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Highlights 

• This paper focuses on computation of 𝐻∞-norm of a transfer matrix of a dynamical system. 

• A hybrid method is proposed for the higher order models. 

• An efficient result was obtained within a satisfactory margin of error.  
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Abstract 

In this paper, we use a hybrid approach known as the extended balanced singular perturbation 

technique to compute the 𝐻∞-norm of a transfer matrix of a dynamical system. The transfer 

matrix's order is first reduced using the balanced truncation approach, and its 𝐻∞-norm is then 

found using the singular perturbation method. Both the singular perturbation technique and the 

balanced truncation approach methods are provided with computer algebraic instructions. The 

method is then applied to a decentralized interconnected system, and the error analysis of the 

solution is investigated.  
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1. INTRODUCTION 

 

𝐻∞-control was first introduced to the literature by Zames in 1981 [1]. 𝐻∞-control, a robust and precise 

methodology in control theory, finds diverse applications across multiple industries, significantly affecting 

the reliability and performance of complex systems. In aerospace engineering, it ensures stable flight 

conditions for aircraft and spacecraft amidst uncertainties. The automotive sector benefits from 𝐻∞-control 

strategies, enhancing vehicle stability and performance in dynamic environments. Robotics and automation 

systems leverage 𝐻∞-control to achieve precision and robustness in manufacturing processes and 

autonomous vehicles. In power systems and energy infrastructure, 𝐻∞-control contributes to stability and 

efficiency, particularly in the realm of renewable energy and smart grids. Moreover, biomedical engineering 

utilizes H-infinity control for the development of precise and resilient medical devices, elevating the quality 

of healthcare delivery. This versatile control strategy stands as a cornerstone in addressing the challenges 

posed by disturbances and uncertainties across these diverse industrial domains. 

 

The main motivation of 𝐻∞ control is to create a powerful technique that works efficiently even if come up 

against undesirable factors or situations such as irregularities, disturbances, modelling errors etc. That is, 

obtaining measurable optimization for multi-variable cases while shrinking modelling errors and 

undetermined disturbances, at the same time. 𝐻∞-control represents “the space of all bounded analytic 

matrix valued functions in the open right-half complex plane”. 𝐻∞-control aims to formulate the problem 

of sensitivity reduction as an optimization problem by an operator norm which is called 𝐻∞-norm. In other 
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words, to design "the best" controller when compared to the other controllers which minimizes the 𝐻∞-

norm of the transfer function of the system. From 1980s to present, 𝐻∞-control has been studied by many 

researchers from various disciplines and a number of methods have been developed to compute 𝐻∞-norm 

of transfer matrices (or functions) of dynamical systems. Since 𝐻∞-norm associated with the largest 

singular value, these methods focus on singular value evaluation and have been used in many works. 

Bisection method [2-4], two step algorithm [5], two-sided Jacobi's method [6], householder 

bidiagonalization technique [7], singular perturbation method [8], extended balanced singular perturbation 

method [9, 10], etc. can be given as examples. 

 

In high-level control problems such as control of huge space structures and power systems, researchers 

encounter excessive number of components and parameters and this excessiveness naturally, causes to 

spend much more time and effort. To overcome this undesirable circumstance, control theorists seek out 

some alternative operations to transform the high-order models to lower order and more convenient models 

which are easier to design in practice. These operations are called model order reduction. The governing 

idea of model order reduction is to convert a high-level model to a smaller size that is easier to solve with 

preserving structural features of the original model [11-14]. In other words, model order reduction means 

to find a suitable balanced realization and to truncate this realization without compromising the structural 

integrity of the original system. This operation is known as balanced truncation approach. 

 

Let 𝜇 > 0 be a parameter, a dynamical system which contains some state component derivatives with 𝜇- 

coefficients is called a singular perturbation model. Singular perturbation models are represented by 

following set of equations, 

 

�̇�1 = 𝐴11𝑥1 + 𝐴12𝑥2 + 𝐵1𝑢 (1a) 

𝜇�̇�2 = 𝐴21𝑥1 + 𝐴22𝑥2 + 𝐵2𝑢 (1b) 

𝑦 = 𝐶1𝑥1 + 𝐶2𝑥2 +𝐷𝑢 (1c) 

 

here 𝑥1, 𝑥2 are called slow and fast variables, respectively, (1a), (1b) are called slow(powerful) and 

fast(weak) subsystems, respectively and 𝜇 is called perturbation parameter. 

 

Analysis of these system types is done by singular perturbation theory. Singular perturbation theory means 

to investigate behavior of solutions of the system (1) for an interval 0 ≤ 𝑡 ≤ 𝑇 (or 0 ≤ 𝑡 < +∞). The basic 

idea of singular perturbation method is to protect the slow (low-frequency) part(1a) while neglecting the 

fast(high-frequency) part(1b) of the above equation. When considered from this point of view the method 

can be associated with a dominant mode state. In other words, it is process of examining solutions of the 

given system for 𝜇 = 0 [15, 16]. 𝜇-parameter may correspond to different concepts depending on the 

structure of the system. For example, it represents machine reactance or transients in voltage regulators in 

power systems, actuators in industrial control, enzymes in biochemical models and fast neutrons in nuclear 

reactor models. 

 

The hybrid strategy known as the extended balanced singular perturbation method combines the balanced 

truncation approach with the singular perturbation method. First, the balanced truncation strategy is used 

to decrease the model order. Next, the singular perturbation method is used to derive the norm of the 

reduced model's transfer function. 

 

This paper is organized in 7 sections. Some fundamental definitions and notations which will be used the 

next sections are given in section 2. In section 3, algorithm of balanced truncation approach, with the 

computer algebraic commands, is given. In section 4, algorithm of singular perturbation method that is 

applied to the balanced system obtained in the previous section, and its computer algebraic commands are 

given. Section 5 is about extended balanced singular perturbation method and error analysis that is based 

on comparing of the solutions of the original system and reduced-order model. In section 6, 𝐻∞-norm of 

the transfer matrix of a numerical example (a decentralized interconnected system) is computed by extended 

balanced singular perturbation method for order of 3. Finally, section 7 is about efficiency of the algorithm 

and convincing error tolerance according to given error bound criterion. 
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2. PRELIMINARIES 

 

Consider the linear dynamic system;  

�̇� = 𝐴𝑥 + 𝐵𝑢 

                                                                          𝑦 = 𝐶𝑥 + 𝐷𝑢 (2) 

 

where 𝐴 ∈ ℝ𝑛×𝑛, 𝐵 ∈ ℝ𝑛×𝑚, 𝐶 ∈ ℝ𝑝×𝑛, 𝐷 ∈ ℝ𝑝×𝑚. Transfer matrix (or function) of the system (2) is 

defined as; 

                                                           𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷                                                        (3) 

 

We know that, transfer matrix of a system is defined in frequency domain while the state-space notation in 

time domain. 

 

Let 𝜆𝑗(𝑀), 𝜎𝑗(𝑀)  denote the 𝑗𝑡ℎ eigenvalue and 𝑗𝑡ℎ singular value of a matrix 𝑀 respectively, where 

𝜎𝑗(𝑀) = √𝜆𝑗(𝑀𝑀
𝑇). 𝑀 is stable if 𝑅𝑒(𝜆𝑗(𝑀)) < 0  for all 𝑗. 

 

The set of all analytic and bounded matrix valued function defined on complex open right-half plane ℂ+ =
{𝑠 ∈ ℂ | 𝑅𝑒(𝑠) > 0} is called 𝐻∞-space. In other words, if a matrix valued function 𝐺: ℂ+⟶ ℂ𝑛,𝑚 satisfies 

the conditions; 

 

• 𝐺(𝑠) is analytic on complex open right-half plane   

• lim
𝜎→0+

𝐺(𝜎 + 𝑗𝜔) = 𝐺(𝑗𝜔) 

• sup
𝑠∈ℂ+

�̅�(𝐺(𝑠)) < ∞ , where �̅� is greatest singular value of the system (2) then it is an element of  

𝐻∞. 

 

𝐻∞-norm of the transfer matrix of 𝐺(𝑠) of a stable system (2) is given as follows; 

 

‖𝐺‖∞ = sup
𝑅𝑒𝑠>0

𝜎𝑚𝑎𝑥 (𝐺(𝑠)) = sup
𝜔∈ℝ

𝜎𝑚𝑎𝑥 (𝐺(𝑗𝜔))                                     (4) 

 

where sup
𝜔∈ℝ

 denotes least upper bound for all frequencies 𝜔 which are real. 

  

For the system (2) the matrices; 𝑊𝒞(𝑡) and 𝑊𝒪(𝑡) are called controllable and observable Grammians, 

respectively, which are defined as follows; 

 

𝑊𝒞(𝑡) = ∫ 𝑒𝐴𝜏𝐵𝐵𝑇𝑒𝐴
𝑇𝜏

𝑡

0

𝑑𝜏 

                                                        𝑊𝒪(𝑡) = ∫ 𝑒
𝐴𝑇𝜏𝐶𝑇𝐶𝑒𝐴𝜏

𝑡

0
𝑑𝜏                                                          (5) 

 

and singular values of 𝑊𝒞(𝑡)𝑊𝒪(𝑡) are called Hankel singular values of the system (2) which describes the 

energy of each state of the system (2) and are denoted as 𝜎𝐻𝑗 for 𝑗 = 1,2, … . 

 

Any positive definite matrix 𝑀 can be expressed in the form of  

 

                                                                      𝑀 = 𝐿𝐿𝑇                                                                               (6) 

 

where 𝐿 is a lower triangular matrix. The expression (6) and the matrix 𝐿 are called Cholesky factorization 

and Cholesky factor of 𝑀, respectively. 

 

Let 𝑀 ∈ ℝ𝑚×𝑛 and 𝑟𝑎𝑛𝑘(𝑀) = 𝑟 = 𝑚𝑖𝑛 (𝑚, 𝑛), the expression 
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𝑀 = 𝑈𝛴𝑉𝑇   (7) 

is called singular value decomposition of the matrix 𝑀. Here 𝑈 and 𝑉 are orthogonal matrices of type of 

𝑚 ×𝑚 and 𝑛 × 𝑛, respectively, that is, 𝑈𝑇𝑈 = 𝐼𝑚, 𝑉𝑇𝑉 = 𝐼𝑛 and 𝛴 is a half-diagonal matrix which 

contains singular values (𝜎1, … , 𝜎𝑟) of the matrix 𝑀. Singular value decomposition can be formulated 

clearly as follows for a matrix 𝑀,  

 

𝑀 = 𝑈𝛴𝑉𝑇 = [ 𝑢1   |  𝑢2  |  ⋯  | 𝑢𝑚 ]⏟              
𝑢(𝑚×𝑚)

[
 
 
 
 
𝜎1 0 … 0 0 … 0
0 ⋱ 0 0 0 … 0
⋮ 0 𝜎𝑟 ⋱ ⋱ ⋱ ⋮
⋮ ⋮ ⋱ 0 ⋱ ⋱ ⋮
0 0 … … 0 … 0]

 
 
 
 

⏟                  
𝛴(𝑚×𝑛)

[
 
 
 
 
𝑣1
𝑇

𝑣2
𝑇

⋮

𝑣𝑛
𝑇]
 
 
 
 

⏟
𝑉𝑇(𝑛×𝑛)

.         (8) 

 

3. BALANCED TRUNCATION AND MODEL ORDER REDUCTION 

 

Let (2) be a minimal, asymptotically stable system, the algorithm of balanced truncation approach with the 

computer algebraic commands as follows; 

 

Step 1. Find controllable and observable Grammians 𝑊𝒞 and 𝑊𝒪 of the given system through the  Lyapunov 

equations with the computer algebraic commands  

 

Wc=gram(sys,'c') 

 Wo=gram(sys,'o'). 

 

Step 2. Find the Cholesky factors 𝐿𝒞 and 𝐿𝒪 of 𝑊𝒞 and 𝑊𝒪, respectively, such that 

 

𝑊𝒞 = 𝐿𝒞𝐿𝒞
𝑇  

𝑊𝒪 = 𝐿𝒪𝐿𝒪
𝑇  

with the computer algebraic commands  

 

Lc=chol(Wc,'lower') 

 Lo=chol(Wo,'lower'). 

 

 Step 3. Find the singular value decomposition of 𝐿𝒪
𝑇𝐿𝒞 such that 

 

𝐿𝒪
𝑇𝐿𝒞 = 𝑈Σ𝑉

𝑇 

 

with the computer algebraic command 

[U, S, V] =svd(Lo'*Lc). 

 

Step 4. Make the transformation 𝑇 = 𝐿𝒞𝑉Σ
−1/2 and obtain coefficient matrices of balanced system by 

similarity transformations as follows, 

 

�̃� = 𝑇−1𝐴𝑇,         �̃� = 𝑇−1𝐵,         �̃� = 𝐶𝑇,         �̃� = 𝐷 

 

where �̃�(𝑠) = [
�̃� | �̃�

− − − − − −
�̃� | �̃�

] and find controllable and observable Grammians of the balanced 

system  �̃�𝒞 and �̃�𝒪 respectively which are given as below, 

 

 �̃�𝒞 = 𝑇
−1𝑊𝒞𝑇

−𝑇 

�̃�𝒪 = 𝑇
𝑇𝑊𝒪𝑇 

where  �̃� = �̃�𝒪 = Σ = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎1, … , 𝜎𝑛). 
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4. SINGULAR PERTURBATION METHOD 

 

Let �̃�(𝑠) = [
�̃� | �̃�

− − − −−−
�̃� | �̃�

] be the balanced system obtained by balanced truncation approach, the 

algorithm of singular perturbation method is given as follows;  

 

Step 1. Separate the balanced system �̃�(𝑠) = [
�̃� | �̃�

− − − −−−
�̃� | �̃�

] ⟺ [
𝛴1 0
0 𝛴2

] into two subsystems as slow 

(powerful) and fast(weak). Choose the 𝐴11 as coefficient matrix of the slow (powerful) part where 𝐴11,
𝛴1 ∈ ℝ

𝑟×𝑟, for 𝑟 ≪ 𝑛. Rearrange the matrices �̃�, �̃�, �̃�, �̃�  in block matrix form as seen below, 

                     

�̃� = [
𝐴11 𝐴12
𝐴21 𝐴22

],        �̃� = [
𝐵1
𝐵2
],         �̃� = [𝐶1 𝐶2],        �̃� = 𝐷. 

 

Add perturbation parameter 𝜇 and rewrite �̃�(𝑠) as the followings, 

 

    [
𝑥1̇
𝜇�̇�2

] = [
𝐴11 𝐴12
𝐴21 𝐴22

] [
𝑥1
𝑥2
] + [

𝐵1
𝐵2
] 𝑢

 𝑦 = [𝐶1 𝐶2] [
𝑥1
𝑥2
] + 𝐷𝑢.

 

 

Step 2. Eliminate the fast(weak) part taking 𝜇 = 0 and find the system as, 

    �̇�1 = 𝐴11𝑥1 + 𝐴12𝑥2 + 𝐵1𝑢
     0 = 𝐴21𝑥1 + 𝐴22𝑥2 + 𝐵2𝑢
𝑦 = 𝐶1𝑥1 + 𝐶2𝑥2 + 𝐷𝑢

 

 

and weak variable as, 𝑥2 = −𝐴22
−1𝐴21𝑥1 − 𝐴22

−1𝐵2𝑢. 

 

Step 3. Substitute 𝑥2 to other equations to get the final version of the system that denoted by 𝐺𝑓(𝑠) 

                     As is below, 

 

𝐺𝑓(𝑠) = [

𝐴𝑓 | 𝐵𝑓
−−−−−−
𝐶𝑓 | 𝐷𝑓

] = [
𝐴11 − 𝐴12𝐴22

−1𝐴21 | 𝐵1 − 𝐴12𝐴22
−1𝐵2

−−−−−−−−−−−−−−−−−−−−
 𝐶1 − 𝐶2𝐴22

−1𝐴21 | 𝐷 − 𝐶2𝐴22
−1𝐵2

]. 

 

 

Step 4. Obtain the 𝐻∞-norm of ‖𝐺𝑓(𝑠)‖∞ via computer algebraic computation. 

 

5. EXTENDED BALANCED SINGULAR PERTURBATION METHOD AND ERROR ANALYSIS 

 

The algorithm of extended balanced singular perturbation method consists of 8 steps, the first four being 

balanced truncation approach and the last four being singular perturbation method which are pointed out in 

the sections 3 and 4, in detail. 

 

Now, to analyze the error tolerance, first we define modelling error transfer function as follows 

 

𝐸𝑟 = [𝐺(𝑠) − 𝐺𝑓(𝑠)]. 
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Then, we have a criterion about sufficiency of error tolerance which is based on comparison of two error 

bounds called actual infinity error bound and theoretical infinity error bound defined in [17, 18] given as 

below 

• actual infinity error bound: ‖𝐸𝑟‖∞ = ‖[𝐺(𝑠) − 𝐺𝑓(𝑠)]‖∞
 

• theoretical infinity error bound: 2∑ 𝜎𝑖
𝑛
𝑖=𝑟+1  

• the criterion: ‖𝐸𝑟‖∞ ≤ 2∑ 𝜎𝑖
𝑛
𝑖=𝑟+1 . 

 

We can summarize algorithm of extended balanced singular perturbation method step by step by 

constructing the following Table 1.  

 

Table 1. Algorithm of extended balanced singular perturbation method step by step 

Extended Balanced Singular Perturbation Method 

Balanced Truncation Approach Singular Perturbation Method 

Step1. Find Grammians of the original system 

(𝑊𝒞 ,𝑊𝒪). 
Seperate the balanced system �̃�(𝑠) into two 

parts as; strong and weak. 

 

Step2. Find Cholesky factors of Grammians 

(𝐿𝒞 , 𝐿𝒪). 

Eliminate the weak part taking 𝜇 = 0 and 

find weak variable 𝑥2. 

 

Step3. Find singular value decomposition of 

𝐿𝒪
𝑇𝐿𝒞 = 𝑈Σ𝑉

𝑇. 

Substitute 𝑥2 in other equations, get the     

final version of the system 𝐺𝑓(𝑠). 

 

Step4. Make the transformation 𝑇 = 𝐿𝒞𝑉Σ
−1/2 and 

find the balanced system �̃�(𝑠). 
 

Obtain the 𝐻∞-norm of ‖𝐺𝑓(𝑠)‖∞. 

Error 

Analysis 

Compute actual and theoretical infinity error bounds and apply the error tolerance criterion 

which says actual bound must be less than or equal to theoretical bound. 

 

6. APPLICATION TO A NUMERICAL EXAMPLE 

 

In this section, we apply the extended balanced singular perturbation method to a numerical example for 

the case order of 3. 

 
Example 4.1. (A decentralized interconnected system) 

For additional details, see [19].  

Consider the system (2) with coefficient matrices given as follows: 

𝐴 =

[
 
 
 
 
 
−1       0    0    0    0    0
−1       1    1    0    0    0
   1    −2 −1 −1    1    1
   0       0    0 −1    0    0
−8       1 −1 −1 −2    0
   4 −0.5 0.5    0    0 −4]

 
 
 
 
 

,     𝐵 =

[
 
 
 
 
 
0 1 0    0
1 0 0    0
1 1 0    0
0 0 0 −1
0 0 1    0
0 0 0    1]

 
 
 
 
 

 

 

𝐶 = [

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

] , 𝐷 = 0 . 

 

We have 𝐻∞-norm of the transfer matrix of the given system computed via computer algebraic as 
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‖𝐺(𝑠)‖∞ = 29.6784. Now, if we apply balanced truncation approach algorithm step by step, we finally 

get; 

 

�̃�(𝑠) = [
�̃� | �̃�

− − − − −−
�̃� | �̃�

] 

 

where 

 

�̃� =

[
 
 
 
 
 
−0.1139    0.3032 −0.1793 −0.1238 −0.0600    0.0158
−0.2941 −0.2900    0.7198    0.1681    0.2357 −0.0281
   0.0271 −0.5608 −0.5796 −1.0328 −0.2514    0.0865
   0.0948    0.3066    1.0322 −1.8693     0.0091    0.1389
−0.0222 −0.1791 −0.0595    0.1382 −1.3774 −0.7626
−0.0562 −0.2046 −0.2118    0.9211 −1.2014 −3.7698]

 
 
 
 
 

, 

 

 

�̃� =

[
 
 
 
 
 
   1.5096 −1.1876 0.2814    0.7819
   0.6344 −1.3681 0.3046    1.2281
−1.2063 −1.5068 0.0591    0.0910
   0.1128    1.6074 0.4628 −0.1543
−0.2150    0.0400 0.0270    1.0440
   0.0454 −0.4450 0.1872    0.5491]

 
 
 
 
 

 

 

 

�̃� = [

   1.1887 −1.0593     0.0281 −0.0249    0.3844 −0.0660
−1.0856    1.4815 −1.2716 −0.0962 −0.8222 −0.0206
   1.2977 −0.7147     1.4044    1.6654 −0.0043 −0.0061
−0.3228    0.2170 −0.3834 −0.2253    0.5609    0.7293

],   

 

�̃� = 0 

and Hankel singular values of the original system as, 

 𝜎(𝐺) = (19.2254  6.6806 3.2240 0.7581 0.4133 0.0712). 
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Figure 1. Hankel singular values of the original system 

 

It is seen clearly in the Figure 1 the first three Hankel singular values are much greater than the others so 

we choose 𝑟 = 3 and apply extended balanced singular perturbation method. First separate the balanced 

system �̃�(𝑠) into two parts as slow (powerful) and fast (weak) and rewrite the system for perturbation 

parameter 𝜇 = 0 as is given below; 

 
    �̇�1 = 𝐴11𝑥1 + 𝐴12𝑥2 + 𝐵1𝑢
     0 = 𝐴21𝑥1 + 𝐴22𝑥2 + 𝐵2𝑢
𝑦 = 𝐶1𝑥1 + 𝐶2𝑥2 + 𝐷𝑢

 

 

where 

𝐴11 = [
−0.1139    0.3032 −0.1793
−0.2941 −0.2900    0.7198
   0.0271 −0.5608 −0.5796

],              𝐴12 = [
−0.1238 −0.0600    0.0158
   0.1681    0.2357 −0.0281
−1.0328 −0.2514    0.0865

] 

 

𝐴21 = [
   0.0948    0.3066    1.0322
−0.0222 −0.1791 −0.0595
−0.0562 −0.2046 −0.2118

],              𝐴22 = [
−1.8693    0.0091    0.1389
   0.1382 −1.3774 −0.7626
   0.9211 −1.2014 −3.7698

] 

 

𝐵1 = [
   1.5096 −1.1876 0.2814    0.7819
   0.6344 −1.3681 0.3046    1.2281
−1.2063 −1.5068 0.0591 −0.1543

] , 𝐵2 = [
   0.1128    1.6074 0.4628 −0.1543
−0.2150    0.0400 0.0270    1.0440
   0.0454 −0.4450 0.1872    0.5491

] 

 

𝐶1 = [

   1.1887 −1.0593    0.0281
−1.0856    1.4815 −1.2716
   1.2977 −0.7147    1.4044
−0.3228    0.2170 −0.3834

],                   𝐶2 = [

−0.0249    0.3844 −0.0660
−0.0962 −0.8222 −0.0206
   1.6654 −0.0043 −0.0061
−0.2253    0.5609    0.7293

], 

 

𝐷 = 0 

and from the second equation find weak variable as, 𝑥2 = −𝐴22
−1𝐴21𝑥1 − 𝐴22

−1𝐵2𝑢. Continue from    

Step 3. Make necessary algebraic matrix operations and finally get, 𝐺𝑓(𝑠) = [

𝐴𝑓 | 𝐵𝑓
−−−−−−
𝐶𝑓 | 𝐷𝑓

] where 
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𝐴𝑓 = [
 −0.1195    0.2909 −0.2447
−0.2884 −0.2932    0.8021
−0.0223 −0.6970 −1.1391

] ,        𝐵𝑓 = [
   1.5149 −1.2983   0.2528    0.7411
   0.5957 −1.2062    0.3395    1.4118
−1.2163 −2.4142 −0.1902 −0.0370

] 

 

𝐶𝑓 = [

   1.1829 −1.1146 −0.0067
−1.0809    1.5706 −1.2957
    1.3823 −0.4388    2.3348
−0.3399    0.1274 −0.4633

] ,      𝐷𝑓 = [

−0.0848     0.0039 −0.0221     0.3290
    0.1565  −0.1487 −0.0103 −0.6679
    0.1106     1.4404    0.4262 −0.1507
−0.0602 −0.1013    0.0174     0.3818

] 

 

Obtain the 𝐻∞-norm via computer algebraic as ‖𝐺𝑓(𝑠)‖∞
= 29.6799 which is so close to the 𝐻∞-norm of 

the original system ‖𝐺(𝑠)‖∞ = 29.6784. 

 

Now analyze the error tolerance between the original system and balanced-reduced order model via actual 

and theoretical infinity error bounds as follows, 

 

‖𝐸𝑟‖∞ = ‖[𝐺(𝑠) − 𝐺𝑓(𝑠)]‖∞
= 1.5218 

 

and for 𝑟 = 3 and 𝑛 = 6, 

 

2∑ 𝜎𝑖
𝑛
𝑖=𝑟+1 = 0.7581 + 0.4133 + 0.0712 = 2.4852. 

 

It is obvious that ‖𝐸𝑟‖∞ ≤ 2∑ 𝜎𝑖
𝑛
𝑖=𝑟+1  thus we can say that error tolerance is in a satisfied level. 

 

7. RESULTS 

 

In this study, the H∞- norm of the transfer function of a linear dynamic system for instance 𝐷 = 0 has been 

computed using the extended-balanced singular perturbation approach. The balanced-reduced order model 

and original system have almost identical H∞- norm values, as demonstrated by the solution of a numerical 

case. Furthermore, based on the reduced order models' error investigation requirement of sufficiently tiny 

error tolerance, we can state with certainty that the procedure functions successfully. 
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