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Abstract

This paper presents a comprehensive analysis of a multidimensional regression model us-
ing the weighted median as the regression function. The model is formulated as an opti-
mization problem within the framework of the L1-norm error fitting approach, exhibiting
robustness to outliers, a critical advantage in various applications where data might be
contaminated by extreme values. The core of the investigation focuses on the regression
and objective functions of the proposed model. A detailed mathematical study reveals that
the optimization problem inherent in the model can be effectively discretized, leading to
computationally tractable solutions. The study’s findings are further validated through a
rigorous exploration of the model’s application in the context of image denoising, a signifi-
cant problem in image processing. Specifically, the model addresses the challenging task of
impulse noise removal in Magnetic Resonance images. By integrating the proposed model
into well-established adaptive denoising methods, this work demonstrates that significant
improvements in image quality reconstruction and noise suppression are easily achievable.
The results highlight the model’s efficacy in balancing the competing demands of preserv-
ing essential image features while effectively reducing noise artifacts. This research offers a
novel approach for robust regression analysis and provides a robust tool for image denois-
ing, particularly in scenarios involving impulse noise. The mathematical underpinnings,
along with the demonstrated practical application, contribute significantly to the field of
robust statistical modeling and image processing.
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1. Introduction
In statistical learning models, data fitting is a crucial task in analysis. This process

involves fitting a model to observed data and evaluating the resulting errors to evaluate
the quality of the fit. A widely used approach for data fitting is the method of least squares
(LS problem), which utilizes the L2-norm to measure fitting errors. Given that the L2-
norm is sensitive to outliers, it is often necessary to use the L1-norm to achieve better
robustness in model construction [1, 9, 17]. The L1-norm approach, commonly referred to
as the Least Absolute Deviation (LAD) method, is widely used for constructing robust
models and is based on the assumption that errors follow a double exponential (Laplace)
distribution. This concept is attributed to Josip Ruđer Bošković (1711-1787), a Croatian
scientist (mathematician, physicist, astronomer and philosopher) born in Dubrovnik. The
principle was also applied by the French mathematician and astronomer Marquis Pierre-
Simon de Laplace (1749-1827) [2]. While many L2-norm-based models can be expressed
analytically, solutions for L1-norm models are often more complex and non-trivial. As a
result, L1-norm error fitting models are receiving increasing attention in recent research
[10,12,14,15,18,22].

The aim of this investigation is to optimize the model

∆(λ∗, w∗) = min
λ∈[0,1]

w>0

∆(λ, w), (1.1)

where

∆(λ, w) =
m∑

j=1
|yj − Fk(λ, w; w, xj)| (1.2)

denotes the objective function in the context of the L1-norm error fitting approach,
while the function (λ, w) 7→ F (λ, w; w, xj) represents the regression function, where
xj = (x(j)

1 , . . . , x
(j)
n ) ∈ Rn denotes the independent variables and yj ∈ R represents the

dependent variables. The regression function of the observed model is defined as the
weighted median, which has widespread applications in many fields of applied science and
statistics, where its robust property against outliers comes to the fore [11, 18, 22]. Thus,
the regression function is defined as

Fk(λ, w; w, xj) = medλ(w, xj), (1.3)

where w = (w1, . . . , wn) ∈ Rn
+ denotes the weight vector, with each weight corresponding

to a specific element of xj = (x(j)
1 , . . . , x

(j)
n ) ∈ Rn. The first variable λ ∈ [0, 1] in the

regression function (1.3) represents a parameter that determines the weighted median
in cases where it is not unique, while the second variable corresponds to the specific
weight w = wk > 0 of the observed weighted vector. To resolve the optimization problem
(1.1), this study investigates the regression function (1.3) and the objective function (1.2),
demonstrating that the observed optimization problem can be presented discretely.

It is well known that the observed weighting problem is particularly relevant in the field
of image processing for image denoising, where specific weights help achieve a balance
between image quality reconstruction and noise suppression [3, 16]. To implement the
proposed modifications to the advanced image denoising methods, a generalized objective
model is constructed that accommodates flexible input dimensionalities and weighting
positions. Consequently, this generalized modification is applied to various methods that
exhibit flexible performance [5,8,20,21], as well as to methods that are static [7,19,23]. The
experimental results demonstrate that the generalized model enhances standard methods,
resulting in notable improvements in suppressing well-known impulse noise in Magnetic
Resonance (MR) images.
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The study is presented in several sections and subsections. In Section 2, the weighted
median of the data and its properties are presented. In Section 3 the analysis of the ob-
served regression model is performed, where the regression and the objective functions are
studied and described in two subsections, Subsection 3.1 and Subsection 3.2, respectively.
Afterward, the optimization process of the observed model (1.1) is described in Section 4,
where it is shown that the optimization process can be presented discretely. In Section 5,
a numerical example is presented in Subsection 5.1, where the observed problem is applied
to estimate the expectations of normally distributed data in the presence of outliers. Af-
terward, Subsection 5.2 presents the application of the observed model for image denoising
methods, demonstrating that the proposed modifications achieve significant results. And
finally, in Section 6 the conclusion is given.

2. The weighted median
The weighted median of x = (x1, . . . , xn) ∈ Rn with the corresponding weights w =

(w1, . . . , wn) ∈ Rn
+ is defined as the estimate of the LAD problem that can be presented

as the global minimum of the function

f(x; w, x)=
n∑

i=1
wi|xi − x|;

=
n+1∑
t=1

ft(x) 1It(x),
(2.1)

where ft(x) = κt x+ `t present linear function defined on the particular interval It. In this
situation

1It(x) =
{

1, x ∈ It;
0, x /∈ It,

denotes the indicator function, where intervals It are defined as

I1 = 〈−∞, xπ(1)], . . . , It = 〈xπ(t−1), xπ(t)], . . . , In+1 = 〈xπ(n), +∞〉,

such that
xπ(1) ≤ xπ(2) ≤ · · · ≤ xπ(n),

denotes sorted elements of x ∈ Rn in the ascending order that is obtained by some per-
mutation π ∈ Sn (Sn is permutation group of degree n). The function (2.1) is linear and
convex in piecewise order, ensuring the existence of its global minimum [12, 13, 15]. The
method for determining the weighted median is well known [4], and is based on the prin-
ciple that its global minimum occurs at the point where the coefficient κt of ft transitions
from a negative to a positive value. Therefore, considering the previous discussions, the
following theorem presents the determination of the weighted median.

Theorem 2.1. Let x = (x1, . . . , xn) ∈ Rn be a vector of values with corresponding weights
w = (w1, . . . , wn) ∈ Rn

+, and let π ∈ Sn be a permutation that sorts the elements of x in
ascending order. Then for s = max T, where

T = {t | 2
t−1∑
i=1

wπ(i) ≤
n∑

i=1
wπ(i)}, t ∈ {1, . . . , n},

it holds that:

(i) 2
s−1∑
i=1

wπ(i) <
n∑

i=1
wπ(i) =⇒ medλ(w, x) = xπ(s);

(ii) 2
s−1∑
i=1

wπ(i) =
n∑

i=1
wπ(i) =⇒ medλ(w, x) = (1 − λ)xπ(s−1) + λxπ(s), λ ∈ [0, 1].
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Proof. Let us determine the coefficients κt of ft(x) in (2.1), i.e.

κt = 2
t−1∑
i=1

wπ(i) −
n∑

i=1
wπ(i). (2.2)

By insight in (2.2), it may be concluded that the coefficients κt are strictly increasing, i.e.
it holds that

−
n∑

i=1
wπ(i) = κ1 < κ2 < · · · < κn+1 =

n∑
i=1

wπ(i). (2.3)

In order to prove (i), let us consider the situation when κs < 0. Then, according to the
definition of the set T and the statement (2.3), it can be concluded that κt < 0, ∀t ≤ s,
and κt > 0, ∀t > s. This means that function f(x; w, x) strictly decreases on interval
〈−∞, xπ(s)〉, and strictly increases on interval 〈xπ(s), +∞〉. Thus, it can be concluded that
the global minimum is reached at xπ(s), i.e. medλ(w, x) = xπ(s).

Now, let us consider the statment (ii) when κs = 0. Analogously as in the first case,
it can be concluded that κt < 0, ∀t ≤ s − 1, and κt > 0, ∀t > s. This means that
the function f(x; w, x) strictly decreases in the interval 〈−∞, xπ(s−1)〉, stagnates in the
segment [xπ(s−1), xπ(s)], and increases strictly in the interval 〈xπ(s), +∞〉. In this situa-
tion, it can be concluded that the global minimum is reached on [xπ(s−1), xπ(s)], that is,
medλ(w, x) = (1 − λ)xπ(s−1) + λxπ(s), λ ∈ [0, 1].

�

Remark 2.2. If equal weights are considered, that is, w1 = · · · = wn, then the weighted
median is called the median and is denoted as medλ(x).

Corollary 2.3. Let x = (x1, . . . , xn) ∈ Rn, w = (w1, . . . , wn) ∈ Rn
+ and π ∈ Sn which

sorts x in ascending order. Then, for some k ∈ {1, . . . , n}, the following implications
hold:

(i) δsas+1 < δswk < δsas =⇒ medλ(w, x) = xπ(s);

(ii) wk = as =⇒ medλ(w, x) = (1 − λ)xπ(s−1) + λxπ(s);

(iii) wk > |al| = |al+1| =⇒ medλ(w, x) = xπ(l) = xk,

where l = π−1(k) and

at =



t−1∑
i=1

wπ(i) −
n∑

i=t
i6=l

wπ(i), t ≤ l;

n∑
i=t

wπ(i) −
t−1∑
i=1
i6=l

wπ(i), t ≥ l + 1,

δt =
{

−1, t ≤ l;
1, t ≥ l + 1.

(2.4)

Proof. Let us rewrite the set T from Theorem 2.1 in order to observe wk > 0 as follows

T = {t | δt wk ≤ δt at}, t ∈ {1, . . . , n},

where the coefficients at and Kronecker delta δt are defined by (2.4). Considering (2.4), it
can be concluded that the coefficients at strictly increase when t ≤ l, i.e. it holds that

−
n∑

i=1
i 6=l

wπ(i) = a1 < a2 < · · · < al, (2.5)
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while in situation when t ≥ l + 1 coefficients strictly decrease, i.e.

al+1 > al+2 > · · · > an+1 = −
n∑

i=1
i6=l

wπ(i). (2.6)

Finally, considering equations (2.4), (2.5), (2.6), and Theorem 2.1, the statements of the
corollary are clearly established, illustrating the relationship between the weight wk and
the weighted median. �

Proposition 2.4. Let α, β, γ ∈ R, such that α > 0, β 6= 0, then it holds that

medλ(αw, βx + γe) = β medλ(w, x) + γ,

where e = (1, . . . , 1) ∈ Rn.

Proof. Let us denote substitutions as z = βx+γ. It can be directly concluded from (2.1)
that it holds that

f(z; αw, βx + γe) = α |β| f(x; w, x).

In this situation, the left side is at its minimum at z∗ = medλ(αw, βx + γe), while the
right side attends at x∗ = medλ(w, x). Finally, applying the substitution, we can conclude
that z∗ = βx∗ + γ, which proves the proposition. �

Example 2.5. The next figure presents f(x; w, x) for x = (1, 2, 3, 4, 5). It shows that the
observed function always reaches its global minimum, which, as stated in (ii) of Theorem
2.1, is not always unique. In Figure 1(a), we see the situation when w = (1, 2, 3, 2, 1),
which generates a unique global minimum reached at xπ(3) = 3. In contrast, Figure 1(b)
considers w = (1, 1, 3, 4, 1), which generates a global minimum throughout the segment
[xπ(3), xπ(4)] = [3, 4].
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(b)
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�(1) x
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Figure 1. Graph of f

3. The component weighted median regression analysis
In this section, the analysis of the observed model (1.1) is conducted and is presented

in two subsections. In the first subsection, the regression function (1.3) is studied, while
in the second subsection the objective function (1.2) is examined.
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3.1. The regression function analysis
In order to analyze the median-based regression function, the previous Section 2 is

referenced to present and discuss some properties of the regression function.

Theorem 3.1. Let x = (x1, . . . , xn) ∈ Rn, w = (w1, . . . , wn) ∈ Rn
+ and π ∈ Sn which

sorts x in ascending order. Then, for some k ∈ {1, . . . , n} and l = π−1(k), it holds that

Fk(λ, w; w, x) =
2n−1∑
t=1

αt(λ) 1At(w),

where

αt(λ) =

 xπ(s), t = 2s − 1;

(1 − λ)xπ(s−1) + λxπ(s), t = 2s − 2,
At =

 Js, t = 2s − 1;

{as}, t = 2s − 2,

such that
J1 = 〈a1, a2〉, . . . , Jl−1 = 〈al−1, al〉, Jl = 〈|al|, +∞〉, Jl+1 = 〈al+2, al+1〉, . . . , Jn = 〈an+1, an〉.

Proof. The regions At of the regression function are directly obtained by Corollary 2.3.
So, the intervals Js of the corresponding constant values αt(λ) = xπ(s) are defined by
statement (i) of Corollary 2.3. So, if s ≤ l − 1 (δs = −1), then

J1 = 〈a1, a2〉, . . . , Jl−1 = 〈al−1, al〉,
while when s ≥ l + 1 (δs = 1), it follows that

Jl+1 = 〈al+2, al+1〉, . . . , Jn = 〈an+1, an〉.
Situation when s = l the statement (iii) of Corollary 2.3 is satisfied, what directly impli-
cates that

Jl = 〈|al|, +∞〉.
Finally, taking into account statement (ii) of Corollary 2.3, the midpoints {as} are defined,
at which αt(λ) = (1 − λ)xπ(s−1) + λxπ(s). �

Corollary 3.2. It holds that
lim

w→+∞
Fk(λ, w; w, x) = xk.

�

Corollary 3.3. Let
lim

w→0+
Fk(λ, w; w, x) = xπ(s0),

then it holds that:
(i) if s0 ≤ l, then w 7→ Fk(λ, w; w, x) monotonically increases;
(ii) if s0 ≥ l + 1, then w 7→ Fk(λ, w; w, x) monotonically decreases.

�

Corollary 3.4. Let
lim

w→0+
Fk(λ, w; w, x) = xπ(s0),

then it holds that:
(i) if s0 ≤ l then

(a) if λ = 0 then w 7→ Fk(λ, w; w, x) is left continuous;
(b) if λ = 1 then w 7→ Fk(λ, w; w, x) is right continuous;

(ii) if s0 ≥ l + 1 then
(c) if λ = 0 then w 7→ Fk(λ, w; w, x) is right continuous;
(d) if λ = 1 then w 7→ Fk(λ, w; w, x) is left continuous.

�
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Taking into account Proposition 2.4, the next corollary is presented directly.

Corollary 3.5. Let α, β, γ ∈ R, such that α > 0, β 6= 0, then it holds that

Fk(λ, w; αw, βx + γe) = β Fk(λ, w; w, x) + γ,

where e = (1, . . . , 1) ∈ Rn. �

Example 3.6. The next figure presents w 7→ Fk(λ, w; w, x) for x = (1, 2, 3, 4, 5) and some
fixed value λ ∈ [0, 1]. Specifically, Figure 2(a) illustrates the case where w = (1, 2, 3, 2, w =
w5), k = 5, and λ = 0, while Figure 2(b) presents the situation for w = (w = w1, 1, 3, 4, 1),
k = 1, and λ = 1. The scenarios in the figures clearly illustrate properties that are directly
derived from the definition of the weighted median. First, as w → +∞, it follows that
Fk(λ, w; w, x) → xk, a property presented in Corollary 3.2. Furthermore, the relationship
between xk and the element xπ(s0) is evident when Fk(λ, w; w, x) → xπ(s0) as w → 0+,
clearly demonstrating the effect on the monotonicity of the observed regression function,
which is observed in Corollary 3.3. Furthermore, considering Corollary 3.4, it can be
concluded that both functions satisfy the conditions of continuity on the left side.
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Figure 2. Graph of w 7→ Fk(λ, w; w, x)

3.2. The objective function analysis
The objective function ∆, as defined by (1.2), is generated by each corresponding re-

gression function Fk(λ, w; w, xj). According to Theorem 3.1, each Fk(λ, w; w, xj) can be
expressed as

Fk(λ, w; w, xj) =
2n−1∑
t=1

α
(j)
t (λ) 1

A
(j)
t

(w), (3.1)

where α
(j)
t (λ) and A

(j)
t are derived by the permutation πj ∈ Sn, which sorts xj ∈ Rn.

Consequently, all possible regions A
(j)
t must be obtained in order to describe the objective

function ∆. So, let us define the set of midpoints that is generated by π ∈ Sn as

Aπ = {at(π; k, w) | at(π; k, w) > 0}, t ∈ {1, . . . , n},

where at = at(π; k, w) is defined by (2.4). By considering that ∆ is generated by m � 0,
the set of all possible midpoints can be written as

A∗ =
⋃

π∈Sn

Aπ, (3.2)

and thus all possible regions of the objective function ∆ are determined.
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Proposition 3.7. It holds that

0 ≤ |A∗| ≤
b n+1

2 c∑
t=1

(
n − 1
t − 1

)
− mod(n, 2)

2 ·
(

n − 1
bn−1

2 c

)
.

Proof. Considering (2.4), it can be concluded that at > 0 is obtained by substruction of
two weight groups (where wk is excluded). So, counting all t − 1 combinations from n − 1
elements, we can obtain the cardinal number |A∗|.

First, consider the situation where n is an even number, i.e. mod(n, 2) = 0. In this
situation the maximal number of positive coefficients at > 0 can be derived as

|A∗| ≤
(

n − 1
0

)
+
(

n − 1
1

)
+ · · · +

(
n − 1
n
2 − 1

)

=
b n+1

2 c∑
t=1

(
n − 1
t − 1

)
.

(3.3)

Consider the situation where n is an odd number, that is, mod(n, 2) = 1. In this
situation, it can be written that

|A∗| ≤
(

n − 1
0

)
+
(

n − 1
1

)
+ · · · + 1

2 ·
(

n − 1
n−1

2

)

=
b n+1

2 c∑
t=1

(
n − 1
t − 1

)
− 1

2 ·
(

n − 1
bn−1

2 c

)
.

(3.4)

The last part is divided because this situation occurs when two groups have the same
number of elements, allowing them to generate double the coefficients. Finally, combining
(3.3) and (3.4), we obtain the statement of the proposition. �

Proposition 3.8. It holds that

Fk(λ, w; w, xj) =
2r+1∑
t=1

β
(j)
t (λ) 1A∗

t
(w),

where

A∗
t =

 J∗
s , t = 2s − 1;

{a∗
s}, t = 2s,

t ∈ {1, . . . , 2r + 1},

such that J∗
s are intervals defined as

J∗
1 = 〈0, a∗

1〉, . . . , J∗
s = 〈a∗

s−1, a∗
s〉, . . . , J∗

r+1 = 〈a∗
r , +∞〉.

where
0 < a∗

1 < a∗
2 < · · · < a∗

r < +∞, r = |A∗|,
denotes the sorted elements of A∗, and it holds that β

(j)
t (λ) = α

(j)
s (λ) iff A∗

t ⊆ A
(j)
s .

Proof. According to (3.2) it holds that Aπj ⊆ A∗, so for every A
(j)
s of (3.1) there exists

A∗
t such that A∗

t ⊆ A
(j)
s , and thus β

(j)
t (λ) = α

(j)
s (λ). �

Theorem 3.9. It holds that

∆(λ, w) =
2r+1∑
t=1

α∗
t (λ) 1A∗

t
(w),

where
α∗

t (λ) =
m∑

j=1
|yj − β

(j)
t (λ)|p.
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Proof. According to Proposition 3.8, each regression function Fk(λ, w; w, xj) defined by
(3.1) can be written as the piecewise function that is defined in regions A∗

t . So, it can be
written that

∆(λ, w)=
m∑

j=1
|yj − Fk(λ, w; w, xj)|p,

=
m∑

j=1
|yj −

2r+1∑
t=1

β
(j)
t (λ) 1A∗

t
(w)|p,

=
2r+1∑
t=1

m∑
j=1

|yj − β
(j)
t (λ)|p 1A∗

t
(w),

what proves the statement of the theorem. �

4. Optimization of the component weighted median model
Referring to Section 3, the properties of the observed model (1.1) have been studied

and presented, allowing optimization to be performed.

Theorem 4.1. It holds that
min

λ∈[0,1]
w>0

∆(λ, w) = min
1≤t≤2r+1

∆(λ∗
t , w∗

t ),

where w∗
t ∈ A∗

t and
λ∗

t = argmin
λ∈[0,1]

∆(λ, w∗
t ).

Proof. According to Theorem 3.9, the objective function ∆ is constant for w∗
t ∈ A∗

t = J∗
s

and any λ∗
t ∈ [0, 1], while at the midpoints, i.e., when w∗

t ∈ A∗
t = {a∗

s}, t = 2s, the
corresponding parameter λ∗

t can be optimized. In this situation, due to λ 7→ ∆(λ, a∗
s)

being continuous and convex, the global minimum λ∗
t can always be reached. So, it can

be concluded that the optimization problem of ∆ can be presented discretely. �

Remark 4.2. By considering Theorem 2.1, it may be concluded that the parameter λ∗
t

for the corresponding midpoint region A∗
t = {a∗

s} can be explicitly expressed as

λ∗
t =


medλ(w̃t, x̃t), 0 ≤ medλ(w̃t, x̃t) ≤ 1;

0 , medλ(w̃t, x̃t) < 0;

1 , medλ(w̃t, x̃t) > 1,

such that
w̃t =

(
Fk(1, a∗

s; w, xg(j)) − Fk(0, a∗
s; w, xg(j)) | j = 1, . . . , mt

)
,

x̃t =
(

yg(j) − Fk(0, a∗
s; w, xg(j))

Fk(1, a∗
s; w, xg(j)) − Fk(0, a∗

s; w, xg(j))
| j = 1, . . . , mt

)
,

where g : {1, . . . , mt} → Tt, mt = |Tt|, denotes some mapping on the sets of indices
Tt = {j | Fk(0, a∗

s; w, xj) 6= Fk(1, a∗
s; w, xj)}, j ∈ {1, . . . , m}.

Remark 4.3. The computational efficiency of the proposed optimization model is based
on the average computational complexity of the Quicksort algorithm. In this context, it
can be concluded that the evaluation of the objective function ∆ requires the classification
of m vectors of size n, which involves O(mn log n) operations. Furthermore, evaluating
∆ for each A∗

t requires O(m(2r + 1)) operations, where the complexity of generating the
observed regions is discussed in Proposition 3.7. Furthermore, according to Remark 4.2,
determining the parameters λ∗

t in the midpoint region involves a computational complexity
of O(rm̃ log m̃) operations, where m̃ ≤ m.
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5. Numerical example and application
In this section, we present the performance and application of the observed model, ∆.

We specifically address the problem of expectation estimation for normal distributions,
using it as a numerical example while considering outliers in the low-probability tails. Our
application focus is on the image denoising problem, a critical area in image processing
[3, 16]. This topic is especially important for the reduction of noise in corrupted medical
images, as effective denoising is essential for an accurate medical diagnosis. The methods
discussed emphasize median-based fuzzy approaches [6, 21]. Therefore, we investigate
a generalized model to optimize well-known adaptive impulse removal techniques that
aggregate the sums of objective functions across different input dimensions and weighting
positions.

5.1. Numerical example
To demonstrate the optimization of the observed model ∆, we consider a normally

distributed data vector xj = (x(j)
1 , . . . , x

(j)
n ), where x

(j)
i ∼ N(µj , σ2

j ) and yj = µj . This
scenario also includes outliers in xj , which are typically found in the low-probability tails.
Such outliers can lead to model misspecification and yield inaccurate results. Therefore,
the robustness of the median in relation to outliers helps mitigate these issues by preserving
the integrity of the model [17]. Figure 3 presents the optimization model that is performed
considering Theorem 4.1. Performance is demonstrated for n = 9 and m = 10 where the
center weight w = w5 is observed, while wi = 1, i 6= 5. The red-marked graph presents
a discreet optimization path across the regions of the objective function ∆, where the
midpoint region is optimized considering Remark 4.2.

2 4 6 8
0.3

0.4

0.5

0.6

0.7

0.8

w

1

Figure 3. Optimization model

Figure 4 presents the cases of a normal distribution that are generated in the observed
model case, which reach its global minimum at (λ∗, w∗) = (1, 4) (Figure 3). In these
cases, outliers are indicated as red points and regular data as black, while the green
point denotes weighted data x

(j)
5 . Figures 4(a) and (b) demonstrate the advantage of the

observed model, where the green dashed line presents the position of Fk(λ∗, w∗; w, xj),
k = 5, which effectively estimate expectation yj = µj . In other situations, Figures 4(c)
and (d) demonstrate the disadvantages of the weight positioning and outliers, which lead
to a poor estimation of the corresponding expectation.

5.2. Image denoising
This subsection discusses the application of model (1.1), which is commonly used in the

field of image processing, particularly to address the image denoising problem [3, 16]. In
this field, various types of filters are developed to target specific types of noise that degrade
the visual quality of images. The image of size N × M in this area is represented matrix-
wise as Y = [yi,j]1≤i≤N,1≤j≤M , where each component yi,j represents the color intensity
of the corresponding pixel positions. One of the possible representations of the pixel color
intensities considered in this work is the representation in grayscale levels. In this scenario,
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Figure 4. Optimization results

the scale of the color intensities is defined such that yi,j ∈ [0, 1], where 0 indicates black
and 1 indicates white, while the intermediate values represent different shades of gray. In
this field, various mathematical models are used to simulate different types of noise present
in images. In this investigation, the model that describes impulse noise, also known as
’salt and pepper’ noise, which generates a noisy image X = [xi,j]1≤i,≤N,1≤j≤M , such that

xi,j =
{

ξi,j, with probability ρ;
yi,j, with probabilitiy 1 − ρ.

(5.1)

In the observed model ρ ∈ [0, 1] represents the noise ratio, while ξi,j represents a random
variable whose probability density function is defined as

P (t) =


Pp, t = p;
Ps, t = s;
0, otherwise,

where Pp, Ps ≥ 0 (Pp+Ps = 1) represent the probabilities of the occurrence of values p and
s, respectively. For ’salt and pepper’ noise, it is common to use the minimum and maxi-
mum values of the color intensity scale with the same probability of occurrence. Therefore,
the corresponding values p = 0 and s = 1 are considered, while the probabilities of oc-
currence are equal, that is, Pp = Ps = 0.5. It is well-known that median-based filters are
primarily used to suppress impulse noise corruption in images. This effectiveness comes
from its robustness to outliers, which in this case represent impulse noise [9,16,17]. Most
of these methods are constructed to operate on the filtering window of each xi,j, resulting
in a new reconstructed image X∗ = [x∗

i,j]1≤i≤N,1≤j≤M . A standard 3 × 3 filtering window,
which is a commonly used size for filtering, is typically represented in vector form, and is
presented as follows.

xi−1,j−1 xi,j−1 xi+1,j−1

xi−1,j xi,j xi+1,j

xi−1,j+1 xi,j+1 xi+1,j+1

=
x

(j)
1 x

(j)
2 x

(j)
3

x
(j)
4 x

(j)
5 x

(j)
6

x
(j)
7 x

(j)
8 x

(j)
9

In this situation, it can be denoted that xj = (x(j)
1 , . . . , x

(j)
9 ), while yj = yi,j, where

j = (i − 1)M + j.
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5.2.1. Improved denoising of MR data in image processing. Digital impulses
mixed with Magnetic Resonance (MR) images can render them unusable for diagnosis,
leading to unrecognizable images that contain misleading information. This noise may
occur during the reconstruction phase or originate from external radio frequency waves.
Therefore, it is essential to remove this noise from MR images [21]. To address this is-
sue, an investigation is conducted on different types of methods that effectively remove
impulse noise from images, where the observed model is implemented to improve filtering
performance. Furthermore, due to the complexity of the observed model, the research
focuses only on pixels identified as noisy, while others are treated as non-noisy based on
a specific detection procedure of the filtering method and thus left unchanged. Among
the methods studied, SAMF [5] (Simple Adaptive Median Filter), AMF [8, 21] (Adap-
tive Median Filter), and NAFSM [20] (Noise Adaptive Fuzzy Switching Median Filter)
incorporate flexible window sizes. In contrast, other methods such as CWMF [7] (Central
Weighted Median Filter), SCWMF [19] (Switching Central Weighted Median Filter), and
SMF [23] (Switching Median Filter) do not include these types of flexibility, with CWMF
being particularly noted for lacking any noise detectors and thus processing all pixels.

The performance of the filtering methods is presented using the Absolute Deviations
Error (ADE) measure, defined in this context as

ADE =
M∑

i=1

N∑
j=1

|yi,j − ((1 − ni,j)xi,j + ni,jx∗
i,j)|,

where the general noise detector scheme is represented as

ni,j =
{

1, xi,j is noisy;
0, xi,j is no-noisy.

In this way, unnecessary filtering is controlled, managing the replacement of non-noisy
pixels, which preserves fine details and prevents edge distortion. To achieve this, the
observed component of the weighted median model is generalized to incorporate all specific
filtering modifications to improve filtering performance. Thus, a certain modification is
carried out through the generalized objective function:

∆̃(λ, w) =
m̃∑

j=1
|ỹj − Fkj

(λ, w; w̃j , x̃j)|,

which relates only to those observations considered noisy by the specified noise detectors.
Specifically, ỹj = yi,j, while x̃j ∈ Rnj corresponds to the filtering neighborhood of xi,j,
which is detected as noisy, i.e., when ni,j = 1. Furthermore, the specific weighting position
kj is observed (w(j)

kj
= w), where the first non-noisy pixel closest to the filtering window

center is considered, and all other weights are set to one, i.e., w
(j)
i = 1 for i 6= kj . This

process is conducted by using the simple impulse noise detector:

ñi,j =
{

1, if xi,j = 0 or xi,j = 1;
0, else.

This approach effectively detects non-noisy pixels within the observed filtering window
x̃j ∈ Rnj , while all other noisy pixels are excluded from the filtering process [5, 20]. Con-
sequently, this method avoids replacing noisy pixels, thereby preserving fine details and
edges in the image and preventing blurring effects. Consequently, by Theorem 3.9, the re-
gions of ∆̃ can be derived by observing the sums of objective functions with the same input
dimensions n and position k (i.e., ∆k,n). In this manner, it follows that ∆̃ =

∑
k,n ∆k,n,

where the corresponding midpoint set of ∆k,n is denoted as A∗
k,n, resulting in the final
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midpoint set of ∆̃ given by Ã∗ = ∪k,nA
∗
k,n .

Therefore, the generalized objective model ∆̃ is examined to improve the proposed
filtering methods. Thus, Figures 5 and 6 present the filtering results through ADE for
each corresponding filtering model modified by ∆̃, conducted on two distinct test images:
MR1 and MR2.
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Figure 5. Filtering results for MR1
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Figure 6. Filtering results for MR2

In Table 1, the performance of the standard and optimized methods is compared. It is
shown that the optimized SAMF significantly outperforms the standard variation, as the
filtering window increases until a certain number of non-noisy detected pixels is reached, at
which point the standard median is used for the filtering output [5]. The optimized param-
eters for SAMF corresponding to ∆̃ are achieved at the midpoint (λ∗, w∗) = (0, 9) for the
MR1 image (Figure 5(a)), and at (λ∗, w∗) = (0.454, 5) for MR2 (Figure 6(a)). The results
for the CWMF indicate that the proposed modification significantly surpasses the stan-
dard variation. The standard CWMF processes every pixel using a 3 × 3 filtering window,
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where the center weight is w5 = 3 and wi = 1 for i 6= 5 [7], while the proposed modification
introduces flexible weighting. The optimal performance of the modified CWMF is attained
at (λ∗, w∗) ∈ [0, 1] × 〈8, ∞〉 for both MR test images (Figures 5(b) and 6(b)). The AMF
increases the filtering window until the median is not found between the extreme values
within the current window. Subsequently, the output of the standard AMF is defined
as the median of the observed window [8, 21]. The proposed modification demonstrates
significant improvements, with optimized parameters of (λ∗, w∗) = (0.382, 2) for MR1
(Figure 5(c)) and (λ∗, w∗) = (0.390, 2) for MR2 (Figure 6(c)). The standard variation of
SCWMF employs a 3 × 3 filtering window for noise detection, incorporating the distance
of the observed pixel to the median value of the window. The output is determined as the
center-weighted median, where w5 = 3 and wi = 1 for i 6= 5 [19]. The proposed modifica-
tion shows significant improvements, with optimized parameters for both MR test images
achieved at (λ∗, w∗) ∈ [0, 1] × 〈8, ∞〉 (Figures 5(d) and 6(d)). The standard variation of
NAFSM incorporates a fuzzy noise detector, with the filtering window expanding until one
non-noisy pixel is detected. Subsequently, the standard median of the noisy detected pixels
within the specified filtering window is used as the output [20]. The results show that the
proposed model significantly improves the standard NAFSM, with optimized parameters
for both MR test images reaching (λ∗, w∗) ∈ [0, 1] × 〈8, ∞〉 (Figures 5(e) and 6(e)). The
standard variation of SMF involves detecting noisy pixels by considering the minimum of
four types of convolution applied to a 5×5 filtering window, where the output is defined as
the standard median of the observed filtering window [23]. It is evident that the proposed
model significantly improves the standard method, with optimized parameters for both
MR test images reaching (λ∗, w∗) ∈ [0, 1] × 〈24, ∞〉 (Figures 5(f) and 6(f)).

Table 1. ADE measures

Method Standard Optimized Outperformance
MR1 (ρ = 20%)

SAMF [5] 322.282 242.067 24.89%
CWMF [7] 410.933 235.616 42.66%
AMF [8,21] 229.094 215.837 5.79%
SCWMF [19] 339.400 230.729 32.02%
NAFSM [20] 529,992 244.568 53.85%
SMF [23] 515.510 463.267 10.13%

MR2 (ρ = 20%)
SAMF [5] 213.259 201.425 5.55%
CWMF [7] 429.024 214.004 50.12%
AMF [8,21] 229.663 216.384 5.78%
SCWMF [19] 339.055 216.400 36.18%
NAFSM [20] 544.331 214.301 60.63%
SMF [23] 601.784 524.224 12.89%

Figures 7 and 8 present the optimal filtering results for the MR1 and MR2 images,
both of which have the same size of 110 × 100. Figures 7(a) and 8(a) present the original
MR1 and MR2 images, respectively, where the original MR1 shows the axial view that
captures a horizontal image from the top of the body to the bottom, while the original
MR2 displays the coronal viewa frontal view that presents a mirror image of the body
from front to back. Figures 7(b) and 8(b) present the noisy MR1 and MR2 images, which
are generated by the impulse noise model (5.1) with ρ = 0.2. In this context, the noisy
images MR1 and MR2 demonstrate the characteristics of impulse noise, which is defined by
random occurrences of bright (salt) and dark (pepper) pixels, resembling salt and pepper
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sprinkled on an image. As illustrated, all the presented filters effectively reconstruct the
noisy images, with the AMF demonstrating the best performance for the MR1 image,
while the SAMF excels for the MR2 image.

(a) Original (b) Noisy (ρ = 0.2) (c) SAMF (d) CWMF

(e) AMF (f) SCWMF (g) NAFSM (h) SMF

Figure 7. Optimal filtering results for MR1

(a) Original (b) Noisy (ρ = 0.2) (c) SAMF (d) CWMF

(e) AMF (f) SCWMF (g) NAFSM (h) SMF

Figure 8. Optimal filtering results for MR2

6. Conclusion
This study presents a comprehensive analysis of a multidimensional regression model

based on the weighted median, demonstrating that the associated optimization problem
can be effectively discretized. The detailed examination of the regression and objective
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functions reveals their piecewise nature, providing a foundation for the efficient compu-
tation of the optimal solution. The robustness of the proposed L1 norm model to out-
liers, particularly its effectiveness in image denoising applications, has been demonstrated,
showing that incorporating the model into adaptive filtering techniques yields notable im-
provements in removing impulse noise from MR images. The results suggest that the
presented methodology provides a valuable framework for robust regression analysis and
image denoising. Future research could explore the application of this model to even more
sophisticated denoising techniques and also apply it to other areas where the presence of
outliers can severely affect the accuracy of the model.
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