

a sort of saturation in its learning process, learning less with each iteration. In later iterations, the loss 

value showed less decline and slight fluctuations appeared in the graph. These fluctuations occurred as 

the model was learning the features within the training set. Towards the end, the loss value stabilizes, 

indicating that the model has reached saturation in its training process, and further training does not 

significantly affect the loss value. In general, this suggests that the model has achieved a certain level 

of learning on the training set and offers insights into how it will perform on test data. 
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(a) (b) (c)  
Figure 5. Training Loss. Green frames are related to the Oxford-III Pet dataset; Red frames correspond to the 

Food101 dataset. (a) Result of the EfficientNetB0 [34] architecture, (b) Result of the MobileNetV3 [35]  

architecture, (c) Result of the ResNet18 [9]  architecture. 

 

Tables 5 and 6 display the test results of the model within two datasets. According to this, the Oxford-

III Pet dataset has achieved better classification success compared to the Food101 dataset. The best-

performing architecture for both datasets was the EfficientNetB0 [34] architecture (in bold font). The 

second-best performance was shown by the ResNet18 [9] architecture (italicized and underlined font). 

The F1_Score, Precision, and Recall values have provided both high and balanced results. This indicates 

that the model accurately predicts both positive and negative examples in a balanced manner. 

 
Table 5. Accuracy Comparison of Network Models for the Oxford-III Pet Dataset 

 Acc. F1_Score Pr R 

EfficientNetB0 [34] 0.9974 1 1 1 

MobileNetV3 [35] 0.9936 0,99 0,99 0,99 

ResNet18 [9] 0.9986 1 1 1 

 
Table 6. Accuracy Comparison of Network Models for the Food101 Dataset  

 Acc F1_Score Pr R 

EfficientNetB0 [34] 0.9320 0.93 0.94 0.93 

MobileNetV3 [35] 0.9092 0.91 0.92 0.91 

ResNet18 [9] 0.9176 0.92 0.93 0.92 

 

 

IV. CONCLUSION 
 

In this article, the performance outcomes of pre-trained network architectures for recognizing food and 

pets in a few-shot learning context have been investigated. A prototypical network was utilized as the 

FSL architecture. Pre-trained network architectures such as EfficientNetB0 [34], ResNet18 [9], and 

MobileNetV3 [35] were employed. All experimental work was conducted over 60,000 iterations in a 5-

shot-5-way configuration. The study observed that pre-trained network architectures like EfficientNetB0 

[34], ResNet18 [9], and MobileNetV3 [35] are quite successful in few-shot recognition of food and pets. 
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Particularly, EfficientNetB0 [34], offering the highest accuracy rate, has proven to be a highly suitable 

option for these types of tasks. ResNet18 [9] and MobileNetV3 [35]  also achieved competitive results 

within their capabilities and, depending on application requirements and hardware limitations, may be 

preferred for their lower computational cost and speed. The experimental studies conducted over 60,000 

iterations under a 5-shot-5-way setup have demonstrated the robustness and generalization capability of 

these architectures in the context of FSL. Future studies might explore hyper parameter tuning, different 

feature fusion methods, and the impact of various data augmentation techniques to further enhance the 

model. 
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