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ABSTRACT

In this study, we obtain the characteristic matrices of three-dimensional cellular automata under the null boundary
condition. We examine the inverse of characteristic matrices. We obtain a recurrence equation to determine under
what conditions the matrix is invertible. Thanks to this equation, we can calculate the inverse of large-dimensional
matrices. Finally, we give some applications of cellular automata. We find the minimal polynomial of the
characteristic matrix. We find the cycle length and transition length of the characteristic matrix with the help of
minimal polynomials. We also find the attractive points of the characteristic matrix. Finally, we draw the State-
Transition diagram with the results we obtained.
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Uc Boyutlu Hiicresel Doniisiimlerin Terslenebilirligi ve Uygulamasi

(04

Bu ¢alismada {i¢ boyutlu hiicresel doniistimlerin karakteristik matrislerini sifir simir gart1 altinda elde ediyoruz.
Karakteristik matrislerin tersini inceliyoruz. Matrisin hangi sartlarda tersinin oldugunu belirlemek i¢in rekiirans
denklem elde ediyoruz. Bu denklem sayesinde bilyiik boyutlu matrislerin tersini hesaplayabiliriz. Son olarak hticresel

doniisiimlerin bazi uygulamalarini veriyoruz. Karakteristik matrisin minimal polinomunu buluyoruz. Minimal
polinomlar yardimiyla karakteristik matrisin devir uzunlugu ve gecis uzunlugunu buluyoruz. Ayrica karakteristik

matrisin ¢ekici noktalarini buluyoruz. Son olarak elde ettigimiz sonuglar ile Durum—Gegis diyagramini ¢iziyoruz.

Anahtar Kelimeler: Hiicresel Doniisiimler, Karakteristik Matrisler, Terslenebilirlik

INTRODUCTION

Cellular Automata (CA for short) was first used to obtain
models in the fields of physics, biology and computer
science. CA theory was first studied by Ulam and Von
Neumann [1]. Later, many researchers became interested
in studying CA to model the behavior of a complex
system. Hedlund used CA systematically from a purely
mathematical perspective [2]. Wolfram with the help of
polynomial algebras [3], Pries to explain group properties
based on a similar type of polynomial algebras [4] and
Inokuchi et al. studied to observe the behavior of one-
dimensional CA produced by the 156 rule [5]. Since two
dimensional CAs (2D CAs) have widespread
applications in physics, biology, mathematics and other
sciences, the study of these CAs has accelerated in many
branches of science in the last twenty years. On the other
hand, Packard and Wolfram started their studies on two
dimensional CA (2D CA) by making some observations
on two-dimensional CA based on 5-neighborhood CA
[6]. Das et al. extended the characterization of one-

dimensional CA with the help of matrix algebras and
introduced a new method for the theoretical analysis of
linear CA [7]. They based the analysis of CA on
polynomial algebra. At the same time, hybrid CAs were
analyzed with this new method. Matrix characterization
of CA was formulated to examine the resulting complex
dynamic system.

Khan et al. developed a solution to examine 2D CA linear
transformations with nearest neighbors over the field Z,
[8]. They examined the characterization of 2D CAs under
periodic boundary conditions with the method and
different rules they developed to separate two
dimensional linear CAs.

Choudhury et al. gave the most general characterization
of a special hybrid transformation of 2D CAs over the
field Z, [9]. Additionally, in another study, Choudhury
and Dihidar achieved the characterization of 2D CAs by
extending the one-dimensional CA theory with the help
of matrix algebra[10]. Siap et al. examined two-
dimensional cellular automata over the field Z3 with
some special rules under periodic and null boundary
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conditions[11]. Whether the rule (representative)
matrices corresponding to the examined CAs are
invertible has emerged as an important problem. If the
rule matrix of CA has an inverse, then the CA
corresponding to this matrix is said to be invertible.
However, there have not been many studies on three-
dimensional cellular automata. Tsalides et al. conducted
a study on three-dimensional cellular automata and their
applications[12]. R.W.Gerling classified 3D CAs in his
study[13].

Jan Hemmingsson carried out studies on the quasi-
periodic behavior of 3D-CAs [14]. S.G.R. Brown and
N.B. Bruce tried to model the free development of 3D
CAs in their study[15]. E.G. Leubeck and M.C.M. De
Gunst worked on the analysis of cellular deterioration
using 3D CAs[16]. Alexandra Agapie gave a simple form
of the constant distribution for 3D CA in a special
case[17].

In this study, we will define the neighborhood states of
3D CAs. We will examine the invertibility of the
characteristic matrices obtained under the zero boundary
condition. We will provide information about whether
the cellular transformations corresponding to these

characteristic matrices are reversible or not. We will
make some applications of cellular automata.

THREE DIMENSIONAL CELLULAR AUTOMATA

First, the definition of 3D-CA over the field Zp will be
given. Then, the characteristic matrices will be examined
under the null boundary condition with a special rule and
a general form will be obtained. Consider three

dimensional Z3lattices and o: Z3 — Zyelement () =
3
ZPZ configuration space. ¢, is defined by the value

of 0 at a n € Z3 point. Let Uy, Uy, ..., Us E Z3 a
finite set of different elements and f: Zps — Zyp be

given. (12, F) is defined as a pair of CA and a local rule

f, where F:0- 0, (Fo), =
f(an+u1, . J,H_us),n € Z3 is the global transition
function.

Mathematically, the next state transition of the (i, j, k)
cell can be represented as a function of the present states
of the neighbor cells.

x((lt-]l-i)) = f(xgzl,j—l,k—l)‘x((itzl,j,k—l)’x((le,j,k+1)'x((le,j—l,k)’xgzl,j—l,k+1)’
O o o NG ©
(i-1,j,k) *(i—-1,j+1,k)’ ~(i—-1,j+1,k—-1)’ *(i—1,j+1,k+1)’ " (i,j—1,k—1)’
x((g',k—1)x((it’)j’k+1),x((if’)j_1’k),x(it'j_1’k+1),x((if’)j’k)’x((2+1,k)' x((it,}+1,k—1)’ x((:,}+1,k+1)’ x((i?-l, j-1k-1)
X(01, =1 KD, 5 1= E 1L X410 K1+ 10y
xgitJ)rl,j+1,k—1)' x((itJ)rl,j+1,k+1))
= a0 XD ey Fanx( Dy anxTD L +as, x((ffll,}_l,k) +
a4.ng11}_1,k+1) + as. x((ltfllik) + a6.x((itf113.+1’k) + a;. x((itfllj.ﬂ’k_l) +
a8'xgitj11}+1,k+1) + ao. x((it;—li.k—l) + alO'x((it,ﬁ)—l)
F 11X ey F QX F Q13 X s F DX F
as. x((f;rﬂk) + aq6- x((it;ﬂ,k—n + a17.x((l.t;:)1,k+1) +
Q18- x((it-:-llj'—l,k—l) + a19'x((it:11j',k—1) + azo. x((it:fj',kﬂ) + a21'x((it:113'—1,k) +
Qo2 X(i3 1) skrn) T @23 X(is1 g F Q24 Xisa jeri) F 925 Xiaajrrkony +
Are- x((itfllj.ﬂ,kﬂ)mod pag, Ay, 0z, ..., 0z € L, — {0} (1D
In this_paper, we characterize the 3D NBCA det_ermined
ol 10 cheractorize NBGA. Firt, Iots gve our specialy B X610 T WX kn Y- X1
chosen local rule. + z. x((lt:llzk) mod p

(t+1) _

(t+1)
XGijk) =

(t+1)
9-X(ijk+1)

(i,j+1,k) +

+r.x

(g, uw,y,z€ Ly, — {0}) (2)
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There's the small matter of what the neighborhood of the 2.1 0 0 0 0
cells at the other end of the cage should be. In most cases, s > s s s
we take the lattice to be large enough so that these cells O, zl, O, O, O,
are ignored and the lattice can be considered virtually 0 0 71 0 0
infinite. However, in some cases, the extent of the lattice B — s s s s s
may be finite and there are various types of boundary "
conditions, but we will give only one of them. is
expressed as follows. Os Os Os -z Is os
A null boundary CA (NBCA) is one in which the extreme 0 0 0 0 7.1
cells are connected to logic O-state. If we characterize the s s S s $ / msxms
3D NBCA with the local rules in Eg. (2) we have O O O O O
obtained the rule matrix as follows: s s s s s
OS OS OS OS OS
K, 2, 0, 6, ~ G 0O 0 o O, O, O, O, O,
B, K, Z 0 - 0 0 O n
O B K Z, ~ G 0 0 O, O, O, 0, O,
On On Bn Kn On On On
(TRN )mnSxmns - (3) Os OS OS o OS OS ms=ms
I is Sx S an identity matrix. O is SXS zero matrix.
000 0 0 -« K Z 0
nonme o Ss(u,r)is as follows:
On On On On " Bn Kﬂ Zﬂ
On On On On On Bn N/ mnsxmns 0 r 0 0 0 0 0
K,.Z,,B,,0, are nxn block matrices where u 0 r 0 0 0 O
N=mSs The submatrices of the rule matrix are as O u 0 r 0 0 O
follows: 0O 0 u O 0 0 O
S, (u,r)=
S(ur) w0 .. 0 0 0 0 0 0 0o r o0
g.|5 Ss(u,r) W.|s OS Os 0o 0 0 0 ... u 0 r
0 0 0 0 ... 0 u 0)g,s
K = 05 g'|5 SS (u,r) OS OS Now, we give an example. We take M=N=S=3 .we

take into account a configuration of size 3x3x3 . we
study 3D-CA under null boundary conditions. we apply

5 J 0 ' Ss(u,r) Wl the local rule to all cells of [X];ngg. We obtain the
s s Os ' g'ls ss (u’r) mxms  Characteristic  matrix [TRN ]27X27 as follows:
y,|s OS OS OS OS S wlh 0yl 0 0 0 0 0
O | O O O 01 S3(u,r) wly O3 yla O3 O3 03 O3
S AN s s s O aly Sur) O Oyl 0 0 0
O O y I O O Lly 05 0 53(u,r) wly 03 yly 0 0
7 | s Jls o M s Ten =1 0 zly 0y gly Sur) wly 0yl O
n O 05 zly 05 gy Sur) 0 0y g

O 0 0 zly 05 0 Sur) wly 0
O 05 zly 05 gly S(ur) wl
O 0 05 05 05 zly 0 gly Syur)

O
&)
@)
-
O

2127
Os Os Os OS Y|S - rl?lqg)[/;/i,xwe write the submatrices of our characteristic
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S;(ur)  wly, (o}
Ki=| gl  S(ur) wl,
0, g1y, S;(u,r)
yl, O, G
Z;=| O, yl; G
O, O, vl
fl, O, O,
B,=| O, f.I, O,
O, o, f.,
Finally, we have obtained our block matrix as follows:
K, Zl, 0,
T =Bl K, Zl,
03 B'|3 K3 2

REVERSIBILITY

Reversibility of three dimensional cellular automata is a
very difficult problem. If our characteristic matrix is
invertible, we say that cellular automata is reversible. K.
Morita studied the features of reversibility of cellular
automata[18]. Z. Cinkir et al. were interested in the
problem of reversibility of cellular automata over the

field Z , under periodic boundary conditions [19]. H.

Akin et al. were interested in the problem of reversibility
of cellular automata under reflective boundary conditions

over the field Z [20]. Chang et al. calculated
reversibility of multi dimensional cellular automata [21].

Now, we will give a very important algorithm to
determine the reversibility of 3D-CA under the null
boundary conditions.

Theorem: Forn,m,s>2 (n,m,seZ"),
characteristic matrix (TRN )mnsxmnS be defined as in Eq.
(3). The rank of Eq.(3) (n-Dms+rank(4,, ,) .
where A, , satisfies the following recurrence relation:
L) =K, 4,(S)=B

n>2,4,..,(8)=-Z2 ’lKﬂQn_3(S) +A,04(S) ,
n>3,4,, ,(S) =-7Z'B Ayns(S)
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Proof: we will apply the induction method over n > 2.
For n =2 ,we have obtained a block matrix as follows.

K Zl
T= .
BlI K
Now, if we want to calculate the rank of our block matrix,

R, and R, are the rows of the block matrices. Multiply

the first row by —Z 'K and add it to the second row.
We have obtained the block matrix as follows:

(—Z‘lKZ +KB =7,(8) élj '

In this case rank of T depends on
-Z‘1K2+B=/13 (S) .For n =3, we have obtained the
block matrix as follows:

K ZI O
T=|Bl K Zl
O Bl K

Multiply the second row by —Z K and add it to the
third row. We have obtained the block matrix as follows:

K ZI o)
FI K ZI
~ZBK =4,(S) -Z'K*+B=4(S) O

If, we multiply the first row of the new matrix by
—~Z7*2,(S)and add it to the third row. we have the
following block matrix.

K Zl O
FI K ZI

274, (S)K+4,(S)=4(S) O O

In this case rank of T depends on
—Z_l/i3 (S) K+4, (S) =/ (S) .The (n -1 )th
row of T is found. If we multiply the (n -1 )th row
by —Z _1/11(8) and add it to the last row, the last row is
obtained as(0,0,...,4,(S), 4(S).0) .
multiply the (n—2 )th row of the new matrix by
~Z7'2,(S) and add it to the last row.

Now, if we



In this manner, the last row is obtained as
(0,0,...,14(8),/15(8),0,0) Jf we multiply the
second row of the new matrix by —Z ‘A, (S) and
add it to the last row, the last row is obtained as
(Ao (S),420=3(8),0,0,...,0) Finally, if we
multiply the first row of the new matrix by
—E™4,,5(S) and add it to the last row, the last row is

obtained as (}Lz”_l (S),O, 0, 0,...,0) . The new matrix
is as follows:

K, 2, 0 0 - 0 0O O
B, K, Z, O, - 0O, O, O,
0, B, K, Z, -+ O, O, O,
0, 0, B K, - 0O 0O 0O
(Tay )mnSxmns -
0, 0, 0, O, K, Z, 0O,
0, o, 6, 0, -~ B K, Z
bpa(S) 0, 0, 0, -+ 0, O

n n n n "/ mnsxmns

The proof is completed.

Example 1: we take M=2,N=2 and S=2. Let's
calculate the rank of the characteristic matrix
corresponding to our local rule under the null boundary
condition. Firstly, we write our characteristic matrix as
follows:

O r w0y 0 O0UDO
u 0 0w 0O vy 0O
g 0 0Or 00 vy O
T 0 g u 0 00 0 vy
RN 1z 00 00 r woO
0 z 0 0u 0 0 w
0 z 0 g 0 0 r
0 0 z 0 g u O8><8
S,(u,r) wl, y.l, 0,
_| gl S,(ur) G, y.l,
2.1, 0, S,(ur) wl,
0, zl, gl,  S,(ur))

If we want to write the above characteristic matrix as a
block matrix,

02
w.l, y.l,

o[

w.l, 7 _ y.l,
S,(ur))" * 0,

2.1 @)
B,=| % |
O, uzl,
Now let's write our matrix as a block matrix,
KZ ZZ
TRN = B K *
2 2

[fwetake g=r=u=1w=y=2=2,
(g.r,uw,y,zeZ,)
we obtained the equation as follows:
N22,2,,,(8)=-Z Ky 5(S)+ 254 (S)
2(8) = =ZKA4(S) + 4 (S)
=—-Z"'K*+B
4(8)=K, 4(S)=B

(Tan )gxs =(n-1)ms +rank(4,, )
=(2-12.2+rank(4,)

=4+4=8
The rank of an invertible matrix is equal to the order of
the matrix, Thus characteristic matrix is invertible. So
CA which corresponding to the characteristic matrix is
reversible. If wetake g =r=u=w=y=z=1,
We obtained the equation as follows:
(Tan ). = (N=D)ms + rank (4, ;)
=(2-1)2.2+rank(4,)

=4+2=6

Characteristic matric hasn’t got full rank. So it isn’t
invertible. Thus CA which corresponding to the
characteristic matrix isn’t reversible.

APPLICATION

Now, we give an application of cellular automata.we
find a minimal polynomial of T transition matrix. We

obtain cycle and transient length of T transition matrix
with the help of minimal polynomial. We will also
determine the attractor points of our T transition matrix.
Let's provide some definitions.

Definition 1 Let x be the initial configuration. For
teN, X, :TtXO. If there is no te N such that
T'X, =0, there will be T'X,=T!X, for some

number i, jsince the
configurations is finite.

number of all possible
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(i, j)<(k,|)<:>i<k ori=Kk,j<l , then there is
the smallest pair of numbers (t,C) that satisfy the
condition T*X, =T"°X,.The number te N in the
expression T'X,=T" X, is called the transition
length onthe X, configuration, and the number C € N

is called the cycle length on the X, configuration.

Definition 2 The configuration that returns to itself in a
certain time step is called an attractor point. In other
words, in a cellular automata configuration tree, it is the
configuration that can be seen as the root of the tree.

Definition 3 After starting with the initial configuration,
the configurations reached until returning to the
configuration itself in a certain time step are called the
basin of the last obtained configuration, and this diagram
obtained during this period is called the State-Transition
Diagram.

Example2: If we take M=2,n=2 and S=2. we
write our characteristic matrix as follows:

O r w0y 0 OO
u 0 0w O vy 0O
g 0 0O0r 00 yv O
T:OguOOOOy
RN |z 00 00 rwoO
0 z 0 0u 0 0 w
0 z 0 g 0 0 r

0 0 z 0 g u 08><8

Ifwetake g=w=u=y=z=1landr=0,
(g9,r,u,w,y,zeZy,),
we have obtained the characteristic matrix as follows:

00101000
10010100
10000010
. _J01t1o00001
RN 110000010
01001001
00101000
000101 1 0)gg

Let's try to find the transition length, cycle length and
basin of the attractive points, if any, by arbitrarily

choosing any of the 2% =256 vectors over the feld
Z, . Let's choose an arbitrary vector as follows.

0

0

0

F= 0 —1

0

0

0

_1_8><1
00101000 0] [O]
10010100 0 0
10000010 0 0
TRN.F_01100001 .0 |1
10000010 0 0
01001001 0 1
00101000 0 0
000101 1 0)gglll, |0
00101000 0] [0]
10010100 0 0
10000010 0 0
01100001 1 0
Ton-F = 1] =
10000010 0 0
01001001 1 1
00101000 0 0
0001011 0Jgg(0], [0

If we continue similarly, let's write some results as
follows:

State-Transition Diagram

8x1

— 20

-0

1-21-40-60-64-84-105-125-135-147-174-186-198-210-239-251

\
20
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2-22-43-63-67-87-106-126-132-144-173-185-197-209 - 236 - 248
\
41

\

3-23-42-62-66-86-107 —0127—133—145—172—184—196— 208-237-249
i
61
i
0

4-16-45-57-69-81-108-120-130-150-171-191-195-215-234-254
!
65

5-17-44-56-68-80-109-121-131-151-170-190-194 — 214 — 235-255
{
85

6-18-47-59-71-83-110-122-128-148-169-189-193-213-232-252
{
104
{
0

7-19-46-58-70-82-111-123-129-149-168-188-192 212 - 233253
{
124
{
0

8-28-33-53-73-93-96-116-142-154-167-179—-207 - 219-230-242
{
134
{
0

9-29-32-52-72-92-97-117-143-155-166-178-198 - 206 — 218 — 231243
{
146
{
0

12-24-37-49-77-89-100-112-138-158-163-183 203 - 223 - 226 — 246
{
199
{
0
13-25-36-48-76-88-101-113-139-159-162 182 — 202 — 222 — 227 — 247
\
211

14-26-39-51-79-91-102-114-136-156-161-181—-201-221—224 - 244 - 251
\:
238

15-27-38-50-78-90-103-115-137-157-160-180—200 - 220 — 225245
{
250
{
0

If we continue in this way, each element will go to zero
after the second pass.

00101000
10010100
10000010

. 01t 1o00001

RN"11 0000010
01001001
00101000
0001011 0)gg

The minimal polynomial is x?. The transition length is 2
and the cycle length is 0. Also, the attractive points are 0
and all configurations are basins of 0.

The characteristic polynomial is x. If, we examine the

10-30-35-55-75-95-98—118-140—152 ~165—177 — 205 217 — 22569} Of our matrix above, we obtained as follows:

\
175
\
0
11-31-34-54-74-91-99-119-141-153-164-176-204 - 216 - 229 - 241
¥
187
¥
0

K ={(10000110),(00010100), (01101000}, (00101001)}

.If, we obtain the elements of the vector space from here,
we have obtaned a result as follows.

00000000, 100001.10(134),00010100( 20), 01101000(104),

00101001(41),10010010(146),11101110(238) 10101111(L75),
| 01111100(124),01000001(65), 0011110161),11111010(250),

01010101(85),11000111(199),10111011(189),11010011(211)
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If we look carefully, we see that each of the elements
corresponds to a root.

CONCLUSION

First, the characteristic matrix of three-dimensional
cellular automata was obtained under the null boundary
condition. Then, the invertibility of our characteristic
matrix was examined with the help of a theorem. Thanks
to this theorem, we were able to obtain information about
the invertibility of very large matrices. We show that if
our characteristic matrix is invertible, its corresponding
cellular transformations are also reversible. Finally, we
gave some applications of three dimensional cellular
automata under null boundary conditions.
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