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Highlights
* This paper focuses on computation of H,,-norm of a transfer matrix of a dynami m. )

* A hybrid method is proposed for the higher order models.
* An efficient result was obtained within a satisfactory margin of error.
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1. INTRODUCTION

icle stability and performance in dynamlc environments. Robotics and automatlon
»-control to achieve precision and robustness in manufacturing processes and

efficiency, papticularly in the realm of renewable energy and smart grids. Moreover, biomedical engineering
utilizes H-infinity control for the development of precise and resilient medical devices, elevating the quality
of healthcare delivery. This versatile control strategy stands as a cornerstone in addressing the challenges
posed by disturbances and uncertainties across these diverse industrial domains.

The main motivation of H,, control is to create a powerful technique that works efficiently even if come up
against undesirable factors or situations such as irregularities, disturbances, modelling errors etc. That is,
obtaining measurable optimization for multi-variable cases while shrinking modelling errors and
undetermined disturbances, at the same time. H,,-control represents “the space of all bounded analytic
matrix valued functions in the open right-half complex plane”. H,-control aims to formulate the problem
of sensitivity reduction as an optimization problem by an operator norm which is called H,,-norm. In other
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words, to design "the best" controller when compared to the other controllers which minimizes the H,-
norm of the transfer function of the system. From 1980s to present, H,,-control has been studied by many
researchers from various disciplines and a number of methods have been developed to compute H,,-norm
of transfer matrices (or functions) of dynamical systems. Since H.-norm associated with the largest
singular value, these methods focus on singular value evaluation and have been used in many works.
Bisection method [2-4], two step algorithm [5], two-sided Jacobi's method [6], householder
bidiagonalization technique [7], singular perturbation method [8], extended balanced singular perturbation
method [9, 10], etc. can be given as examples.

In high-level control problems such as control of huge space structures and power systems, researchers
encounter excessive number of components and parameters and this excessiveness natygally, causes to
spend much more time and effort. To overcome this undesirable circumstance, control rists seek out

idea of model order reduction is to convert a high-level model to a smaller siz
preserving structural features of the original model [11-14]. In other words

integrity of the original system. This operation is known as balanced
Let u > 0 be a parameter, a dynamical system which contains

coefficients is called a singular perturbation model. Singu
following set of equations,

X = A1 + Appx, + (1a)
pxy; = A1 X1 g Azaxz + Bau (1b)
Cyx, + Du (1c)
here x;, x, are called slow and fast pectively, (1a), (1b) are called slow(powerful) and

Analysis of these system types f
to investigate behavior of soluti

r perturbation theory. Singular perturbation theory means
1) foraninterval 0 <t < T (or 0 <t < +0). The basic
ct the slow (low-frequency) part(1a) while neglecting the
fast(high-frequency) pé uation. When considered from this point of view the method
can be associated with a

given system fgq . u-parameter may correspond to different concepts depending on the

power systems, ac trial control, enzymes in biochemical models and fast neutrons in nuclear
reactor

T n as the extended balanced singular perturbation method combines the balanced
truncatl proacwith the singular perturbation method. First, the balanced truncation strategy is used

to decreas odel order. Next, the singular perturbation method is used to derive the norm of the
transfer function.

This paper is organized in 7 sections. Some fundamental definitions and notations which will be used the
next sections are given in section 2. In section 3, algorithm of balanced truncation approach, with the
computer algebraic commands, is given. In section 4, algorithm of singular perturbation method that is
applied to the balanced system obtained in the previous section, and its computer algebraic commands are
given. Section 5 is about extended balanced singular perturbation method and error analysis that is based
on comparing of the solutions of the original system and reduced-order model. In section 6, H,,-norm of
the transfer matrix of a numerical example (a decentralized interconnected system) is computed by extended
balanced singular perturbation method for order of 3. Finally, section 7 is about efficiency of the algorithm
and convincing error tolerance according to given error bound criterion.
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2. PRELIMINARIES

Consider the linear dynamic system;
x = Ax + Bu
y=Cx+Du (2)

where A € R™"™ B € R™™,C € RP*™,D € RP*™. Transfer matrix (or function) of the system (2) is
defined as;
G(s)=C(sI—A)'B+D (3)

We know that, transfer matrix of a system is defined in frequency domain while the state-ggace notation in
time domain.

Let 4;(M), g;(M) denote the j** eigenvalue and j** singular value of a matri

oj(M) = /Aj(MMT). M is stable if Re(4;(M)) < 0 forall .

The set of all analytic and bounded matrix valued function defined on right-half plane C* =
{s € C| Re(s) > 0} is called H,,-space. In other words, if a matrixg@lued ion G: @ — C™™ satisfies
the conditions;

e (G(s) is analytic on complex open right-half plan
lir(r)1+ Glo+jw) =G6(w)
o—

e sup a(G(s)) < oo, where & is greatest singular value system (2) then it is an element of
sect

Hy.

H,-norm of the transfer matrix of G(s) stem (2) is given as follows;

= Z‘g}é Omax (G(]w)) (4)

where sup denotes least u encies w which are real.

w€eR

For the system (2) the
respectively, which are defin

t
We(t) :f eATBBTeAT 41

0
Wy(t) = fOteATTCTCeAT dr (5)

of We(t)W, (t) are called Hankel singular values of the system (2) which describes the
ate of the system (2) and are denoted as oH; forj = 1,2, ...

Any positive definite matrix M can be expressed in the form of
M=LIT (6)

where L is a lower triangular matrix. The expression (6) and the matrix L are called Cholesky factorization
and Cholesky factor of M, respectively.

Let M € R™™ and rank(M) = r = min (m, n), the expression
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M=UsvT @)
is called singular value decomposition of the matrix M. Here U and V are orthogonal matrices of type of
m xm and n X n, respectively, that is, UTU =L, VTV =1, and X is a half-diagonal matrix which
contains singular values (o, ..., d,) of the matrix M. Singular value decomposition can be formulated
clearly as follows for a matrix M,

o0 0 .. 0 0 .. Oy v
o -~ 0 0 0 .. 0 oT
M=UsVT=[u; |up | luplf: 0 o =~ ~ =~ 1| [ZZ]. (8)
u(mxm) : oo 0 o :
lO 0 .. .. 0
X (mxn)

3. BALANCED TRUNCATION AND MODEL ORDER REDUCTION

Let (2) be a minimal, asymptotically stable system, the algorithm of balanc oach with the
computer algebraic commands as follows;

Step 1. Find controllable and observable Grammians W, and W, of, i stem thi@gugh the Lyapunov
equations with the computer algebraic commands

Wc=gram(sy;
Wo=gram

Step 2. Find the Cholesky factors L and L, of g and W, respe ly, such that

with the computer algebraic commands

nof L) Le such that

LhLe = UuzvT

A =T71AT, B=T71B, C =CT, D=D

where G(s) =|-—-————— and find controllable and observable Grammians of the balanced

system W, and W, respectively which are given as below,

We =T "WTT

Wy =TTW,T
where W = W, = X = diag(oy, 04, ..., 0p).
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4. SINGULAR PERTURBATION METHOD

Let G(s)=|-————— be the balanced system obtained by balanced truncation approach, the
¢ | D
algorithm of singular perturbation method is given as follows;

pX .
. 0] into two subsystems as slow

_ I
Step 1. Separate the balanced system G(s) = |— — — — — — S [0 5
2

i A11 A12] S5 [Bl] A
A= , B = , C=[C (]
A21 A22 [ 1 2]

Add perturbation parameter u and rewrite G (s) as the followings,
X1 ] _ A1y A12] [x1 B
UXy Az1 Apllxz B,

y=1[CG GG] .

and weak variable as, x, =

Step 3. Substitute x, to g

Stép n orm of ||G¢(s)||_ via computer algebraic computation.

5. EXTENDED BALANCED SINGULAR PERTURBATION METHOD AND ERROR
ANALYSIS

The algorithm of extended balanced singular perturbation method consists of 8 steps, the first four being

balanced truncation approach and the last four being singular perturbation method which are pointed out in

the sections 3 and 4, in detail.

Now, to analyze the error tolerance, first we define modelling error transfer function as follows

E, = [G(s) — G;(s)].
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Then, we have a criterion about sufficiency of error tolerance which is based on comparison of two error
bounds called actual infinity error bound and theoretical infinity error bound defined in [17, 18] given as
below

e actual infinity error bound: [|E. |l = [|[G(s) = G¢()]]|

e theoretical infinity error bound: 2 Y-, ., 0;
e thecriterion: |E, |l < 2X7, ., 0:.

We can summarize algorithm of extended balanced singular perturbation method step by step by

constructing the following Table 1. \

Table 1. Algorithm of extended balanced singular perturbation method step by step
Extended Balanced Singular Perturbation Method

Stepl. Find Grammians of the original system
(We, Wo).

Step2. Find Cholesky factors of Grammians
(Le, Lo).

Step3. Find singular value decomposition of
LhLe = USVT.

Step4. Make the transformation T = LV
find the balanced system G (s).

Error Compute actual and theorej
Analysis  which says actual bound must be

error bounds and apply the error tolerance criterion
n or equal to theoretical bound.

6. APPLICATIONTO AN CAL EXAMPLE

d singular perturbation method to a numerical example for

0 0 © 010 0
0 0 © 100 O
-1 1 1f p_ |1 1.0 0
0 -1 0 o) 0 00 —1
ll—8 -1 =2 o| |loo 1 0JI
4 —05 05 0 0 —4 0 00 1
010000
oo 1 0 0 o ,_
6_000010'D_0
0 000 01

We have H,,-norm of the transfer matrix of the given system computed via computer algebraic as
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IG(s)|l» = 29.6784. Now, if we apply balanced truncation approach algorithm step by step, we finally
get;

where

—-0.1139 03032 -0.1793 -0.1238 —0.0600 0.0158
—0.2941 -0.2900 0.7198 0.1681 0.2357 —0.0281
0.0271 -0.5608 -—0.5796 -—1.0328 -0.2514  0.0865

A= 0.0948 0.3066 1.0322 -1.8693 0.0091 0.1389]
-0.0222 -0.1791 -0.0595 0.1382 -1.3774 -0.7626
—-0.0562 -0.2046 -0.2118 09211 -1.2014 —3.7698J
r 1.5096 -1.1876 0.2814  0.7819

0.6344 —-1.3681 0.3046  1.2281
b= —1.2063 -1.5068 0.0591  0.0910
0.1128 1.6074 0.4628 —0.1543
—0.2150  0.0400 0.0270 1.0440
L 0.0454 —-0.4450 0.1872 0.5491J
[ 1.1887 —1.0593 0.0281 0.3844 —0.0660
¢ = —1.0856 1.4815 -1.2716 —0.8222 -0.0206
1.2977 -0.7147 1.4044 —0.0043 —0.0061(
-0.3228  0.2170 —0.3834 0.5609 0.7293
D=0

and Hankel singular valuesgg

&)

a(G) = (19.2254

/581 0.4133 0.0712).
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Hankel Singular Values (State Contributions)
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Figure 1. Hankel singular values of the

we choose r = 3 and apply extended balanced singular perturbagion met irst separate the balanced
system G (s) into two parts as slow (powerful) and ite the system for perturbation
parameter 4 = 0 as is given below;

[—0.1139  0.3032
A;; =1-0.2941 -0.2900
L 0.0271

—0.0600 0.0158]
0.2357 —0.0281
—0.2514 0.08651

[—1.8693 0.0091 0.1389]
Ay, =] 01382 -1.3774 -0.7626
L 09211 -1.2014 -—3.7698.

0.2814 0.7819 [ 0.1128 1.6074 0.4628 —0.1543
0.3046 1.2281|,B, =|—0.2150 0.0400 0.0270 1.0440
0.0591 —0.1543 L 0.0454 —-0.4450 0.1872 0.5491
0.0281 [—0.0249 0.3844 —0.0660
C. = —1.0856 1.4815 -1.2716 C, = —0.0962 -0.8222 —0.0206
! 1.2977 -—0.7147 1.4044 | 2 1.6654 —0.0043 —0.0061]
—0.3228 0.2170 —0.3834 [—0.2253 0.5609 0.7293
D=0
and from the second equation find weak variable as, x, = —A,, *4,,x; — Ay, *B,u. Continue from
Ar | Bf
Step 3. Make necessary algebraic matrix operations and finally get, G¢(s) = |- — — — — — where
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1.5149 —1.2983 0.2528 0.7411
0.5957 —1.2062 0.3395 1.4118

—0.1195 0.2909 —-0.2447
’ Bf=
—1.2163 -2.4142 -0.1902 —-0.0370

A =|(-0.2884 —0.2932 0.8021
—0.0223 —-0.6970 -1.1391

11829 -1.1146 —0.0067 —0.0848  0.0039 —0.0221  0.3290
. —|—10809 15706 —1.2957 p. —| 01565 ~—0.1487 —0.0103 —0.6679
! 13823 —0.4388 2.3348|" 0.1106  1.4404  0.4262 —0.1507
—0.3399  0.1274 —0.4633 —-0.0602 —0.1013  0.0174  0.3818

Obtain the Ho,-norm via computer algebraic as ||G¢(s)||_ = 29.6799 which is so clo Ho,-norm of

the original system ||G(s) || = 29.6784.

Now analyze the error tolerance between the original system and balanced-rgduce ia actual

and theoretical infinity error bounds as follows,
IE Nl = [[[G(s) = G (]|, = 121
and forr = 3 and n = 6,
23" ., 0; = 0.7581 + 0.4 0.0742 = 2.4%52.

It is obvious that ||E, || < 2 X%, .1 0; thus we cagn say that erro ance is in a satisfied level.

7. RESULTS

In this study, the H,- norm of the transfer functi linear dynamic system for instance D = 0 has been
computed using the extended-balageed singular pert on approach. The balanced-reduced order model
i i lues, as demonstrated by the solution of a numerical
odels' error investigation requirement of sufficiently tiny
e procedure functions successfully.
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