Rings Whose Certain Modules are Dual Self-CS-Baer

Nuray Eroğlu*

Abstract
In this work, we characterize some rings in terms of dual self-CS-Baer modules (briefly, ds-CS-Baer modules). We prove that any ring \(R \) is a left and right artinian serial ring with \(J^2(R) = 0 \) iff \(R \oplus M \) is ds-CS-Baer for every right \(R \)-module \(M \). If \(R \) is a commutative ring, then we prove that \(R \) is an artinian serial ring iff \(R \) is perfect and every \(R \)-module is a direct sum of ds-CS-Baer \(R \)-modules. Also, we show that \(R \) is a right perfect ring iff all countably generated free right \(R \)-modules are ds-CS-Baer.

Keywords: Dual self-CS-Baer module, Harada ring, Lifting module, Perfect ring, QF-ring, Serial ring

AMS Subject Classification (2020): 16D10;16L30

*Corresponding author

1. Introduction
Throughout the paper, all rings will have an identity element and all modules will be unitary right modules unless otherwise stated. Let \(M \) be a module and \(N \) a submodule of \(M \). Then \(N \ll M \) means that \(N \) is a small submodule of \(M \) (namely, \(M \) is different from \(N + K \) for every proper submodule \(K \) of \(M \)). \(J(R) \) will denote the Jacobson radical of any ring \(R \) and \(\operatorname{Rad}(M) \) will denote the radical of any module \(M \).

A module \(M \) is called lifting (or satisfies \((D_1)\)), if every submodule \(N \) of \(M \) lies above a direct summand, that is, \(N \) contains a direct summand \(X \) of \(M \) such that \(N/X \ll M/X \) (see [1] and [2]). A module \(M \) is said to be dual self-CS-Baer (briefly, ds-CS-Baer) if for every family \((f_i)_{i \in I}\) of homomorphisms \(f_i : M \to M, \sum_{i \in I} \operatorname{Im}(f_i) \) lies above a direct summand of \(M \) (see [3]). Clearly, every lifting module is ds-CS-Baer. Moreover, if \(R \) is a right Harada ring, then every injective right \(R \)-module is ds-CS-Baer. Because, remember that any ring \(R \) is called a right Harada ring if every injective right \(R \)-module is lifting (see [1]). Recall that any right \(R \)-module \(M \) is called hollow, if every proper submodule of \(M \) is small in \(M \) (see [2, Definition 4.1]) and it is called local, if it is hollow and \(\operatorname{Rad}(M) \neq M \). Note that \(M \) is local iff \(M \) is cyclic and has a unique maximal submodule (see [4, page 357]). It is not hard to see that every hollow module and so every local module is a lifting module.

In recent years, ds-CS-Baer modules and their related topics have been studied by Crivei, Keskin Tütüncü, Radu and Tribak (see for example [3], [5] and [6]). In this paper, we continue the study of ds-CS-Baer modules.

In section 2, we characterize some rings in terms of ds-CS-Baer modules. Among others, we mainly prove the followings:

Received : 30-03-2024, Accepted : 30-04-2024, Available online : 30-04-2024
(Cite as "N. Eroğlu, Rings Whose Certain Modules are Dual Self-CS-Baer, Math. Sci. Appl. E-Notes, 12(3) (2024), 113-118")
(A) Let R be a ring. Then R is an artinian serial ring with $J^2(R) = 0$ iff for every right R-module M, $R \oplus M$ is ds-CS-Baer (Theorem 2.1).

(B) Let R be a right self-injective ring. Then R is a QF-ring iff every injective right R-module is ds-CS-Baer (Theorem 2.3).

(C) Let R be a ring. Then R is a right perfect ring iff every free right R-module is ds-CS-Baer (Theorem 2.4).

(D) Let R be a commutative ring. Then R is semiperfect iff every cyclic R-module is ds-CS-Baer (Proposition 2.1).

(E) Let R be a commutative ring. Then R is an artinian serial ring iff R is perfect and every 2-f.p. R-module is a finite direct sum of ds-CS-Baer modules (Proposition 2.4).

2. Results

We first give the following easy observation.

Lemma 2.1. Let R be a ring. Let M be a free right R-module. Then M is lifting iff it is ds-CS-Baer.

Proof. Let M be a free right R-module. Then we can assume that $M = \oplus_{i \in I} R$. Now the result is obvious by the proof of [3, Proposition 9.4].

Let R be a ring and M a module. M is called uniserial if its submodules are linearly ordered by inclusion and is called serial if it is a direct sum of uniserial submodules. The ring R is called right (left) serial if the right (left) R-module R_R (R_L) is serial. Also R is called artinian serial if it is both right and left artinian serial. By [4, Theorem 32.3], we know that if R is an artinian serial ring, then every right R-module and every left R-module is a direct sum of uniserial R-modules.

Now, we characterize artinian serial rings with $J^2(R) = 0$ via ds-CS-Baer modules.

Theorem 2.1. Let R be a ring. Then the following assertions are equivalent:

1. R is an artinian serial ring with $J^2(R) = 0$.
2. Every right R-module is lifting.
3. For every right R-module M, $R \oplus M$ is lifting.
4. For every right R-module M, $R \oplus M$ is ds-CS-Baer.

Proof. (1) \Leftrightarrow (2): It is satisfied by [1, 29.10].

(3) \Leftrightarrow (4): It is proved in [3, Proposition 9.4].

(2) \Rightarrow (3): It is clear.

(3) \Rightarrow (2): It is clear since lifting property is preserved by direct summands (see for example [1, Lemma 22.6]).

The next result is a consequence of Theorem 2.1.

Corollary 2.1. Let R be a ring. Then R is an artinian serial ring with $J^2(R) = 0$ iff every (finitely generated) right R-module is ds-CS-Baer.

Proof. This follows from [7, Theorem 3.15], [3, Proposition 9.4] and Theorem 2.1 and the fact that being ds-CS-Baer or lifting is preserved by taking direct summands.

Remark 2.1. The left-handed versions of Theorem 2.1 and Corollary 2.1 are equal to being artinian serial ring with $J^2(R) = 0$.

A finitely generated right \(R \)-module \(M \) is said to be \textit{finitely presented} in case in every exact sequence
\[
0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0
\]
with \(F \) finitely generated and free the kernel \(K \) is also finitely generated. An exact sequence of right \(R \)-modules
\[
P_1 \xrightarrow{f} P_0 \rightarrow M \rightarrow 0
\]
is called a \textit{minimal projective presentation} of \(M \) in case \(P_1 \) and \(P_0 \) are finitely generated projective and \(\text{Ker} f \ll P_1 \) and \(\text{Im} f \ll P_0 \). Let \(M \) a finitely presented right \(R \)-module with no nonzero projective direct summands. Following [4], \(M \) is called a 2-f.p. module if there are primitive idempotents \(e, e_1 \) and \(e_2 \) of \(R \) and there is a minimal projective presentation
\[
eR \rightarrow e_1 R \oplus e_2 R \rightarrow M \rightarrow 0.
\]
Therefore a 2-f.p. module is both 2-primitive generated and finitely presented.

Recall from [8] that a module \(M \) is called \(w \)-local if it has a unique maximal submodule. Clearly, a module \(M \) is local if and only if \(M \) is a cyclic \(w \)-local module.

Next, we can give the following.

\textbf{Theorem 2.2.} Let \(R \) be a ring. Consider the following statements:

1. \(R \) is serial and every direct sum of two ds-CS-Baer right \(R \)-modules and every direct sum of two ds-CS-Baer left \(R \)-modules is ds-CS-Baer.
2. Every finitely presented right \(R \)-module and finitely presented left \(R \)-module is ds-CS-Baer.
3. Every 2-generated finitely presented right \(R \)-module and 2-f.p. left \(R \)-module is ds-CS-Baer.
4. \(R \) is semiperfect and every 2-f.p. right \(R \)-module and 2-f.p. left \(R \)-module is ds-CS-Baer.

Then (1) \(\Rightarrow \) (2) \(\Rightarrow \) (3) \(\Rightarrow \) (4).

\textit{Proof.} (1) \(\Rightarrow \) (2): Let \(M \) be a finitely presented right \(R \)-module and \(N \) a finitely presented left \(R \)-module. By [9, Corollary 3.4], \(M \) and \(N \) are finite direct sum of cyclic \(w \)-local submodules. In particular, they are finite direct sum of local submodules. Since local modules are lifting, they are also ds-CS-Baer. Therefore \(M \) and \(N \) are ds-CS-Baer by (1).

(2) \(\Rightarrow \) (3) \(\Rightarrow \) (4): These are clear by definitions and [3, Proposition 5.9].

Inspired by Theorem 2.1, we give the following theorem that characterizes QF-rings. First, remember that any ring \(R \) is called a QF-ring, if \(R \) is noetherian and injective as a left (or right) \(R \)-module (see for example [4, page 333]).

\textbf{Theorem 2.3.} Let \(R \) be a right self-injective ring. Then the following assertions are equivalent:

1. \(R \) is a QF-ring.
2. \(R \) is a right Harada ring.
3. For every injective right \(R \)-module \(M \), \(R \oplus M \) is lifting.
4. For every injective right \(R \)-module \(M \), \(R \oplus M \) is ds-CS-Baer.
5. Every injective right \(R \)-module is ds-CS-Baer.

\textit{Proof.} (1) \(\Leftrightarrow \) (2): It is clear by [1, 28.10 and 28.16].

(3) \(\Leftrightarrow \) (4): It is clear by [3, Proposition 9.4].

(2) \(\Rightarrow \) (3): Let \(M \) be an injective right \(R \)-module. By hypothesis, \(R \oplus M \) is an injective right \(R \)-module. Since \(R \) is right Harada, it follows that \(R \oplus M \) is lifting.

(3) \(\Rightarrow \) (2): Let \(M \) be an injective right \(R \)-module. By (3), \(R \oplus M \) is lifting. Therefore, \(M \) is lifting. Hence, \(R \) is a right Harada ring.

(4) \(\Leftrightarrow \) (5): It is clear.
Theorem 2.4. Let R be a ring. Then the following assertions are equivalent:

(1) R is a right perfect ring.

(2) $R^{(1)}$ is a ds-CS-Baer right R-module.

(3) Every countably generated free right R-module is ds-CS-Baer.

(4) Every free right R-module is ds-CS-Baer.

Proof. (1) \Rightarrow (2): Assume that R is a right perfect ring. Consider the right R-module $M = R^{(1)}$. By [2, Theorem 4.41], M is lifting, and so it is ds-CS-Baer by definitions.

(2) \Rightarrow (1): Assume that the right R-module $R^{(1)}$ is ds-CS-Baer. Since it is free, by Lemma 2.1, it is lifting. Hence it is \oplus-supplemented. Therefore, R is a right perfect ring by [7, Theorem 2.10].

(1) \Rightarrow (4): Let M be a free right R-module. Then M is projective. So, M is lifting by [2, Theorem 4.41]. Thus, M is ds-CS-Baer by definitions.

(4) \Rightarrow (1): Assume that every free right R-module is ds-CS-Baer. Then every free right R-module is lifting by Lemma 2.1. By [2, Theorem 4.41], R is a right perfect ring.

(4) \Rightarrow (3) \Rightarrow (2): These are clear.

Next, we give a characterization of commutative semiperfect rings in terms of cyclic dual self-CS-Baer modules.

Proposition 2.1. Let R be a commutative ring. Then R is semiperfect iff every cyclic R-module is ds-CS-Baer.

Proof. Let R be a semiperfect ring. Let M be a cyclic R-module. Assume that $M = xR$, where $x \in M$. We know that $M \cong R/I$, for some ideal I of R. By [1, 4.9 (1)], since I is fully invariant in R, R/I is quasi-projective and hence M is quasi-projective. Then by [2, Theorem 4.41], M is lifting and so M is ds-CS-Baer.

Conversely, assume that every cyclic R-module is ds-CS-Baer. Then R is a ds-CS-Baer R-module. Therefore by [3, Proposition 5.9], R is semiperfect.

Now, we give a characterization of commutative semiperfect FGC-rings. Let R be a commutative ring. R is called an FGC-ring, if every finitely generated R-module is a direct sum of cyclic modules (see [10]).

Proposition 2.2. Let R be a commutative ring. Then the following assertions are equivalent:

(1) Every finitely generated R-module is \oplus-supplemented.

(2) Every finitely generated R-module is a finite direct sum of ds-CS-Baer modules.

(3) R is a semiperfect FGC-ring.

(4) R is a direct sum of almost maximal valuation rings.

Proof. (1) \Leftrightarrow (3) \Leftrightarrow (4): These are proved in [7, Proposition 2.8].

(1) \Rightarrow (2): Let M be a finitely generated R-module. By (1), M is \oplus-supplemented. By [7, Corollary 2.6], $M = \oplus_{i=1}^{n} x_i R$. Note that each $x_i R$ is quasi-projective since R is commutative. Therefore by [2, Theorem 4.41], each $x_i R$ is lifting and so ds-CS-Baer.

(2) \Rightarrow (1): Let M be a finitely generated R-module. By (2), $M = \oplus_{i=1}^{n} x_i R$, where each $x_i R$ is ds-CS-Baer. By [3, Proposition 5.12], each $x_i R$ is lifting and hence \oplus-supplemented. Therefore by [11, Theorem 1.4], M is \oplus-supplemented.

Corollary 2.2. Let R be a commutative indecomposable ring. Then R is an almost maximal valuation ring iff every finitely generated R-module is a direct sum of cyclic ds-CS-Baer R-modules.

Next, we characterize commutative serial rings via direct sums of cyclic ds-CS-Baer modules.

Proposition 2.3. Let R be a commutative ring. Then the following assertions are equivalent:

(1) R is serial.
(2) R is semiperfect and every 2.f.p. R-module is \oplus-supplemented.

(3) R is semiperfect and every finitely presented R-module is a finite direct sum of ds-CS-Baer modules.

(4) R is semiperfect and every 2-generated finitely presented R-module is a finite direct sum of ds-CS-Baer modules.

(5) R is semiperfect and every 2.f.p. R-module is a finite direct sum of ds-CS-Baer modules.

Proof. $(1) \iff (2)$: This follows from [7, Theorem 3.5].

$(1) \Rightarrow (3)$: Clearly, R is semiperfect. Now, let M be a finitely presented R-module. Note that M is finitely generated. By [9, Corollary 3.4], $M = \oplus_{i=1}^{n} M_i$, where each M_i is u-local and cyclic. Note that each M_i $(1 \leq i \leq n)$ is a local module. Hence each M_i is ds-CS-Baer.

$(3) \Rightarrow (4) \Rightarrow (5)$: These are clear.

$(5) \Rightarrow (2)$: Let M be a 2-f.p. R-module. By (5), $M = \oplus_{i=1}^{n} M_i$, where each M_i is a cyclic ds-CS-Baer R-module. By [3, Proposition 5.12], each M_i is lifting and hence \oplus-supplemented. Hence M is \oplus-supplemented by [11, Theorem 1.4].

Finally, we characterize commutative artinian serial rings as follows.

Proposition 2.4. Let R be a commutative ring. Then the following assertions are equivalent:

(1) R is an artinian serial ring.

(2) R is perfect and every 2.f.p. R-module is \oplus-supplemented.

(3) R is perfect and every R-module is a direct sum of ds-CS-Baer modules.

(4) R is perfect and every countably generated R-module is a direct sum of ds-CS-Baer modules.

(5) R is perfect and every finitely presented R-module is a finite direct sum of ds-CS-Baer modules.

(6) R is perfect and every 2-f.p. R-module is a finite direct sum of ds-CS-Baer modules.

Proof. $(1) \iff (2)$: It is proved in [7, Corollary 3.13].

$(1) \Rightarrow (3)$: By [4, Corollary 28.8], R is a perfect ring. Now, let M be any R-module. By [4, Theorem 32.3], $M = \oplus_{i=1}^{n} M_i$, where each M_i is uniserial. Clearly every uniserial module is hollow. Since R is perfect, then each M_i has small radical (see [4, Remark 28.5]). Therefore, each M_i is local, and so cyclic. Hence M is a direct sum of cyclic ds-CS-Baer modules.

$(3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6)$: These are clear.

$(6) \Rightarrow (2)$: Let M be a 2-f.p. R-module. By (6), $M = \oplus_{i=1}^{n} M_i$, where each M_i is a cyclic ds-CS-Baer R-module. By [3, Proposition 5.12], each M_i is lifting and hence \oplus-supplemented. Therefore M is \oplus-supplemented by [11, Theorem 1.4].

Propositions 2.3 and 2.4 are not true over noncommutative rings as we see in the following example.

Example 2.1. (see [7, Example 3.16]) Let R be a local artinian ring with Jacobson radical $J(R)$ such that $J^2(R) = 0$, $Q = R/J(R)$ is commutative, $\dim(QJ(R)) = 1$ and $\dim(J(R)Q) = 2$. Then R is left serial but not right serial. Let $J(R) = uR \oplus vR$. $A_1 = R/J(R)$, $A_2 = R/uR$ and $A_3 = R/vR$ are the only three isomorphism types of indecomposable right R-modules. Here each A_i is lifting and hence ds-CS-Baer. Note that every right R-module is a direct sum of indecomposable modules, and hence a direct sum of cyclic ds-CS-Baer modules. However, R is not a serial ring.

Article Information

Acknowledgement: The author would like to thank Professor Derya Keskin Tütüncü (from Hacettepe University) for her valuable comments on the paper.

Author’s contributions: The article has a single author. The author has read and approved the final manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the CC BY-NC 4.0 license.
Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of data and materials: Not applicable.

References

Affiliations

NURAY EROĞLU
ADDRESS: Tekirdağ Namık Kemal University, Department of Mathematics, 59030, Tekirdağ, Türkiye
E-MAIL: neroglu@nku.edu.tr
ORCID ID: 0000-0002-0780-2247