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Abstract

Through the use of two numerical techniques, the purpose of this study is to examine the approximate
outcomes of the (GRLW) equation. The utilized methods are the collocation method with quintic
B-spline, which is based on finite elements and yields good results for nonlinear evolution equations,
and the strang splitting technique, which is simple to apply, practical, and quick. In order to provide
approximate solutions for the main problem, the collocation method is combined with the Strang
splitting method for this study. Three examples—the formation of the Maxwellian initial condition,
the interaction of two solitary waves, and a single solitary wave—are taken into consideration in
order to assess the accuracy of these algorithms. To demonstrate how closely the exact solutions
close to numerical results and to contrast them with other solutions in the literature, error norms,
and conservation quantities are computed. Tables and graphs are used to illustrate the solutions that
have generated. Based on the results obtained and the practical, easy-to-use, and current features of
the methodologies, this article stands out from the rest.

1. Introduction

Analytical solutions of nonlinear evolution equations, especially those containing nonlinear terms, which play an important
role in various fields of science such as physics, applied mathematics and engineering problems, may not generally be obtained.
Therefore, due to the existence of limited boundary and initial conditions in obtaining analytical solutions, approximate
solutions of such equations have become quite suitable for the study of physical phenomena. The regularized long wave (RLW)
equation, which was first proposed by Peregrine [1] and forms the basis of the generalized regular long wave (GRLW) equation
discussed in this study, is one of the significant patterns in the physics environment due to the fact that it describes phenomena
with weak nonlinearity and dispersion waves. Later, the RLW equation was investigated by Benjamin et al [2], who disputed it
as an improved pattern of the KdV equation, which describes long waves by presuming a small wave amplitude and a large
wave length in nonlinear dispersion and great number of physical systems. GRLW equation is connected with the generalized
Korteweg-de Vries (GKdV) equation presented as

Ut + εU pUx +µUxxx = 0. (1.1)

These generally expressed equations are non-linear wave equations with (p+1)th non-linearity and they have solitary wave
solutions with pulse-like properties. The GRLW equation designed to obtain approximate solutions in this study is described
by the form

Ut +Ux + p(p+1)U pUx−µUxxt = 0 (1.2)

≫≫≫ Received: 29-03-2024 ≫≫≫ Revised: 02-10-2024 ≫≫≫ Accepted: 31-12-2024 ≫≫≫ Online: 27-06-2025 ≫≫≫ Published: 30-06-2025

https://orcid.org/0000-0003-3412-4370 
mailto:mkarta@agri.edu.tr


Fundamental Journal of Mathematics and Applications 73

with the initial-boundary conditions presented as follows

U(x,0) = g(x), xL ≤ x≤ xR,

U(xL, t) =U(xR, t) = 0,
Ux(xL, t) =Ux(xR, t) = 0.

(1.3)

where physical boundary conditions of this equation are expressed as U → 0 when x→±∞ and here t and x are subscripts that
indicate variations in time and space and p is a non-negative integer and µ is a positive constant. f (x) refers to a localized
disturbance within the range [xL,xR], while U refers to the vertical displacement of the water surface or similar physical quantity.
Many scientists have tried to obtain solutions of the (GRLW) equation numerically and analytically. Zhang [3] considered a
finite difference method for the (GRLW) equation. Both Karakoç and Bhowmik [4] and Roshan [5] approximated the solutions
of the equation using the Petrov–Galerkin method. The Galerkin approximation with cubic B-splines was constructed to
acquire the approximate solution of the (GRLW) equation by Zeybek and Karakoç [6]. Zeybek and Karakoç [7] and Karakoç
and Zeybek [8] used collocation method with the help of quintic and septic B-splines, respectively, for solitary-wave solutions
of the equation. A new compact finite difference method (CFDM) was proposed by [9] for equation. Mokhtari and Mohammadi
[10] utilized Sinc-collocation method to the equation. Recently, Karakoç et al [11] applied to the equation an exact method
named Riccati–Bernoulli sub-ODE method and a numerical method named Subdomain finite element method. By taking
p = 1 in the (GRLW) equation, the (RLW) equation, which is a special case of this equation, is obtained. Solutions to this
equation have been obtained by many methods. One can easily refer to refs. [2], [12]–[26]. If p = 2 is taken into account in
the (GRLW) equation, the (MRLW) equation, which is a special case of this equation, is gotten. The reader can examine refs.
[27, 28] for the solutions of this equation, which have been obtained by many methods.

The aim of this study is to investigate approximate solutions of the equation (1.2). The GRLW equation has been previously
solved by the Collocation method. However, in this article, the solutions have been obtained by combining the collocation
method with the Strang splitting technique. This method is simple, practical and fast to implement, so it can be preferred
more in the literature.The Strang splitting technique, which is one of the Operator splitting techniques that is very practical
and produces accurate results, is used to obtain solutions. Two numerical schemes are created for the main equation via the
splitting technique. These schemes are applied the collocation method with the help of quintic B-spline. The results obtained
are illustrated with tables and graphs.

2. Operator Splitting Method

Operator splitting is an effective technique for solving coupled systems of partial differential equations. Because one obtains
a series of equations by dividing a complex equation into simpler and easier parts. Operator splitting means that the spatial
differential operator contained in the equations is divided into the sum of different sub-operators with simpler forms, so that
the corresponding equations be able to solve more easily. Then, as per the procedure of the splitting technique, a series of
sub-equations are solved instead of the main equation. There are operator splitting techniques that include different algorithms
such as Lie-Trotter, strang and higher order splitting techniques. In this study, the second order Strang splitting technique,
which is one of the easy and convenient splitting techniques used to obtain faster results, will be used. Let’s consider a complex
problem that has the following form.

dU(t)
dt

= (ω1 +ω2)U(t), U(0) =U0, t ∈ [0,T ]. (2.1)

The problem (2.1) can be split into the following subequations in one dimensional form

dU∗(t)
dt

= ω1U∗(t), U∗(tn) =Un
sp =U0 , t ∈ [tn, tn+1],

dU∗∗(t)
dt

= ω2U∗∗(t), U∗∗(tn) =U∗(tn+1) , t ∈ [tn, tn+1]

in which Un
sp =U0 is known and (Usp)tn+1 =U∗∗tn+1

is the approximate solution at tn = tn+1. Here, ω1 and ω2 differential operators.
[0,T ] is a time interval for arbitrary T ≥ 0, and this interval can be divided into M subintervals [tn, tn+1], (n = 0,1,2, ...,M−1)
that satisfy the condition 0 =≤ t0 ≤ t1 ≤ t2...≤ tM = T and each interval is of length ∆t = tn+1− tn.
Second order strang splitting technique can be presented with the following algorithm

dU∗(t)
dt

= ω1U∗(t), U∗(tn) =U∗∗∗(tn) , t ∈ [tn, tn+1/2],

dU∗∗(t)
dt

= ω2U∗∗(t), U∗∗(tn) =U∗(tn+1/2) , t ∈ [tn, tn+1] (2.2)

dU∗∗∗(t)
dt

= ω1U∗∗∗(t), U∗∗∗(tn+1/2) =U∗∗(tn+1) , t ∈ [tn+1/2, tn+1]
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in which (U∗)0 =U0 and U∗∗∗(tn+1) are the approximate solution at tn = tn+1 [29, 30]. As it is known, solutions of equation
(2.1) can be found over the entire time interval. However, instead of doing this, according to the procedure of this algorithm,
the first equation of (2.2) is solved with half the time step, then the second equation of (2.2) is solved with the whole time step,
and then the first equation of (2.2) is solved again with half the time step. Thus, the process is completed. For the solutions of
(2.1) in [31], Taylor series expansion up to the first order and the second order have been used. It has been obtained that the
approach has a first-order accuracy of (O(∆t)) for Lie-Trotter splitting technique and a second-order accuracy (O(∆t2)) for
Strang splitting technique.

3. The Construction of the Collocation Method

Let the solution range of the main problem [xL,xR] be divided into N finite elements of equal length h = x j+1−x j for the nodes
x j, j = 0(1) such that xL = x0 ≤ x1 ≤ . . .≤ xN = xR. Quintic B-splines ϕ−2(x),ϕ−1(x), . . .ϕN+2(x) for nodes x j can be defined
on the interval [xL,xR] as follows by [33]

ϕ j(x) =
1
h5



p0 = (x− x j−3)
5, x ∈ [x j−3,x j−2]

p1 = p0−6(x− x j−2)
5, x ∈ [x j−2,x j−1]

p2 = p1−6(x− x j−2)
5 +15(x− x j−1)

5, x ∈ [x j−1,x j]

p3 = p2−6(x− x j−2)
5−20(x− x j)

5, x ∈ [x j,x j+1]

p4 = p3−6(x− x j−2)
5 +15(x− x j+1)

5, x ∈ [x j+1,x j+2]

p5 = p4−6(x− x j−2)
5−6(x− x j+2)

5, x ∈ [x j+2,xm j3]

0, otherwise.

(3.1)

The numerical solution, UN(x, t), is defined in terms of quintic B-spline functions with form:

UN(x, t) =
N+2

∑
j=−2

ϕ j(x)δ j(t) (3.2)

in which δ j(t) is the unknown time-dependent quantity and it is found from the boundary and quintic B-spline collocation
conditions. When written instead of B-spline functions (3.1) in the approximate function (3.2), the nodal values U j,U

′
j,U

′′
j are

written as follows depending on δ j(t)

U j = δ j−2 +26δ j−1 +66δ j +26δ j+1 +δ j+2,

U
′
j =

5
h
(−δ j−2−10δ j−1 +10δ j+1 +δ j+2),

U
′′
j =

20
h2 (δ j−2 +2δ j−1−6δ j +2δ j+1 +δ j+2),

(3.3)

and the variation of U with the interval [x j,x j+1] can be obtained with form

U =
N+2

∑
j=−2

ϕ jδ j. (3.4)

Now, let’s split the GRLW equation as follows:

Ut −µUxxt = 0, (3.5)
(3.6)

Ut −µUxxt +Ux + p(p+1)U pUx = 0. (3.7)

When the nodal values and space derivatives of U j in (3.3) are used in the (3.5) and (3.7) equations, two ordinary differential
equations are obtained as follows

δ̇ j−2 +26δ̇ j−1 +66δ̇ j +26δ̇ j+1 + δ̇ j+2−
20µ

h2 (δ̇ j−2 +2δ̇ j−1−6δ̇ j +2δ̇ j+1 + δ̇ j+2)

+
5
h
(−δ j−2−10δ j−1 +10δ j+1 +δ j+2) = 0,

(3.8)

δ̇ j−2 +26δ̇ j−1 +66δ̇ j +26δ̇ j+1 + δ̇ j+2−
20µ

h2 (δ̇ j−2 +2δ̇ j−1−6δ̇ j +2δ̇ j+1 + δ̇ j+2)

+
5z j

h
(−δ j−2−10δ j−1 +10δ j+1 +δ j+2) = 0,

(3.9)
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in which symbol ′′.′′ is derivative according to time t and z j is linearization operation by

z j = p(p+1)(δ j−2 +26δ j−1 +66δ j +26δ j+1 +δ j+2)
p.

If it is written instead of
δ

n+1
j +δ n

j

2
for the quantity δ j and

δ
n+1
j −δ n

j

∆t
for the quantity δ̇ j in Eqs.(3.8) and (3.9), two numerical

system presented in the following are acquired ,

k1δ
n+1
j−2 + k2δ

n+1
j−1 + k3δ

n+1
j + k4δ

n+1
j+1 + k5δ

n+1
j+2 = k5δ

n
j−2 + k4δ

n
j−1 + k3δ

n
j + k2δ

n
j+1 + k1δ

n
j+2 (3.10)

l1δ
n+1
j−2 + l2δ

n+1
j−1 + l3δ

n+1
j + l4δ

n+1
j+1 + l5δ

n+1
j+2 = l5δ

n
j−2 + l4δ

n
j−1 + l3δ

n
j + l2δ

n
j+1 + l1δ

n
j+2 (3.11)

in which k j, l j( j = 1(1)5),and z j are z j = p(p+1)U p

k1 = 1− 20µ

h2 −
5∆t
2h

,k2 = 26− 40µ

h2 −
25∆t

h
,k3 = 66+

120µ

h2 ,

k4 = 26− 40µ

h2 +
25∆t

h
,k5 = 1− 20µ

h2 +
5∆t
h

l1 = 1− 20µ

h2 −
5z j∆t

2h
, l2 = 26− 40µ

h2 −
25z j∆t

h
, l3 = 66+

120µ

h2 ,

l4 = 26− 40µ

h2 +
25z j∆t

h
, l5 = 1− 20µ

h2 +
5z j∆t

2h
.

Systems (3.10) and (3.11) contain unknown quantities (N +5), while (N +1) consist of linear equations. However, only one
solution for these systems must be obtained. While doing this, since the virtual parameters are not in the solution region,
these parameters are eliminated by using U and U

′
in Equation(3.3) and the boundary conditions U(xL, t) =U(xR, t) = 0 and

Ux(xL, t) =Ux(xR, t) = 0 . In this way, the matrix system (N +1) x (N +1) for the (N +1) unknowns quantities is obtained
for the systems (3.10) and (3.11).

The closed form of the matrix systems (3.10) and (3.11) above can be expressed as

A1δ
n+1 = AT

1 δ
n

B1λ
n+1 = BT

1 λ
n

for the unknown time dependent quantities δ T = [δ0δ1...δN ] and λ T = [λ0λ1...λN ] to be calculated and A1 and B1 are coefficient
matrices with the form

A1 =



k̄3 k̄4 k̄5
k2 k3 k4 k5
k1 k2 k3 k4 k5

. . . . . . . . . . . .
k1 k2 k3 k4

k5 1
k̄4 k̄1
k̄3 k1 k̄2 k̄3

k1 k2 k3 k4
k1 k̄2 k̄3

k̄1 k̄2



B1 =



l̄3 l̄4 l̄5
l2 l̄3 l4 l5
l1 l2 l3 l4 l5

. . . . . . . . . . . .
l1 l2 l3 l4

l5 1
l̄4 l̄1
l̄3 l1 l̄2 l̄3

l1 l2 l3
l̄2 l̄3

l̄2


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k̄3 =
165

4
k1−

33
8

k2 + k3, k̄4 =
65
2

k1−
9
4

k2 + k4, k̄5 =
9
4

k1−
1
8

k2 + k5,

k̄2 =−
33
8

k1 + k2, k̄3 =−
9
4

k1 + k3, k̄4 =−
1
8

k1 + k4,

¯̄k2 =−
1
8

k5 + k2,
¯̄k3 =−

9
4

k5 + k3,
¯̄k4 =−

33
8

k5 + k4,

¯̄k1 =
9
4

k5−
1
8

k4 + k1,
¯̄k2 =

65
2

k5−
9
4

k4 + k2,
¯̄k3 =

165
4

k5−
33
8

k4 + k3,

l̄3 =
165

4
l1−

33
8

l2 + l3, l̄4 =
65
2

l1−
9
4

l2 + l4, l̄5 =
9
4

l1−
1
8

l2 + l5,

l̄2 =−
33
8

l1 + l2, l̄3 =−
9
4

l1 + l3, l̄4 =−
1
8

l1 + l4,

¯̄l2 =−
1
8

l5 + l2, ¯̄l3 =−
9
4

l5 + l3, ¯̄l4 =−
33
8

l5 + l4,

¯̄l1 =
9
4

l5−
1
8

l4 + l1, ¯̄l2 =
65
2

l5−
9
4

l4 + l2, ¯̄l3 =
165

4
l5−

33
8

l4 + l3.

In order to produce more attractive, effective and accurate results for each time step, the internal iteration formula presented as
follows is applied 3 or 5 times to z j in Eq.(3.11)

(δ ∗)n = δ
n +

1
2
(δ n−δ

n−1).

4. The Initial Vector δ 0
j

To start the iteration process for the systems (3.10) and (3.11), it is necessary to determine the initial vector δ 0
j . For this,

initial parameters are computeded utilizing initial condition U(x j,0) =UN(x j,0) = g0(x j), j = 0(1)N and 1st and 2nd order
derivatives on the boundaries presented with the main problem. In other words, these vectors to be calculated are computed
from the system of algebraic equations presented as follows

δ
0
m−2 +26δ

0
m−1 +66δ

0
m +26δ

0
m+1 +δ

0
m+2 = g0(xm),m = 0(1)N

−δ
0
−2−10δ

0
−1 +10δ

0
1 +δ

0
2 = g

′
0(xL),

δ
0
−2 +2δ

0
−1−6δ

0
0 +2δ

0
1 +δ

0
2 = g

′′
0(xL),

δ
0
N−2 +2δ

0
N−1−6δ

0
N +2δ

0
N+1 +δ

0
N+2 = g

′′
0(xR),

−δ
0
N−2−10δ

0
N−1 +10δ

0
N+1 +δ

0
N+2 = g

′
0(xR).

(4.1)

In conclusion, the matrix equation for the initial vector δ 0 is acquired by

54 60 6
25.25 67.5 26.25 1

1 26 66 26 1
. . .

1 26 66 26 1
1 26.25 67.5 25.25

6 60 54





δ 0
0

δ 0
1

δ 0
2
.
.
.

δ 0
N−2

δ 0
N−1

δ 0
N


=



U0
U1
U2
.
.
.

UN−2
UN−1
UN


.

With the current symbolic programming languages, calculating such matrices is fairly simple and useful. These features of the
schemes that are being presented are indicative of their dependability and resilience.
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5. Stability Analysis of Numerical Algorithm

Von Neumann theory is used to analyze the stability of the Strang splitting method applied to the GRLW equation. Let the
growth factors of a typical Fourier mode be described as follows for stability analysis based on Von Neumann theory of systems
(3.10) and (3.11)

δ
n
j = ρ

n
1 ei jγh, (5.1)

Ψ
n
j = ρ

n
2 ei jγh. (5.2)

Here, γ represents the mode number and h denotes the element size. The Fourier mode (5.1) is substituted for (3.10) and
the Fourier mode (5.2) is substituted for (3.11). The Fourier mode method cannot be applied to the system (3.11) because
it contains a nonlinear term p(p+1)U pUx. Instead, the system must first be linearized and then the Von Neumann method
is applied, assuming that the amount of p(p+ 1)U p in the nonlinear term is taken as a local constant like z j. One of the
most popular methods for analyzing the stability analysis of approximation systems for linear or linearized partial differential
equations is Von Neumann analysis. Using the Euler formula eiΦ = cosΦ+ isinΦ, the following growth factors are obtained:
ρ1 and ρ2

ρ1 =
A1− iB1

A1 + iB1
, ρ2 =

A1− iC1

A1 + iC1
, (5.3)

A1 =

(
2− 40µ

h2

)
cos(2γh)+

(
52− 80µ

h2

)
cos(γh)+

(
66+

120µ

h2

)
,

B =
5∆t
h

sin(2γh)+
50∆t

h
sin(γh),

and
C =

5zm∆t
h

sin(2γh)+
50zm∆t

h
sin(γh).

For k1,k2, ...,k9,k10 and l1, l2, ..., l9, l10 founded in section 3. It can be written |ρ1|.|ρ2| = 1. For the entire system with the
Strang Splitting algorithm because |ρ1| ≤ 1, and |ρ2| ≤ 1 according to the von Neumann theory, which are satisfied. This
makes it obvious that the systems (3.10) and (3.11) are unconditionally stable. Equation (5.3) yields |ρ1|= |ρ2|= 1, which
explains this.

6. Numerical Experiments and Discussion

The error norms L2 and L∞ to demonstrate the perfection of numerical schemes in terms of accuracy and at the same time,
invariants I1, I2 and I3 such as mass, momentum and energy are examined to report how well numerical schemes preserve
physical quantities. These are given in the following format

L2 = ||U−UN ||2 =

√√√√h
N

∑
j=0

(U−UN)2,

L∞ = ||U−UN ||∞ = max
j
|U−UN |,

I1 =
∫ xR

xL

Udx,

I2 =
∫ xR

xL

[U2 +µ(Ux)
2]dx,

I3 =
∫ xR

xL

[U4−µ(Ux)
2]dx.

The analytical solution of the GRLW equation is presented as follows in [7]

U(x, t) =
(

c(p+2)
2p

sech2
[

p
2

√
c

µ(c+1)
(x− (c+1)t− x0)

])1/p

in which
c(p+2)

2p
is the amplitude, c+1 is the wave speed in the direction diffusion and x0 is an arbitrary constant. In this

study, it would be good to mention that these calculations are obtained for the problems of single solitary wave and intersection
of two solitary waves and the growth of the Maxwellian initial condition.
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Table 1: The error norms at t = 20 for µ = 1 of the single solitary wave

p = 2 p = 3 p = 4

c→ 0.03 0.1 0.3 0.03 0.1 0.3 0.03 0.1 0.3
amp.→ 0.17 0.31 0.54 0.29 0.43 0.62 0.38 0.52 0.68
h ∆t
L2x103

0.1 0.01 0.99567 0.01186 0.00785 1.33411 0.01308 0.02711 1.57429 0.01429 0.07221
0.2 0.01 0.87463 0.01082 0.00954 1.17194 0.01199 0.03564 1.38292 0.01357 0.10329
0.1 0.025 0.99567 0.01240 0.04850 1.33411 0.01588 0.16665 1.57430 0.02532 0.44136
0.2 0.025 0.87463 0.01143 0.05016 1.17194 0.01521 0.17511 1.38292 0.02592 0.47230
L∞x103

0.1 0.01 0.41622 0.00668 0.00353 0.55769 0.00732 0.01290 0.65810 0.00782 0.03584
0.2 0.01 0.41622 0.00668 0.00446 0.55769 0.00732 0.01750 0.65810 0.00782 0.05238
0.1 0.025 0.41622 0.00668 0.02178 0.55769 0.00732 0.07910 0.65810 0.00908 0.21863
0.2 0.025 0.41622 0.00668 0.02268 0.55769 0.00732 0.08369 0.65810 0.00980 0.23440

p = 6 p = 8 p = 10

c→ 0.03 0.1 0.3 0.03 0.1 0.3 0.03 0.1 0.3
amp.→ 0.17 0.31 0.54 0.29 0.43 0.62 0.38 0.52 0.68
h ∆t
L2x103

0.1 0.01 1.88672 0.02196 0.33489 2.07926 0.06272 1.21542 2.20933 0.20864 4.16765
0.2 0.01 1.65737 0.03011 0.58326 1.82651 0.11858 2.68428 1.94078 0.46826 1.21572
0.1 0.025 1.88673 0.09767 2.02469 2.07930 0.36196 7.39167 2.20953 1.22335 27.2734
0.2 0.025 1.65738 0.10812 2.27201 1.82656 0.41870 8.84774 1.94105 1.48236 35.0904
L∞x103

0.1 0.01 0.78870 0.00848 0.17647 0.86919 0.02863 0.66880 0.92356 0.10223 2.38050
0.2 0.01 0.78870 0.01243 0.31129 0.86919 0.05636 1.48646 0.92356 0.23179 6.92021
0.1 0.025 0.78870 0.04350 1.06550 0.86919 0.170238 4.06219 0.92356 0.60052 15.5740
0.2 0.025 0.78870 0.04869 1.19985 0.86919 0.19792 4.87227 0.92356 0.72958 19.9888

6.1. First example: A single solitary wave

In the first example, to compare numerical solutions, the parameters in the studies [5, 8, 27, 28, 11, 4, 32, 3, 6, 7] are taken into
consideration. As in these studies, the solution region [0,100]],and x0 = 40, µ = 1 are selected. Calculations are performed for
different values h,∆t, p and c until time t = 20. First, for different values of ∆t,h and p , the situation with solitary waves with
amplitudes of 0.17,0.31 and 0.54 for speeds c = 0.03,0.1 and 0.3, respectively, is considered and the solutions are found at
time t = 20. The results of the error norms L2 and L∞ that provide the solutions are depicted in Table 1. This table shows that
the error norms L2 and L∞ produce results that are as small as intended. Secondly, conservation constants and error norms are
calculated at t = 10 with different values of ∆t,h and c for p = 2,3 and 4. The data of these calculations are depicted in Tables
2,3,5,7,9 and 11 and based on the results, it is concluded that the conservation quantities are well preserved and the error
norms are small enough. Thirdly, the datas of conservation quantities I1, I2 and I3 and error norms L2 and L∞ in Tables 3,5,7,9
and 11 are compared with those obtained by different methods in the literature. The results of the comparison are listed in
Tables 4,6,8,10 and 12. It can be seen from these tables that the solutions obtained thanks to the collocation method combined
with the Strang splitting algorithm proposed in this study are as perfect as they are promising. Figure 1 shows the motion of
single solitary wave at various times t and with different values of p. From this figure, it is possible to see that the solitary
wave, traveling at a constant speed, moves towards the right and still maintains its shape and and increases the energy of this
wave with increasing p values.

6.2. Second example: The interaction of two solitary waves

In the second example, the GRLW equation with initial condition presented in the following form, written as the linear sum
of two well-separated solitary waves traveling in the same direction and having different amplitudes, is targeted. Numerical
calculations are performed with conditions ∆t = 0.025,h = 0.2,c1 = 4,c2 = 1,x1 = 25,x2 = 55,µ = 1 for p = 2 on the region
[0,250] at t = 0(4)20, ∆t = 0.01,h = 0.1,c1 = 48/5,c2 = 6/5,x1 = 20,x2 = 50,µ = 1 for p = 3 on the region [0,120] at
t = 0(1)6, and ∆t = 0.01,h = 0.125,c1 = 64/3,c2 = 4/3,x1 = 20,x2 = 80,µ = 1 for p = 4 on the region [0,200] at t = 0(1)6.
For this purpose, conservation quantities are computed. The solutions of all calculations are reported in Tables 13-15,
comparing with those in [7]. As can be observed from these tables, the conservation quantities calculated with the collocation
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Table 2: Invariants and errors for single solitary wave with ∆t = 0.01,h = 0.1, µ = 1, and c = 0.3 on the region [0,100] for p = 2

t I1 I2 I3 L2 L∞

0 3.58196673 1.34507649 0.15372303 0.000000000000 0.000000000000
2 3.58196673 1.34507640 0.15372312 0.000001861902 0.000001007019
4 3.58196673 1.34507629 0.15372323 0.000003499876 0.000001725688
6 3.58196673 1.34507621 0.15372331 0.000005003949 0.000002352101
8 3.58196673 1.34507616 0.15372336 0.000006443838 0.000002949496
10 3.58196673 1.34507612 0.15372340 0.000007851673 0.000003535734

Table 3: Invariants and errors for single solitary wave with ∆t = 0.025,h = 0.2, µ = 1, and c = 1 on the region [0,100] from 0 to 10 in
increments of 2 for p = 2

t I1 I2 I3 L2 L∞

0 4.44288294 3.29983161 1.41421360 0.0000000000 0.0000000000
2 4.44288294 3.29979589 1.41424932 0.0002939377 0.0001776334
4 4.44288294 3.29977191 1.41427330 0.0005531879 0.0003079917
6 4.44288294 3.29976284 1.41428237 0.0007998396 0.0004328585
8 4.44288294 3.29975926 1.41428595 0.00010430543 0.0005568057
10 4.44288294 3.29975778 1.41428743 0.0012853426 0.0006805326

Table 4: The error norms and invariants of the single solitary wave with ∆t = 0.025,h = 0.2, µ = 1, and c = 1 on the region [0,100] for
p = 2 at t = 10

method I1 I2 I3 L2 L∞

present 4.4428829 3.2997577 1.41428743 0.0012853426 0.0006805326
[11] 4.4428679 3.2998244 1.4142061 0.009619 0.004971
[5] 4.44288 3.29981 1.41416 0.00300533 0.00168749
[8]first approach 4.442866 3.299822 1.414204 0.002632463 0.001393064
[8]second approach 4.442866 3.299715 1.414312 0.002571481 0.001340210
[6] 4.4431 3.3003 1.4146 0.0024175 0.0010809
[27] B-spline coll-CN 4.442 3.299 1.413 0.01639 0.00924
[27] B-spline coll + PA-CN 4.440 3.296 1.411 0.0203 0.0112
[28] 4.44288 3.29983 1.41420 0.00930196 0.00543718
[7] 4.4428 3.2997 1.4143 0.0025893 0.0013518
[4] 4.443175 3.300302 1.414692 0.002415468 0.001079686
[32] 4.4431 3.3003 1.4146 0.0024155 0.0010797
[10] 4.4428 3.2998 1.4141 0.0030053 0.0016874

Table 5: Invariants and errors for single solitary wave with ∆t = 0.01,h = 0.1, µ = 1, and c = 0.3 on the region [0,100] from 0 to 10 in
increments of 2 for p = 3

t I1 I2 I3 L2 L∞

0 3.67755181 1.56574088 0.22683850 0.00000000 0.00000000
2 3.67755181 1.56574072 0.22683866 0.00000297 0.00000183
4 3.67755181 1.56574048 0.22683891 0.00000581 0.00000324
6 3.67755181 1.56574027 0.22683912 0.00000852 0.00000449
8 3.67755181 1.56574010 0.22683928 0.00001119 0.00000570
10 3.67755181 1.56573997 0.22683942 0.00001383 0.00000689
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Table 6: Comparation of invariants and errors for single solitary wave with ∆t = 0.01,h = 0.1, µ = 1, and c = 0.3 on the region [0,100] for
p = 3

method I1 I2 I3 L2 L∞

method 3.67755181 1.56573997 0.22683942 0.0000138 0.00000689
[5] 3.67755000 1.56574000 0.22683700 0.0000719 0.0000377
[8]second approach 3.67760690 1.56576200 0.22684460 0.0000785 0.0000365
[6] 3.6776 1.5657 0.2268 0.0001913 0.0000779

Table 7: Invariants and errors for single solitary wave with ∆t = 0.01,h = 0.1, µ = 1, and c = 0.3 on the region [0,100] from 0 to 10 in
increments of 2 for p = 4

t I1 I2 I3 L2 L∞

0 3.7592300 1.7300029 0.2894090 0.0000000 0.0000000
2 3.7592300 1.7300024 0.2894095 0.0000069 0.0000044
4 3.7592300 1.7300017 0.2894101 0.0000138 0.0000078
6 3.75923000 1.7300012 0.2894107 0.0000206 0.0000111
8 3.75923000 1.7300008 0.2894111 0.0000276 0.0000144
10 3.75923000 1.7300004 0.2894114 0.0000347 0.0000178

Table 8: Comparation of invariants and errors for single solitary wave with ∆t = 0.01,h = 0.1, µ = 1, and c = 0.3 on the region [0,100] for
p = 4

method I1 I2 I3 L2 L∞

method 3.7592300 1.7300004 0.2894114 0.0000347 0.0000178
[5] 3.7592300 1.7299900 0.2894060 0.0001225 0.0000662
[8]second approach 3.7592863 1.7300259 0.2894169 0.0000980 0.0000480
[6] 3.7592 1.7300 0.2894 0.0003089 0.0001444

Table 9: Invariants and errors for single solitary wave with ∆t = 0.025,h = 0.1, µ = 1, and c = 6/5 on the region [0,100] from 0 to 10 in
increments of 2 for p = 3

t I1 I2 I3 L2 L∞

0 3.79712709 2.88122489 0.97293454 0.000000000 0.000000000
2 3.79712709 2.88110865 0.97305079 0.000117031 0.000719921
4 3.79712709 2.88105895 0.97310049 0.000227035 0.000133748
6 3.79712709 2.88104403 0.97311540 0.000033573 0.000195366
8 3.79712709 2.88103884 0.973120604 0.000444397 0.000257147
10 3.79712709 2.88103667 0.97312277 0.000553257 0.000319084

Table 10: Comparation of invariants and errors for the single solitary wave with ∆t = 0.025,h = 0.1, µ = 1, and c = 6/5 on the region
[0,100] at t = 10 for p = 3

method I1 I2 I3 L2 L∞

present 3.797127 2.881036 0.973122 0.005532 0.003190
[11] 3.797185 2.881252 0.973157 0.011026 0.006355
[5] 3.79713 2.88123 0.972243 0.007767 0.004708
[8]first approach 3.797185 2.881252 0.973145 0.008972 0.005175
[8]second approach 3.797133 2.881089 0.973128 0.007778 0.004441
[6] 3.801670 2.888066 0.979294 0.013291 0.008478
[4] 3.797282 2.881293 0..973446 0.006128 0.003722
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Figure 1: A single solitary wave movement at [0,100] for c = 0,1 and x0 = 40
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Table 11: Invariants and errors for single solitary wave with ∆t = 0.01,h = 0.1, µ = 1, and c = 4/3 on the region [0,100] from 0 to 10 in
increments of 2 for p = 4

t I1 I2 I3 L2 L∞

0 3.46865611 2.67167341 0.72917047 0.000000000 0.000000000
2 3.46865611 2.67163139 0.72921249 0.000481813 0.000307699
4 3.46865611 2.67161752 0.72922636 0.000949370 0.000588519
6 3.46865611 2.67161379 0.72923009 0.000141623 0.000872966
8 3.46865611 2.67161260 0.72923128 0.000188397 0.000115795
10 3.46865611 2.67161212 0.72923176 0.000235269 0.000144089

Table 12: Comparation of invariants and errors for the single solitary wave with ∆t = 0.01,h = 0.1, µ = 1, and c = 4/3 on the region
[0,100] at t = 10 for p = 4

method I1 I2 I3 L2 L∞

present 3.46865611 2.67161212 0.72923176 0.002352 0.001440
[11] 3.468709 2.671696 0.729303 0.008696 0.005314
[5] 3.46866 2.67168 0.728881 0.002460 0.001566
[8]first approach 3.468709 2.671696 0.729258 0.003351 0.002049
[8]second approach 3.468671 2.671658 0.729237 0.002698 0.001656
[6] 3.470439 2.674445 0.731987 0.001511 0.000857
[4] 3.468799 2.671742 0.730001 0.001283 0.000821

method combined with the Strang splitting algorithm are compatible with those in ref.[7] presented with the quintic B-spline
collocation method. Figures 2 and 3 depict the action of interaction of two solitary waves for various times. It can be clearly
seen from these figures that at t = 0, the wave with lower energy is located to the right of the wave with larger energy. Later,
the wave with greater energy catches up with the smaller one and leaves it behind.

6.3. Last example: The Maxwellian initial condition

In the last example, the problem of how the Maxwell pulse presented as follows, which appears as the initial condition, turns
into a solitary waves is examined.

U(x,0) = exp(−(x−40)2).

Here, the value of µ determines how the solution behaves [4]. As a result, for p = 2,3,4, with values of µ = 0.025,0.05, and
µ = 0.1, numerical calculations are completed until time t = 0.05. Table 16 displays the calculated numerical invariants at
various t values and this table shows that the invariants are quite compatible among themselves. Figure 4 illustrates how the
Maxwellian initial condition developed into solitary waves.

Table 13: Comparison of invariants of two solitary waves with values ∆t = 0.025,h = 0.2, for x1 = 25,x2 = 55,c1 = 4,c2 = 1 on the region
[0,250] at t = 0(4)20 for p = 2 with those in [7]

method [7]

t I1 I2 I3 I1 I2 I3

0 11.46769767 14.62924187 22.88046714 11.4676 14.6292 22.8803
4 11.46769767 14.62560599 22.88410302 11.4676 14.6277 22.8818
8 11.46769767 14.13410877 23.37560024 11.4676 14.1399 23.3695
12 11.46769767 14.67865616 22.83105285 11.4676 14.6803 22.8292
16 11.46769767 14.64185929 22.86784972 11.4676 14.6442 22.8653
20 11.46769767 14.62835609 22.88135292 11.4676 14.6309 22.8786
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Table 14: Comparison of invariants of two solitary waves with values ∆t = 0.01,h = 0.1, for x1 = 20,x2 = 50,c1 = 48/5,c2 = 6/5 on the
region [0,120] at t = 0(1)6 for p = 3 with those in [7]

method [7]

t I1 I2 I3 I1 I2 I3

0 9.69074161 12.94438041 17.01872563 9.6907 12.9443 17.0186
1 9.69074161 12.93790956 17.02519648 9.6894 12.9433 17.0197
2 9.69074161 12.93262436 17.03048168 9.6881 12.9391 17.0239
3 9.69074161 12.31072166 17.65238437 9.6851 12.3044 17.6586
4 9.69074161 12.96109129 17.00201474 9.6860 12.9704 16.9926
5 9.69074161 13.04585327 16.91725276 9.6848 13.0539 16.9091
6 9.69074161 12.99335590 16.96975014 9.6835 13.0028 16.9601

Table 15: Comparison of invariants of two solitary waves with values ∆t = 0.01,h = 0.125, for x1 = 20,x2 = 50,c1 = 64/3,c2 = 4/3 on
the region [0,200] at t = 0(1)6 for p = 4 with those in [7]

method [7]

t I1 I2 I3 I1 I2 I3

0 8.83427261 12.17088582 14.02942463 8.8342 12.1708 14.0294
1 8.83427261 11.47188138 14.72842908 8.6650 11.9332 14.2670
2 8.83427261 11.33376433 14.86654612 8.5662 11.7919 14.4083
3 8.83427261 11.25540256 14.94490789 8.4965 11.6913 14.5090
4 8.83427261 11.20082492 14.99948554 8.4529 11.4644 14.7358
5 8.83427261 11.08672895 14.97358150 8.4089 11.7254 14.4748
6 8.83427261 11.00520465 14.98510581 8.3702 11.5990 14.6012

0 20 40 60 80 100 120
x

0

0.5

1

1.5

2

2.5

U
(x

,t
)

t=0

(a)

0 20 40 60 80 100 120
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

U
(x

,t
)

t=3

(b)

0 20 40 60 80 100 120
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

U
(x

,t
)

t=5

(c)

0 20 40 60 80 100 120
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

U
(x

,t
)

t=6

(d)

Figure 2: The interactions of two solitary waves at p = 3
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Figure 3: The interactions of two solitary waves at p = 4

Table 16: Maxwellian initial condition for various µ values

p = 2 p = 3 p = 4

µ t I1 I2 I3 I1 I2 I3 I1 I2 I3

0.025 0.01 1.77245 1.28464 0.85485 1.77245 1.28464 0.85475 1.77245 1.28464 0.85454
0.03 1.77245 1.28464 0.85457 1.77245 1.28464 0.85361 1.77245 1.28464 0.85165
0.05 1.77245 1.28464 0.85399 1.77245 1.28464 0.85125 1.77245 1.28464 0.84541

0.05 0.01 1.77245 1.31597 0.82352 1.77245 1.31597 0.82341 1.77245 1.31597 0.82320
0.03 1.77245 1.31597 0.82322 1.77245 1.31597 0.82224 1.77245 1.31597 0.82034
0.05 1.77245 1.31597 0.82261 1.77245 1.31597 0.81988 1.77245 1.31597 0.81455

0.1 0.01 1.77245 1.37864 0.76087 1.77245 1.37864 0.76078 1.77245 1.37864 0.76062
0.03 1.77245 1.37864 0.76065 1.77245 1.37864 0.75989 1.77245 1.37864 0.75844
0.05 1.77245 1.37864 0.76021 1.77245 1.37864 0.75809 1.77245 1.37864 0.75410
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Figure 4: Graphics of Maxwell initial condition for different p values at t = 0.05

7. Conclusion

To obtain the solitary-wave solutions of the GRLW problem, this paper establishes two different linearization techniques,
the collocation method and the Strang splitting algorithm. In order to achieve this, the collocation method is combined with
the Strang splitting algorithm to perform numerical calculations, and the collocation method is applied to each scheme. In
particular, the error norms L2,L∞ and the invariants I1, I2, and I3 have been calculated for each of the three examples: A single
solitary wave, the interaction of two solitary waves and the Maxwellian initial condition. The results obtained are listed in
tables and figures. These tables show how the invariant values agree with other findings and the variations of the invariants
are quite small. The figures show that the method applied in the article is compatible with the figures in similar examples in
the literature. Compared to previous numerical methods, smaller error norms are obtained. The outcome of the error norms
obtained are superior to those from earlier numerical techniques. As a result, based on the results produced in this study, it can
be said with certainty that the numerical scheme that has been presented is more preferred and trustworthy for improving the
numerical solutions of the physically significant nonlinear partial differential equations.
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[19] L.R.T. Gardner, G.A. Gardner and İ. Dağ, A B-spline finite element method for the regularized long wave equation, Commun Numer Methods

Eng., 11(1) (1995), 59-68. [CrossRef] [Scopus] [Web of Science]
[20] K.R. Raslan, A computational method for the regularized long wave equation, Appl. Math. Comput., 167(2) (2005), 1101-1118. [CrossRef]

[Scopus] [Web of Science]
[21] S. Islam, S. Had and A. Ali, A meshfree method for the numerical solution of the RLW equation, J. Comput. Appl. Math., 223(2) (2009),

997-1012. [CrossRef] [Scopus] [Web of Science]
[22] P.C. Jain , R. Shankara and Singh T.V., Numerical solution of regularized long-wave equation, Commun Numer Methods Eng., 9(7) (1993),

579-586. [CrossRef] [Scopus] [Web of Science]
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