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Abstract. An integral circulant graph is a circulant graph whose adjacency matrix has only integer eigenvalues.
It was conjectured by W. So that there are exactly 2τ(n)−1 non-isospectral integral circulant graphs of order n, where
τ(n) is the number of divisors of n [5]. However, the conjecture remains unproven. In this paper, we present the
fundamental concepts and results on the conjecture. We obtain the relation between two characterizations of integral
circulant graphs given by W. So [5] and by W. Klotz and T. Sander [2]. Finally, we calculate the eigenvalues of the
integral circulant graph G if S (G) = Gn(d) for any d ∈ D. Here Gn(d) is the set of all integers less than n that have
the same greatest common divisor d with n.
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1. Introduction and Preliminaries

A simple graph is a graph without loop, multi-edge, and orientation. All the graphs throughout the present paper
are simple. Let G be a graph with the vertex set V and the edge set E, that is G = G(V, E). The order of G is defined
as the number of the elements in V . For the graph G = G(V, E), let A = (ai j) be an n × n matrix such that ai j = 1
if (i, j) ∈ E or ai j = 0 otherwise for i, j ∈ V . We call such a matrix A the adjacency matrix of G and denote it by
A(G). The eigenvalues of A(G) are defined as the eigenvalues of G. We call the multiset whose elements are all the
eigenvalues of G taking in to account with their multiplicities the spectrum of G and denote it by sp(G). It is obvious
that sp(G) will be a classical set when every eigenvalue is of multiplicity 1.

The graph having a circulant adjacency matrix is called a circulant graph. More precisely, a graph of order n is
called circulant if it is a circulant adjacency matrix, which is an n × n matrix commuting with the matrix

Z =
[
0 In−1
1 0

]
,

where In−1 is the (n − 1) × (n − 1) identity matrix. An integral circulant graph is a circulant graph whose eigenvalues
all are integers. There is an alternative definition for a circulant graph in the literature. Let J ⊆

{
1, 2, . . . ,

⌊
n
2

⌋}
.

The circulant graph Cn(J) = (V, E) is then defined as the simple graph on the vertex set V = Zn whose edge set is
E = {{x, x + d} : x ∈ Zn, d ∈ J}. In this context, J is known as the jump set.

Let the vertices of a circulant graph G be labeled {0, 1, 2, . . . , n − 1}. The set
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S (G) =
{
k : a0,k = 1

}
⊂ {1, 2, · · · , n − 1}

is called the symbol set of G. More precisely, the elements of the symbol set consist of the indices of the vertices
adjacent to vertex 0 of the graph G. For example, if A(G) = J − I, where J is a matrix with all elements 1 and Inxn

is the n × n identity matrix, S (G) = {1, 2, . . . , n − 1} and thus the graph G will be a complete graph with n vertices.
In addition, since the matrix A(G) is symmetric, if and only if for k ∈ S (G) is that it is n − k ∈ S (G). Indeed, all
subset of the set {1, 2, . . . , n − 1} that has this property is the symbol of a circulant graph with n vertices. However,
there are circulant graphs that are isomorphic to two different sets of symbols. For example, for n = 5, the symbol
sets S 1 = {1, 4} and S 2 = {2, 3} correspond to 5−vertex cycle graphs. So, it is natural to ask the question “how many
non-isomorphic circulant graphs are there for a given n”? It has been observed that for n = 1, 2, 3, . . . , 8, the number of
non-isomorphic circulant graphs is 1, 2, 2, 4, 3, 8, 4, 12, respectively. However, there is no general formula. Therefore,
since there are 2⌊n/2⌋ different symbols for a graph with n vertices, there are at most 2⌊n/2⌋ non-isomorphic circulant
graphs with n vertices.

Beside these, by using S (G) the eigenvalues of G are λt(G) =
∑

k∈S (G) (wt)k for 0 ≤ t ≤ n − 1, where w = e2πi/n and
thus its spectrum can be written as [1]

sp(G) = (λ0(G), λ1(G), . . . , λn−1(G)) .
Then, to count all integral circulant graphs, it will be sufficient to find the symbol sets S of the set {1, 2, . . . , n − 1},
where

∑
k∈S xk is an integer where xn = 1. In this frame, W. So [5] proved Theorem 1.1.

Theorem 1.1 ( [5]). Let G be a circulant graph with n vertices and symbol set S (G). Then, G is integral if and only if
S (G) is a combination of Gn(d)’s. Here Gn(d) is the set of all integers less than n that have the same greatest common
divisor d with n.

As a consequence of Theorem 1.1, W. So, [5] gave the following result regarding the number of integral circulant
graphs with n vertices:

Corollary 1.2 ( [5]). Let τ(n) denote the number of positive integer divisors of the positive integer n. Then, the number
of integral circulant graphs with n vertices is at most 2(τ(n)−1).

In addition, W. So, identified all possible symbol sets for graphs with fewer than 100 vertices and came up with the
following conjecture after observing that there are no two integral circulant graphs with the same spectrum.

Conjecture 1.3 ( [5]). Let G1 and G2 be two integral circulant graphs with symbol sets S (G1) and S (G2). If S (G1)
, S (G2), then sp(G1) , sp(G2) and thus G1 and G2 are not isomorphic.

If Conjecture 1.3 is true, the number of non-isomorphic integral circulant graphs with n vertices is exactly 2τ(n)−1. It
is easy to show that the conjecture is true for some special positive integers n, but it is still unproven. It is obvious that
the number of elements of S (G) is the largest eigenvalue of the integral circulant graph. Therefore, if |S (G1)| , |S (G2)| ,
sp(G1) , sp(G2). If p is a prime and r is a positive integer, the positive divisors of n = prwill be 1, p, p2, . . . , pr−1 ,
so the number of elements of Gn(d) sets will be d|n, respectively,

(p − 1)pr−1, (p − 1)pr−2, . . . , (p − 1)p, (p − 1).
As a result, since the symbol sets of n = prvertex integral circulant graphs will contain different numbers of elements,
Conjecture 1.3 will be correct in the case of n = pr [5]. Beside this, recently, Conjecture 1.3 was proved in cases where
n = pk, pqk, p2q, where 2 ≤ p < q are primes and k ≥ 1 are integers, and n = pqr, where 2 ≤ p < q < r are primes. Its
accuracy has been shown [5].

In addition to W. So's characterization with the symbol set, W. Klotz and T. Sander [2] introduced gcd-graphs
by generalizing unitary Cayley graphs, a special class of circulant graphs, and showed that all eigenvalues of gcd-
graphs are integers. Let Zn be the additive group of the ring Zn, of integers with respect to module n. Let Un =

{a ∈ Zn : (a, n) = 1} be the subset of the units of the ring Zn. Here, (a, n) is the greatest common divisor of the integers
a and n. The Cayley graph Xn = Cay (Zn,Un) whose vertex set V (Xn) = Zn and edge set

E (Xn) = {{a, b} : a, b ∈ Zn, (a − b) ∈ Un} = {{a, b} : a, b ∈ Zn, (a − b, n) = 1}
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is called the unitary Cayley graph. W. Klotz and T. Sander [2] showed that the eigenvalues of the Cayley graph Xn are

λr (Xn) =
∑

1≤ j≤n
( j,n)=1

wr j

for 0 ≤ r ≤ n − 1. Indeed,

λt (Xn) = c(r, n) = µ
(

n
(r, n)

)
φ(n)

φ
(

n
(r,n)

)
can be written where c(r, n) is the Ramanujan sum, φ is Euler's phi-function, and µ is the Möbius function. Here, the
eigenvalues of the unitary Cayley graph Xn are integers and since Xn is also circulant, Xn is an integral circulant graph.

Theorem 1.4 ( [2]). Let n ≥ 2 and Xn be a unitary Cayley graph. Then, the following is provided:
(i) Every nonzero eigenvalue of Xn is a divisor of φ(n).

(ii) Let m be the maximal squarefree divisor of n. Then, λmin = µ(m) φ(n)
φ(m) is a nonzero eigenvalue of Xn of minimal

absolute value and multiplicity φ(m). Every eigenvalue of Xn is a multiple of λmin. If n is odd, then λmin is the
only nonzero eigenvalue of Xn with minimal absolute value. If n is even, then −λmin is also an eigenvalue of Xn

with multiplicity φ(m).

Corollary 1.5 ( [2]). Let n ≥ 2 and Xn be a unitary Cayley graph. Then, the following is provided:
(i) For at least one of ±1 to be an eigenvalue of Xn, if and only if that n is squarefree.

(ii) If n is squarefree, µ(n) is an eigenvalue of Xn with multiplicity φ(n).
(iii) For both ±1 to have eigenvalues with a multiplicity φ(n) of Xn it is necessary and sufficient that n is squarefree

and even.

Theorem 1.6 ( [2]). Let m be the maximal squarefree divisor of n and let M be the set of positive divisors of m. Then,
the following statements for the unitary Cayley graph Xn, n ≥ 2, hold.

(i) Repeating every term of the sequence S =
(
µ(m) φ(n)

φ(m)

)
t∈M
φ(t)−times results in a sequence S̃ of lenght m

which consists of all nonzero eigenvalues of Xn such that the number of appearences of an eigenvalue is its
multiplicity.

(ii) The multiplicity of zero as an eigenvalue of Xn is n − m.
(iii) If α(λ) is the multiplicity of the eigenvalue λ of Xn, then λα(λ) is a multiple of φ(n).

Now, let D(n) denote the set of positive integer divisors of n. Let D be a subset of D(n) that does not contain integer
n. A graph Xn(D) with vertex set V (Xn) = Zn and edge set

E (Xn) = {{a, b} : a, b ∈ Zn, (a − b, n) ∈ D}

is called gcd-graph. If D = {1} is specifically taken, Xn(D) will be a unitary Cayley graph. Let the first row of the
adjacency matrix of the gcd-graph Xn(D) is (a0, a1, . . . , an−1) and

a j =

{
1 i f ( j, n) ∈ D,
0 i f ( j, n) < D.

If we substitute a j into λr =
∑n−1

j=0 a jwr j the eigenvalues of the graph can be obtained as

λr =
∑
d∈D

∑
1≤ j<n
( j,n)=d

wr j =
∑
d∈D

c(r, n/d)

for 0 ≤ r ≤ n − 1. Thus, the following theorem is obtained.

Theorem 1.7 ( [2]). The eigenvalues of all gcd-graphs are integers.

For example, for n = 6 and D = {1, 3}, Xn(D) is a gcd-graph with vertex set

V(Xn(D)) = {0, 1, 2, 3, 4, 5}
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and edge set
E(Xn(D)) = {{0, 1} , {0, 3} , {1, 2} , {1, 4} , {2, 3} , {2, 5} , {3, 4} , {4, 5} , {5, 0}}

and its spectrum is sp(Xn(D)) = {3,−3, 0, 0, 0, 0}.
In this study, we firstly compare two characterizations of integral circulant graphs given by W. So [5] and W. Klotz

and T. Sander [2]. Then, we calculate the eigenvalues of the integral circulant graph G if S (G) = Gn(d) for any d ∈ D
and we obtain some properties of the eigenvalues.

2. Eigenvalues for Integral Circulant Graphs of the Form S (G) = Gn(d)

W. So [5] carried out the characterization of integral circulant graphs with the aid of the symbol set concept by
proving in Theorem 1.1 which states the necessary and sufficient condition for G to be an integral graph is that S (G)
is a combination of Gn(d). Besides, J. W. Sander and T. Sander [4] stated that gcd-graphs defined above by W. Klotz
and T. Sander [2] with the aid of D divisor sets are integral circulant graphs and that all integral circulant graphs can
be characterized with the aid of D divisor sets without proof. Now, we will prove this first.

Theorem 2.1. Let n be a positive integer, D ⊆ D(n) be a divisor set of n, and n < D. Then, the gcd-graph Xn(D), is an
integral circulant graph with symbol set S (G) =

⋃
d∈D Gn(d).

Proof. First, we show that Xn(D) is a circulant graph. Let {x, y} ∈ E(G). In this case, from the definition of E(G), there
is d1 ∈ D such that (x − y, n) = d1. Since

(x + k) − (y + k) = x − y

for k ∈ Z+, ((x + k) − (y + k), n) = d1 and for 0 ≤ x′ ≤ n − 1, 0 ≤ y′ ≤ n − 1, we have

x + k ≡ x′ mod n and y + k ≡ y′ mod n,

whenever {x′, y′} ∈ E(G). Moreover, since (x − y, n) = (y − x, n) for every {x, y} ∈ E(G), {y, x} ∈ E(G). Thus, the
adjacency matrix of G is symmetric. Then, the graph characterized by the divisor set D is a circulant graph.

Now, we show that for the symbol set S (G), S (G) =
⋃

d∈D Gn(d). From Theorem 1.4, we know that Xn(D) is an
integral circulant graph. Moreover, according to Theorem 1.1, there is a divisor set D′ ⊆ D(n) such that S (G) =⋃

d′∈D′ Gn (d′). We will show that D′ = D. Let x ∈ D. Since x = (x, n) = (0 − x, n), we have x ∈ S (G). Hence, for some
d′ ∈ D′, x ∈ Gn (d′) and so (x, n) = d′. From here x ∈ D′ is obtained. Then, D ⊆ D′. Now, let y ∈ D′. Also, since
y ∈ Gn(y), y ∈ S (G) is obtained. From the definition of the graph Xn(D) it is y ∈ D. Then, D′ ⊆ D. This completes the
proof. □

The graph G, whose symbol set is of the form S (G) = Gn(1), is a unitary Cayley graph. 0 ≤ r ≤ n − 1 and
w = exp

(
2πi
n

)
, the eigenvalues of G are calculated as

λr(G) =
∑

1≤k≤n−1
(k,n)=d

(wr)k = c(r, n) = µ
(

n
(r, n)

)
φ(n)

φ
(

n
(r,n

)
with the aid of Ramanujan sums c(r, n).Based on this, if the symbol set of an integral circulant graph G is S (G) = Gn(d),
its eigenvalues can be calculated as

λr(G) =
∑

1≤k≤n−1
(k,n)=d

(wr)k

=
∑

1≤k/d≤n/d−1
(k/d,n/d)=1

(wr)
k
d

= c
(
r,

n
d

)
= µ

 n
d(

t, n
d

)  φ
(

n
d

)
φ
(

n
d

(t, nd )

) (2.1)
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for 0 ≤ r ≤ n − 1. Here, also t = n
(r,n) and w = exp

(
2πi
n

)
[3]. In addition, the minimum absolute eigenvalue of a unitary

Cayley graph is λmin = µ(m) φ(n)
φ(m) . Here, m is the squarefree maximal divisor of n [2]. Now, we write the formula that

gives the minimum absolute values of integral circulant graphs whose symbol set is of the form Gn(d) and prove it in a
similar way.

Theorem 2.2. For all n ≥ 2, let G be integral circulant graph, d|n and S (G) = Gn(d). The following statements hold.

(i) Every nonzero eigenvalue of G is a divisor of φ
(

n
d

)
.

(ii) Let m be the maximal squarefree divisor of n. Then,

λmin = µ(m)
φ
(

n
d

)
φ(m)

(2.2)

is a non-zero eigenvalue of G with minimum absolute value and multiplicity φ(m)d. Each eigenvalue of G is a multiple
of λmin. If n

d is odd, λmin is the unique nonzero eigenvalue of G with minimum absolute value. If n
d is even, −λmin is an

eigenvalue of G with multiplicity φ(m)d.

Proof. (i) By the multiplicative properties of the Euler function φ(a) divides φ(n), if a is a divisor of n. Therefore, the
formula (2.1) implies that the nonzero eigenvalues of G are divisors of φ

(
n
d

)
.

(ii) For λr , 0 and tr =
n
d

(r, nd ) , since tr is the divisor of m, µ (tr) , 0. By (2.1), the absolute value of λr , 0 is minimal
if and only if φ (tr) = φ(m). This equation always has the trivial solution tr = m. This means that

λr = λmin = µ(m)
φ
(

n
d

)
φ(m)

.

For 0 ≤ r ≤ n − 1, one can obtain

λr = λmin ⇔ tr =
n
d(

r, n
d

) = m

⇔

(
r,

n
d

)
=

n
d

m

⇔ r ∈ Q =
{
x

n
d.m

: 0 ≤ x ≤ m.d, (x,m) = 1
}
.

Thus, λmin has multiplicity |Q| = φ(m)d. If λr is an arbitrary non-zero eigenvalue of G, then tr is the divisor of m, and
thus φ (tr) divides φ(m), that is, there is k ∈ Z+ such that φ(m) = kφ (tr). Thus, λr becomes a multiple of λmin. From
(2.1) and (2.2), we have

λr = µ (tr)
φ
(

n
d

)
φ (tr)

= k.µ (tr)
φ
(

n
d

)
φ (tr)

= ±kλmin.

If n
d is odd and λr = tr =

n
d

(r, nd ) divides m then φ (tr) = φ(m) and hence m and tr are odd. Therefore, φ (tr) = φ(m) by the

properties of the Euler function. If n
d is even then m is even and hence φ(m) = φ

(
m
2

)
. Thus, we obtain

λ′min = µ
(m

2

)
.
φ
(

n
d

)
φ
(

m
2

) = −µ(m)
φ
(

n
d

)
φ(m)

= −λmin

for the eigenvalue λ′min. □

Example 2.3. Let G be an integral circulant graph of order n. Let n = 6 and d = 2. Let S (G) = G6(2). Here, the
spectrum of G is {2, 2,−1,−1,−1,−1}. Every non-zero eigenvalue of G is a divisor of φ

(
6
2

)
= φ(3) = 2. Here 3 is the

squarefree maximal divisor of 6
2 . Then,

λmin = µ(3)
φ
(

6
2

)
φ(3)

= −1.
2
2
= −1
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is a nonzero eigenvalue of G with the minimum absolute value.

Example 2.4. Let G be an integral circulant graph of order n. Let n = 12 and d = 3. Let S (G) = G12(3). Here, the
spectrum of G is {2, 2,−2,−2, 1, 1, 1, 1,−1,−1,−1,−1} . Every non-zero eigenvalue of G is a divisor of φ

(
12
3

)
= φ(4) =

2. Here 2 is the square-free maximal divisor of 12
3 . Then,

λmin = µ(2)
φ
(

12
3

)
φ(2)

= −1.
2
2
= −1

is a nonzero eigenvalue of G with the minimum absolute value.

Theorem 2.5. Let n ≥ 2 and G be an integral circulant graph with symbol set S (G) = Gn(d). Then, the followings are
provided:

(i) For at least one of ±1 to be an eigenvalue of G if and only if n
d is squarefree.

(ii) If n
d is squarefree, µ

(
n
d

)
is the eigenvalue of G whose multiplicity is φ

(
n
d

)
.d.

(iii) If n
d is squarefree and even, G has eigenvalues of ±1.

Proof. (i) Let at least one of ±1 be an eigenvalue of G. Then, for 0 ≤ r ≤ n − 1 there exists an r such that

λr = µ

 n
d(

t, n
d

)  φ
(

n
d

)
φ
(

n
d

(t, nd )

) = ±.1
From the definition of the Euler function it must be φ(n/d)

φ((n/d)/(t,n/d)) = 1. Thus,
(
t, n

d

)
= 1 and µ ((n/d)/(t, n/d)) = µ

(
n
d

)
=

±1. From the definition of the Möbius function, n
d is squarefree.

Conversely, choose r such that n
d is squarefree and

(
t, n

d

)
= 1. Then,

λr = µ

 n
d(

t, n
d

)  φ
(

n
d

)
φ
(

n
d

(t, nd )

) = µ (n
d

) φ (
n
d

)
φ
(

n
d

) = µ (n
d

)
.

Since n
d is squarefree, µ

(
n
d

)
= ±1 from the definition of the Möbius function.

(ii) From (i), if n
d is squarefree, µ

(
n
d

)
is an eigenvalue of G for r values such that

(
t, n

d

)
= 1. From the definition of

the Euler function, there are t with multiplicity φ
(

n
d

)
.d such that

(
t, n

d

)
= 1. Thus, the multiplicity of the eigenvalue

µ
(

n
d

)
is φ

(
n
d

)
.d.

(iii) Let n
d be squarefree and even. n

d is assumed to have an even number of prime factors.

λr = µ

 n
d(

t, n
d

)  φ
(

n
d

)
φ
(

n
d

(t, nd )

) = µ (n
d

) φ (
n
d

)
φ
(

n
d

) = µ (n
d

)
= 1

for r such that
(
t, n

d

)
= 1. For r such that

(
t, n

d

)
= 2 since n

2d has an odd number of prime factors and φ
(

n
d

)
= φ

(
n

2d

)
,

thus,

λr = µ

 n
d(

t, n
d

)  φ
(

n
d

)
φ
(

n
d

(t, nd )

) = µ ( n
2d

) φ (
n
d

)
φ
(

n
2d

) = µ ( n
2d

)
= −1.

□

Theorem 2.6. Let n ≥ 2 and m be the squarefree maximal divisor of the integer n
d , M be the set of positive divisors of

m, and G be an integral circulant graph with symbol set S (G) = Gn(d). Then, the followings are provided:
(i) Repeating every term of the sequence S = (µ(t)φ (n/d) /φ(t))t∈M dφ(t)− times results in a sequence S̃ of length

m which consists of all nonzero eigenvalues of G such that the number of appearences of an eigenvalue is its
multiplicity.

(ii) The multiplicity of zero as an eigenvalue of G is n − md.
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(iii) If α(λ) is the multiplicity of the eigenvalue λ of G, then λ.α(λ) is a multiple of φ
(

n
d

)
.

Proof. (i) The number of terms in the resulting sequence S̃ is∑
t∈M

φ(t) =
∑
t|m

φ(t) = md.

Equation 2.1 describes the sequence (λr)0≤r≤n−1 of all eigenvalues of G in which each eigenvalue is listed according to
its multiplicity. As µ(tr) = 0 for tr ∈ M, we get the subsequence T̃ of nonzero eigenvalues for 0 ≤ r ≤ n − 1, tr ∈ M

T̃ =

µ(tr)φ
(

n
d

)
φ (tr)


0≤r≤n−1, tr∈M

,

where tr = n
d(r, nd ) . Let t be an arbitrary element of M. For 0 ≤ r ≤ n − 1, i.e. r ∈ Zn, we have t = tr if and only if(

r, n
d

)
=

n
d
t . Elementary number theory shows

Qt :=
{

r ∈ Zn :
(
r,

n
d

)
=

n
d

t

}
=

{
x

n
dt

: x ∈ Zt, (x, t) = 1
}
,

which implies that Qt has φ(t) elements. Therefore, the sequence T̃ consists of all terms

µ(t)
φ
(

n
d

)
φ(t)
, t ∈ M

where each of these terms appears φ(t).d−times. If we take every term only once, then we arrive at the sequence S and
see that S̃ and T̃ coincide apart possibly from the order of their elements.

(ii) By (i) the length of the sequence S̃ equals the number of nonzero eigenvalues, each of them counted according
to its multiplicity. As S̃ has length md, the eigenvalue zero has multiplicity n − md.

(iii) The statement is trivially true for λ = 0. Let λ be a nonzero eigenvalue of G. Then, there is an integer t ∈ M
such that

λ = µ(t)
φ
(

n
d

)
φ(t)
.

By (i) λ has at least multiplicity φ(t), more precisely

λ.α(λ) = µ(t)
φ
(

n
d

)
φ(t)

ktφ(t) = µ(t)ktφ
(n
d

)
.

Thus, λα(λ) is a multiple of φ
(

n
d

)
. □

3. Comments and FutureWork

In the present paper, we have presented the background of the So conjecture about circulant graphs and we have
obtained the relation between the characterizations of integral circulant graphs given by W. So [5] and by W. Klotz
and T. Sander [2]. Then, we have calculated the eigenvalues of the integral circulant graph G if S (G) = Gn(d) for any
d ∈ D. In this context, we believe that the natural goal of future studies is to attempt to prove the conjecture.
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