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ABSTRACT 

In this study, we obtain the characteristic matrices of three-dimensional cellular automata under the null boundary 
condition. We examine the inverse of characteristic matrices. We obtain a recurrence equation to determine under 
what conditions the matrix is invertible. Thanks to this equation, we can calculate the inverse of large-dimensional 
matrices. Finally, we give some applications of cellular automata. We find the minimal polynomial of the 
characteristic matrix. We find the cycle length and transition length of the characteristic matrix with the help of 
minimal polynomials. We also find the attractive points of the characteristic matrix. Finally, we draw the State-
Transition diagram with the results we obtained.  

Keywords: Cellular Automata, Characteristic Matrices, Reversibility  
 
  

Üç Boyutlu Hücresel Dönüşümlerin Terslenebilirliği ve Uygulaması 

 
ÖZ 

Bu çalışmada üç boyutlu hücresel dönüşümlerin karakteristik matrislerini sıfır sınır şartı altında elde ediyoruz. 
Karakteristik matrislerin tersini inceliyoruz. Matrisin hangi şartlarda tersinin olduğunu belirlemek için  rekürans 
denklem elde ediyoruz. Bu denklem sayesinde büyük boyutlu matrislerin tersini hesaplayabiliriz. Son olarak hücresel 
dönüşümlerin bazı uygulamalarını veriyoruz. Karakteristik matrisin minimal polinomunu buluyoruz. Minimal 
polinomlar yardımıyla karakteristik matrisin devir uzunluğu ve geçiş uzunluğunu buluyoruz. Ayrıca karakteristik 
matrisin çekici noktalarını buluyoruz. Son olarak elde ettiğimiz sonuçlar ile Durum–Geçiş diyagramını çiziyoruz. 

Anahtar Kelimeler: Hücresel Dönüşümler, Karakteristik Matrisler, Terslenebilirlik 

 
 
INTRODUCTION  
 
Cellular Automata (CA for short) was first used to obtain 
models in the fields of physics, biology and computer 
science. CA theory was first studied by Ulam and Von 
Neumann [1]. Later, many researchers became interested 
in studying CA to model the behavior of a complex 
system. Hedlund used CA systematically from a purely 
mathematical perspective [2]. Wolfram with the help of 
polynomial algebras [3], Pries to explain group properties 
based on a similar type of polynomial algebras [4] and 
Inokuchi et al. studied to observe the behavior of one-
dimensional CA produced by the 156 rule [5]. Since two 
dimensional CAs (2D CAs) have widespread 
applications in physics, biology, mathematics and other 
sciences, the study of these CAs has accelerated in many 
branches of science in the last twenty years. On the other 
hand, Packard and Wolfram started their studies on two 
dimensional CA (2D CA) by making some observations 
on two-dimensional CA based on 5-neighborhood CA 
[6]. Das et al. extended the characterization of one-

dimensional CA with the help of matrix algebras and 
introduced a new method for the theoretical analysis of 
linear CA [7]. They based the analysis of CA on 
polynomial algebra. At the same time, hybrid CAs were 
analyzed with this new method. Matrix characterization 
of CA was formulated to examine the resulting complex 
dynamic system. 
Khan et al. developed a solution to examine 2D CA linear 
transformations with nearest neighbors over the field ℤ2 
[8]. They examined the characterization of 2D CAs under 
periodic boundary conditions with the method and 
different rules they developed to separate two 
dimensional linear CAs. 
Choudhury et al. gave the most general characterization 
of a special hybrid transformation of 2D CAs over the 
field ℤ2 [9]. Additionally, in another study, Choudhury 
and Dihidar achieved the characterization of 2D CAs by 
extending the one-dimensional CA theory with the help 
of matrix algebra[10]. Siap et al. examined two-
dimensional cellular automata over the field ℤ3  with 
some special rules under periodic and null boundary 
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conditions[11]. Whether the rule (representative) 
matrices corresponding to the examined CAs are 
invertible has emerged as an important problem. If the 
rule matrix of CA has an inverse, then the CA 
corresponding to this matrix is said to be invertible. 
However, there have not been many studies on three-
dimensional cellular automata. Tsalides et al. conducted 
a study on three-dimensional cellular automata and their 
applications[12]. R.W.Gerling classified 3D CAs in his 
study[13].  
Jan Hemmingsson carried out studies on the quasi-
periodic behavior of 3D-CAs [14]. S.G.R. Brown and 
N.B. Bruce tried to model the free development of 3D 
CAs in their study[15]. E.G. Leubeck and M.C.M. De 
Gunst worked on the analysis of cellular deterioration 
using 3D CAs[16]. Alexandra Agapie gave a simple form 
of the constant distribution for 3D CA in a special 
case[17]. 
In this study, we will define the neighborhood states of 
3D CAs. We will examine the invertibility of the 
characteristic matrices obtained under the zero boundary 
condition. We will provide information about whether 
the cellular transformations corresponding to these 

characteristic matrices are reversible or not. We will 
make some applications of cellular automata.  
 
THREE DIMENSIONAL CELLULAR AUTOMATA 

First, the definition of 3D-CA over the field ℤ𝑃𝑃 will be 
given. Then, the characteristic matrices will be examined 
under the null boundary condition with a special rule and 
a general form will be obtained. Consider three 
dimensional ℤ3lattices and 𝜎𝜎:ℤ3 → ℤ𝑝𝑝element 𝛺𝛺 =
ℤ𝑝𝑝ℤ

3
configuration space. 𝜎𝜎𝑛𝑛 is defined by the value 

of  𝜎𝜎 at a 𝑛𝑛 ∈ ℤ3 point. Let 𝑢𝑢1,𝑢𝑢2, … , 𝑢𝑢𝑠𝑠 ∈ ℤ3 a 
finite set of different elements and 𝑓𝑓:ℤ𝑝𝑝𝑠𝑠 → ℤ𝑝𝑝 be 
given. (𝛺𝛺,𝐹𝐹) is defined as a pair of CA and a local rule 
𝑓𝑓, where 𝐹𝐹:𝛺𝛺 → 𝛺𝛺, (𝐹𝐹𝜎𝜎)𝑛𝑛 =
𝑓𝑓�𝜎𝜎𝑛𝑛+𝑢𝑢1 , … ,𝜎𝜎𝑛𝑛+𝑢𝑢𝑠𝑠�,𝑛𝑛 ∈ ℤ3 is the global transition 
function. 
Mathematically, the next state transition of the (𝑖𝑖, 𝑗𝑗,𝑘𝑘) 
cell can be represented as a function of the present states 
of the neighbor cells.

 
𝑥𝑥(𝑖𝑖,𝑗𝑗,𝑘𝑘)

(𝑡𝑡+1) = 𝑓𝑓(𝑥𝑥(𝑖𝑖−1,𝑗𝑗−1,𝑘𝑘−1)
(𝑡𝑡) , 𝑥𝑥(𝑖𝑖−1,𝑗𝑗,𝑘𝑘−1)

(𝑡𝑡) ,𝑥𝑥(𝑖𝑖−1,𝑗𝑗,𝑘𝑘+1)
(𝑡𝑡) ,𝑥𝑥(𝑖𝑖−1,𝑗𝑗−1,𝑘𝑘)

(𝑡𝑡) ,𝑥𝑥(𝑖𝑖−1,𝑗𝑗−1,𝑘𝑘+1)
(𝑡𝑡) , 

𝑥𝑥(𝑖𝑖−1,𝑗𝑗,𝑘𝑘)
(𝑡𝑡) , 𝑥𝑥(𝑖𝑖−1,𝑗𝑗+1,𝑘𝑘)

(𝑡𝑡) ,𝑥𝑥(𝑖𝑖−1,𝑗𝑗+1,𝑘𝑘−1)
(𝑡𝑡) , 𝑥𝑥(𝑖𝑖−1,𝑗𝑗+1,𝑘𝑘+1)

(𝑡𝑡) ,𝑥𝑥(𝑖𝑖,𝑗𝑗−1,𝑘𝑘−1)
(𝑡𝑡) , 

𝑥𝑥
(𝑖𝑖,𝑗𝑗,𝑘𝑘−1)𝑥𝑥(𝑖𝑖,𝑗𝑗,𝑘𝑘+1)

(𝑡𝑡) ,𝑥𝑥(𝑖𝑖,𝑗𝑗−1,𝑘𝑘)
(𝑡𝑡) ,𝑥𝑥(𝑖𝑖,𝑗𝑗−1,𝑘𝑘+1)

(𝑡𝑡) ,𝑥𝑥(𝑖𝑖,𝑗𝑗,𝑘𝑘)
(𝑡𝑡) ,

(𝑡𝑡) 𝑥𝑥(𝑖𝑖,𝑗𝑗+1,𝑘𝑘)
(𝑡𝑡) , 𝑥𝑥(𝑖𝑖,𝑗𝑗+1,𝑘𝑘−1)

(𝑡𝑡) , 𝑥𝑥(𝑖𝑖,𝑗𝑗+1,𝑘𝑘+1)
(𝑡𝑡) , 𝑥𝑥(𝑖𝑖+1,𝑗𝑗−1,𝑘𝑘−1)

(𝑡𝑡)  

𝑥𝑥(𝑖𝑖+1,𝑗𝑗,𝑘𝑘−1)
(𝑡𝑡) ,𝑥𝑥(𝑖𝑖+1,𝑗𝑗,𝑘𝑘+1),

(𝑡𝑡) 𝑥𝑥(𝑖𝑖+1,𝑗𝑗−1,𝑘𝑘)
(𝑡𝑡) ,𝑥𝑥(𝑖𝑖+1,𝑗𝑗−1,𝑘𝑘+1)

(𝑡𝑡) , 𝑥𝑥(𝑖𝑖+1,𝑗𝑗,𝑘𝑘)
(𝑡𝑡) ,𝑥𝑥(𝑖𝑖+1,𝑗𝑗+1,𝑘𝑘)

(𝑡𝑡) , 

𝑥𝑥(𝑖𝑖+1,𝑗𝑗+1,𝑘𝑘−1)
(𝑡𝑡) , 𝑥𝑥(𝑖𝑖+1,𝑗𝑗+1,𝑘𝑘+1)

(𝑡𝑡) ) 

= 𝑎𝑎0. 𝑥𝑥(𝑖𝑖−1,𝑗𝑗−1,𝑘𝑘−1)
(𝑡𝑡+1) + 𝑎𝑎1.𝑥𝑥(𝑖𝑖−1,𝑗𝑗,𝑘𝑘−1)

(𝑡𝑡+1) + 𝑎𝑎2. 𝑥𝑥(𝑖𝑖−1,𝑗𝑗,𝑘𝑘+1) 
(𝑡𝑡+1) + 𝑎𝑎3. 𝑥𝑥(𝑖𝑖−1,𝑗𝑗−1,𝑘𝑘)

(𝑡𝑡+1) + 

𝑎𝑎4. 𝑥𝑥(𝑖𝑖−1,𝑗𝑗−1,𝑘𝑘+1)
(𝑡𝑡+1) + 𝑎𝑎5. 𝑥𝑥(𝑖𝑖−1,𝑗𝑗,𝑘𝑘)

(𝑡𝑡+1) + 𝑎𝑎6. 𝑥𝑥(𝑖𝑖−1,𝑗𝑗+1,𝑘𝑘)
(𝑡𝑡+1) +  𝑎𝑎7. 𝑥𝑥(𝑖𝑖−1,𝑗𝑗+1,𝑘𝑘−1)

(𝑡𝑡+1) + 

𝑎𝑎8. 𝑥𝑥(𝑖𝑖−1,𝑗𝑗+1,𝑘𝑘+1)
(𝑡𝑡+1) + 𝑎𝑎9. 𝑥𝑥(𝑖𝑖,𝑗𝑗−1,𝑘𝑘−1)

(𝑡𝑡+1) + 𝑎𝑎10. 𝑥𝑥(𝑖𝑖,𝑗𝑗,𝑘𝑘−1)
(𝑡𝑡+1)  

+𝑎𝑎11.𝑥𝑥(𝑖𝑖,𝑗𝑗,𝑘𝑘+1)
(𝑡𝑡+1) + 𝑎𝑎12. 𝑥𝑥(𝑖𝑖,𝑗𝑗−1,𝑘𝑘)

(𝑡𝑡+1) + 𝑎𝑎13. 𝑥𝑥(𝑖𝑖,𝑗𝑗−1,𝑘𝑘+1)
(𝑡𝑡+1) + 𝑎𝑎14.𝑥𝑥(𝑖𝑖,𝑗𝑗,𝑘𝑘)

(𝑡𝑡+1) + 

𝑎𝑎15. 𝑥𝑥(𝑖𝑖,𝑗𝑗+1,𝑘𝑘)
(𝑡𝑡+1) + 𝑎𝑎16. 𝑥𝑥(𝑖𝑖,𝑗𝑗+1,𝑘𝑘−1)

(𝑡𝑡+1) + 𝑎𝑎17. 𝑥𝑥(𝑖𝑖,𝑗𝑗+1,𝑘𝑘+1)
(𝑡𝑡+1) + 

𝑎𝑎18. 𝑥𝑥(𝑖𝑖+1,𝑗𝑗−1,𝑘𝑘−1)
(𝑡𝑡+1) + 𝑎𝑎19. 𝑥𝑥(𝑖𝑖+1,𝑗𝑗,𝑘𝑘−1) 

(𝑡𝑡+1) + 𝑎𝑎20. 𝑥𝑥(𝑖𝑖+1,𝑗𝑗,𝑘𝑘+1)
(𝑡𝑡+1) + 𝑎𝑎21. 𝑥𝑥(𝑖𝑖+1,𝑗𝑗−1,𝑘𝑘)

(𝑡𝑡+1) + 

𝑎𝑎22. 𝑥𝑥(𝑖𝑖+1,𝑗𝑗−1,𝑘𝑘+1)
(𝑡𝑡+1) + 𝑎𝑎23. 𝑥𝑥(𝑖𝑖+1,𝑗𝑗,𝑘𝑘)

(𝑡𝑡+1) + 𝑎𝑎24. 𝑥𝑥(𝑖𝑖+1,𝑗𝑗+1,𝑘𝑘)
(𝑡𝑡+1) + 𝑎𝑎25. 𝑥𝑥(𝑖𝑖+1,𝑗𝑗+1,𝑘𝑘−1)

(𝑡𝑡+1) + 

𝑎𝑎26. 𝑥𝑥(𝑖𝑖+1,𝑗𝑗+1,𝑘𝑘+1)
(𝑡𝑡+1) mod 𝑝𝑝𝑎𝑎0,𝑎𝑎1,𝑎𝑎2, . . . ,𝑎𝑎26 ∈ ℤ𝑝𝑝 − {0}                              (1) 

 

In this paper, we characterize the 3D NBCA determined 
according to local rules. We can use the following local 
rule to characterize NBCA. First, let's give our specially 
chosen local rule. 
 

𝑥𝑥(𝑖𝑖,𝑗𝑗,𝑘𝑘)
(𝑡𝑡+1) = 𝑔𝑔. 𝑥𝑥(𝑖𝑖,𝑗𝑗,𝑘𝑘+1)

(𝑡𝑡+1) + 𝑟𝑟. 𝑥𝑥(𝑖𝑖,𝑗𝑗+1,𝑘𝑘)
(𝑡𝑡+1) + 

 
𝑢𝑢. 𝑥𝑥(𝑖𝑖,𝑗𝑗−1,𝑘𝑘)

(𝑡𝑡+1) + 𝑤𝑤. 𝑥𝑥(𝑖𝑖,𝑗𝑗,𝑘𝑘−1)
(𝑡𝑡+1)  + 𝑦𝑦. 𝑥𝑥(𝑖𝑖−1,𝑗𝑗,𝑘𝑘)

(𝑡𝑡+1)

+ 𝑧𝑧. 𝑥𝑥(𝑖𝑖+1,𝑗𝑗,𝑘𝑘)
(𝑡𝑡+1)  mod 𝑝𝑝  

�𝑔𝑔, 𝑟𝑟,𝑢𝑢,𝑤𝑤,𝑦𝑦, 𝑧𝑧 ∈ ℤ𝑝𝑝 − {0}�             (2) 
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There's the small matter of what the neighborhood of the 
cells at the other end of the cage should be. In most cases, 
we take the lattice to be large enough so that these cells 
are ignored and the lattice can be considered virtually 
infinite. However, in some cases, the extent of the lattice 
may be finite and there are various types of boundary 
conditions, but we will give only one of them. is 
expressed as follows. 
A null boundary CA (NBCA) is one in which the extreme 
cells are connected to logic 0-state. If we characterize the 
3D NBCA with the local rules in Eq. (2) we have 
obtained the rule matrix as follows: 
 

( ) ( )3

n n n n n n n

n n n n n n n

n n n n n n n

n n n n n n n
RN mns mns

n n n n n n n

n n n n n n n

n n n n n n n mns mns

K Z O O O O O
B K Z O O O O
O B K Z O O O
O O B K O O O

T

O O O O K Z O
O O O O B K Z
O O O O O B K

×

×

 
 
 
 
 
 =  
 
 
 
  
 









       







, , ,n n n nK Z B O  are n n×  block matrices where 
n ms= .  The submatrices of the rule matrix are as 
follows:

 

 

( )
( )

( )

( )
( )

, .
. , .

. ,

, .
. ,

s s s s s

s s s s s

s s s s s
n

s s s s s

s s s s s ms ms

S u r w I O O O
g I S u r w I O O
O g I S u r O O

K

O O O S u r w I
O O O g I S u r

×

 
 
 
 

=  
 
 
  
 







     





 

.
.

.

.
.

s s s s s

s s s s s

s s s s s
n

s s s s s

s s s s s ms ms

y I O O O O
O y I O O O
O O y I O O

Z

O O O y I O
O O O O y I

×

 
 
 
 

=  
 
 
  
 







     





  

.
.

.

.
.

s s s s s

s s s s s

s s s s s
n

s s s s s

s s s s s ms ms

z I O O O O
O z I O O O
O O z I O O

B

O O O z I O
O O O O z I

×

 
 
 
 

=  
 
 
  
 







     





 

s s s s s

s s s s s

s s s s s
n

s s s s s

s s s s s ms ms

O O O O O
O O O O O
O O O O O

O

O O O O O
O O O O O

×

 
 
 
 

=  
 
 
  
 







     





 

sI is s s×  an identity matrix. sO is s s×  zero matrix.  

( ),sS u r is as follows: 

 

( )

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0 0

,

0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

s

r
u r

u r
u

S u r

r
u r

u s s

 
 
 
 
 
 =  
 
 
 
  
  ×









       







Now, we give an example. We take 3 .m n s= = = we 
take into account a configuration of size 3 3 3 .× ×  we 
study 3D-CA under null boundary conditions. we apply 

the local rule to all cells of [ ]3 3 3

tX
× ×

. We obtain the 

characteristic matrix [ ]27 27RNT
×

 as follows: 

( )
( )

( )
( )

( )
( )

( )

, . .3 3 3 3 3 3 3 3 3
. , . .3 3 3 3 3 3 3 3 3

. , .3 3 3 3 3 3 3 3 3
. , . .3 3 3 3 3 3 3 3 3

. . , . .3 3 3 3 3 3 3 3 3
. . , .3 3 3 3 3 3 3 3 3

. , .3 3 3 3 3 3 3 3 3
.3 3 3 3

S u r w I O y I O O O O O

g I S u r w I O y I O O O O

O g I S u r O O y I O O O

z I O O S u r w I O y I O O

O z I O g I S u r w I O y I ORN
O O z I O g I S u r O O y I

O O O z I O O S u r w I O

O O O O z I

T =

( )
( )

. , .3 3 3 3 3
. . ,3 3 3 3 3 3 3 3 3 27 27

O g I S u r w I

O O O O O z I O g I S u r
×

 
 
 
 
 
 
 
 
 
 

 

Now, we write the submatrices of our characteristic 
matrix.  
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( )3

3 3

0 0
, 0

0 0

r
S u r u r

u
×

 
 =  
 
 

 

 

( )
( )

( )

3 3 3

3 3 3 3

3 3 3

, .
. , .

. ,

S u r w I O
K g I S u r w I

O g I S u r

 
 =  
 
 

 

 

3 3 3

3 3 3 3

3 3 3

.
.

.

y I O O
Z O y I O

O O y I

 
 =  
 
 

 

 

3 3 3

3 3 3 3

3 3 3

.
.

.

f I O O
B O f I O

O O f I

 
 =  
 
 

 

Finally, we have obtained our block matrix as follows: 

3 3 3

3 3 3

3 3 3 27 27

.
. .

.
RN

K Z I O
T B I K Z I

O B I K
×

 
 =  
 
 

. 

 
REVERSIBILITY 
 
Reversibility of three dimensional cellular automata is a 
very difficult problem. If our characteristic matrix is 
invertible, we say that cellular automata is reversible. K. 
Morita studied the features of reversibility of cellular 
automata[18]. Z. Çınkır et al. were interested in the 
problem of reversibility of cellular automata over the 
field mZ  under periodic boundary conditions [19]. H. 
Akın et al.  were interested in the problem of reversibility 
of cellular automata under reflective boundary conditions 
over the field  mZ [20].  Chang et al. calculated 
reversibility of multi dimensional cellular automata [21]. 
Now, we will give a very important algorithm to 
determine the reversibility of 3D-CA under the null 
boundary conditions. 
 
Theorem: For , , 2 ( , , )n m s n m s +≥ ∈Z , 

characteristic matrix  ( )RN mns mns
T

×
 be defined as in Eq. 

( )3 . The rank of Eq. ( )3  2 1( 1) ( ) .nn ms rank λ −− +

where 2 1nλ −  satisfies the following recurrence relation: 

1 0( )  , ( )S K S Bλ λ= =  
1

2 1 2 3 2 42 , ( ) ( ) ( ) ,n n nn S Z K S Sλ λ λ−
− − −≥ = − +

1
2 4 2 53 , ( ) =   ( )   n nn S Z B Sλ λ−

− −≥ −  

Proof: we will apply the induction method over 2.n ≥
For 2 ,n = we have obtained a block matrix as  follows. 
 

 .
K ZI

T
BI K

 
=  
 

  

 
Now, if we want to calculate the rank of our block matrix, 

1  R and 2R   are the rows of the block matrices. Multiply 

the first row by 1K Z −−  and add it to the second row. 
We have obtained the block matrix  as follows: 
 

( )1 2
3

 .
K ZI

Z K B S Oλ−

 
 − + =   
 
In this case rank of  T depends on 

( )-1 2
3-Z +B= S  .K λ For 3 ,n = we have obtained  the 

block matrix  as follows: 
 

 
K ZI O

T BI K ZI
O BI K

 
 =  
 
 

. 

 
Multiply the second row by 1K Z −−  and add it to the 
third row. We have obtained the block matrix as follows: 
 

( ) ( )1 -1 2
2 3

 
S -Z +B= S  

K ZI O
FI K ZI

Z BK K Oλ λ−

 
 
 
 − = 

 

 
If, we multiply the first row of the new matrix  by 

( )1
2Z Sλ−− and add it to the third row. we have the 

following block matrix. 
 

( ) ( ) ( )1
3 2 5

 
S  

K ZI O
FI K ZI

Z S K S O Oλ λ λ−

 
 
 
 − + = 

. 

 
In this case rank of  T depends on 

( ) ( ) ( )1
3 2 5SZ S K Sλ λ λ−− + = .The ( )1 n th−  

row of  T is found. If we multiply the ( )1 n th−  row 

by ( )1
1Z Sλ−−  and add it to the last row, the last row is 

obtained as ( ) ( )( )2 30,0, , , ,0  .S Sλ λ   Now, if we 

multiply the ( )2 n th−  row of the new matrix by 

( )1
3Z Sλ−−  and add it to the last row.      
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 In this manner, the last row is obtained as 
( ) ( )( )4 50,0, , , ,0,0  .S Sλ λ If we multiply the 

second row of the new matrix  by ( )1
2 5nZ Sλ−

−−  and 
add it to the last row, the last row is obtained as 

( ) ( )( )2n-4 , 2 3 ,0,0, ,0  .S n Sλ λ −  Finally, if we 
multiply the first row of the new matrix  by 

( )1
2 3nE Sλ−

−−  and add it to the last row, the last row is 

obtained as ( )( )2n-1 ,0,0,0, ,0  .Sλ  The new matrix 
is as follows: 
 

( )

( )2 1

n n n n n n n

n n n n n n n

n n n n n n n

n n n n n n n
RN mns mns

n n n n n n n

n n n n n n n

n n n n n n n mns mns

K Z O O O O O
B K Z O O O O
O B K Z O O O
O O B K O O O

T

O O O O K Z O
O O O O B K Z

S O O O O O Oλ

×

− ×

 
 
 
 
 
 =  
 
 
 
  
 









       







 

The proof is completed. 
 
Example 1: we take 2m = , 2n =  and 2s = . Let's 
calculate the rank of the characteristic matrix 
corresponding to our local rule under the null boundary 
condition. Firstly, we write our characteristic matrix as 
follows: 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 8 8

r w y
u w y
g r y

g u y
TRN z r w

z u w
z g r

z g u

=

×

 
 
 
 
 
 
 
 
 
 
  
 

   

 

( )
( )

( )
( )

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2 8 8

, . .
. , .
. , .

. . ,

S u r w I y I O
g I S u r O y I
z I O S u r w I
O z I g I S u r

×

 
 
 =  
  
 

If we want to write the above characteristic matrix as a 
block matrix, 

( )
( )

2 2
2

2 2

, .
. ,

S u r w I
K

w I S u r
 

=  
 

, 2 2
2

2 2

.
.

y I O
Z

O y I
 

=  
 

2 2
2

2 2

.
.

z I O
B

O z I
 

=  
 

. 

Now let's write our matrix as a block matrix,

2 2

2 2
RN

K Z
T

B K
 

=  
 

. 

İf we take 1 ,w 2g r u y z= = = = = = ,
( )3, , , , ,g r u w y z∈Z  
we obtained the equation as follows:

1
2 1 2 3 2 4

1
3 1 0

1 2

1 0

2 , ( ) ( ) ( ) ,
          ( ) ( ) ( ) 
                    =

( )  , ( )
                    
          

n n nn S Z K S S
S Z K S S

Z K B
S K S B

λ λ λ

λ λ λ

λ λ

−
− − −

−

−

≥ = − +

= − +

− +
= =

  

( ) 2 18 8

3

( 1) ( )

            (2 1)2.2 ( )
            4 4 8

RN nT n ms rank

rank

λ

λ
−×

= − +

= − +
= + =

 

The rank of an invertible matrix is equal to the order of 
the matrix, Thus characteristic matrix is invertible. So 
CA which corresponding to the characteristic matrix  is 
reversible. If we take 1g r u w y z= = = = = = , 
We obtained the equation as follows: 
( ) 2 18 8

3

( 1) ( )

            (2 1)2.2 ( )
            4 2 6

RN nT n ms rank

rank

λ

λ
−×

= − +

= − +
= + =

 

 
 Characteristic matric hasn’t got full rank. So it isn’t 
invertible. Thus CA which corresponding to the 
characteristic matrix  isn’t reversible. 
 
APPLICATION 
 
 Now, we give an application of cellular automata.we 
find a minimal polynomial of T  transition matrix. We 
obtain cycle and transient length of T  transition matrix 
with the help of minimal polynomial. We will also 
determine the attractor points of our T transition matrix. 
Let's provide  some definitions. 
 
Definition 1 Let x be the initial configuration. For 
t N∈ , 0

t
tX T X= . If there is no t N∈  such that 

0 0tT X = , there will be 0 0
i jT X T X=  for some 

number ,i j since the number of all possible 
configurations is finite.  
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( ) ( ), ,  or , i j k l i k i k j l< ⇔ < = <  , then there is 

the smallest pair of numbers ( ),t c  that satisfy the 

condition 0 0
t t cT X T X+= .The number t N∈  in the 

expression 0 0
t t cT X T X+=  is called the transition 

length on the 0X   configuration, and the number c N∈  

is called the cycle length on the 0X  configuration. 
 
Definition 2 The configuration that returns to itself in a 
certain time step is called an attractor point. In other 
words, in a cellular automata configuration tree, it is the 
configuration that can be seen as the root of the tree. 
 
Definition 3 After starting with the initial configuration, 
the configurations reached until returning to the 
configuration itself in a certain time step are called the 
basin of the last obtained configuration, and this diagram 
obtained during this period is called the State-Transition 
Diagram. 
 
Example2: If we take 2m = , 2n =  and 2s = .  we 
write our characteristic matrix as follows: 
 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 8 8

r w y
u w y
g r y

g u y
TRN z r w

z u w
z g r

z g u

=

×

 
 
 
 
 
 
 
 
 
 
  
 

 

 
If we take 1 and 0g w u y z r= = = = = = ,
( )3, , , , ,g r u w y z∈Z , 
we have obtained the characteristic matrix as follows: 
 

0 0 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 0 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 0
0 0 0 1 0 1 1 0 8 8

TRN =

×

 
 
 
 
 
 
 
 
 
 
  
 

 

 

 Let's try to find the transition length, cycle length and 
basin of the attractive points, if any, by arbitrarily 
choosing any of the 82 256=  vectors over the feld 

2Z  . Let's choose an arbitrary vector as follows. 
 

8 1

0
0
0
0

1
0
0
0
1

F

×

 
 
 
 
 
 = → 
 
 
 
 
  

 

 

8 1 8 1

0 0 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 0 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 0
0 0 0 1 0 1 1 0 8 8

0 0
0 0
0 0
0 1

. . 20
0 0
0 1
0 0
1 0

RNT F

× ××

    
     
     
     
     
     = = →     
     
     
     
               

 

8 1 8 1

0 0 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 0 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 0
0 0 0 1 0 1 1 0 8 8

0 0
0 0
0 0
1 0

. . 0
0 0
1 1
0 0
0 0

RNT F

× ××

    
     
     
     
     
     = = →     
     
     
     
               

 

 If we continue similarly, let's write some results as 
follows: 
 
State-Transition Diagram  

 
1 21 40 60 64 84 105 125 135 147 174 186 198 210 239 251
                                                  
                                                   20
                                        

− − − − − − − − − − − − − − −

↓

                           
                                                   0

↓
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2 22 43 63 67 87 106 126 132 144 173 185 197 209 236 248
                                                  
                                                   41
                                        

− − − − − − − − − − − − − − −

↓

                           
                                                   0

↓

 

3 23 42 62 66 86 107 127 133 145 172 184 196 208 237 249
                                                  
                                                   61
                                        

− − − − − − − − − − − − − − −

↓

                           
                                                   0

↓

 

4 16 45 57 69 81 108 120 130 150 171 191 195 215 234 254
                                                  
                                                   65
                                        

− − − − − − − − − − − − − − −

↓

                           
                                                   0

↓

 

 
5 17 44 56 68 80 109 121 131 151 170 190 194 214 235 255
                                                  
                                                   85
                                        

− − − − − − − − − − − − − − −

↓

                           
                                                   0

↓

 

 
6 18 47 59 71 83 110 122 128 148 169 189 193 213 232 252
                                                  
                                                   104
                                       

− − − − − − − − − − − − − − −

↓

                            
                                                   0

↓

 

7 19 46 58 70 82 111 123 129 149 168 188 192 212 233 253
                                                  
                                                   124
                                       

− − − − − − − − − − − − − − −

↓

                            
                                                   0

↓

 

8 28 33 53 73 93 96 116 142 154 167 179 207 219 230 242
                                                  
                                                   134
                                        

− − − − − − − − − − − − − − −

↓

                           
                                                   0

↓

 

 
9 29 32 52 72 92 97 117 143 155 166 178 198 206 218 231 243
                                                  
                                                  146
                                     

− − − − − − − − − − − − − − − −

↓

                              
                                                   0

↓

 

 
10 30 35 55 75 95 98 118 140 152 165 177 205 217 228 240
                                                  
                                                  175
                                        

− − − − − − − − − − − − − − −

↓

                           
                                                   0

↓

 

11 31 34 54 74 91 99 119 141 153 164 176 204 216 229 241
                                                  
                                                  187
                                        

− − − − − − − − − − − − − − −

↓

                           
                                                   0

↓

 

12 24 37 49 77 89 100 112 138 158 163 183 203 223 226 246
                                                  
                                                  199
                                       

− − − − − − − − − − − − − − −

↓

                            
                                                   0

↓

 

13 25 36 48 76 88 101 113 139 159 162 182 202 222 227 247
                                                  
                                                  211
                                       

− − − − − − − − − − − − − − −

↓

                            
                                                   0

↓

 

 
14 26 39 51 79 91 102 114 136 156 161 181 201 221 224 244 251
                                                  
                                                  238
                                   

− − − − − − − − − − − − − − − −

↓

                                
                                                   0

↓

 

 
15 27 38 50 78 90 103 115 137 157 160 180 200 220 225 245
                                                  
                                                  250
                                       

− − − − − − − − − − − − − − −

↓

                            
                                                   0

↓

If  we continue in this way, each element will go to zero 

after the second pass. 

 

0 0 1 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 0 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 0
0 0 0 1 0 1 1 0 8 8

TRN =

×

 
 
 
 
 
 
 
 
 
 
  
 

 

The minimal polynomial is 8x . The transition length is 2 
and the cycle length is 0. Also, the attractive points are 0 
and all configurations are basins of 0. 
 
The characteristic polynomial is 8x . If, we examine the 
kernel of our matrix above, we obtained as follows: 
 

( ) ( ) ( ) ( ){ }10000110 , 00010100 , 01101000 , 00101001K =
.If, we obtain the elements of the vector space from here, 
we have obtaned a result as follows.  
 

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

00000000,10000110 134 ,00010100 20 ,01101000 104 ,

00101001 41 ,10010010 146 ,11101110 238 ,10101111 175 ,

01111100 124 ,01000001 65 ,00111101 61 ,11111010 250 ,

01010101 85 ,11000111 199 ,10111011 189 ,11010011 211

V

 
 
 =  
 
 
 

  



MAUN Fen Bil. Dergi., 12:1, 31-38 Araştırma Makalesi/ Research Article 
MAUN J. of Sci., 12:1, 31-38                                DOI: 10.18586/msufbd.1462229 

 

38 
 

 
If we look carefully, we see that each of the elements 
corresponds to a root. 
 
CONCLUSION 
 
First, the characteristic matrix of three-dimensional 
cellular automata was obtained under the null boundary 
condition. Then, the invertibility of our characteristic 
matrix was examined with the help of a theorem. Thanks 
to this theorem, we were able to obtain information about 
the invertibility of very large matrices. We show that if 
our characteristic matrix is invertible, its corresponding 
cellular transformations are also reversible. Finally, we 
gave some applications of three dimensional cellular 
automata under null boundary conditions.  
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