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Abstract 

A neural network model for individual tree detection was developed based on the YOLOv4 architecture, which 
underwent additional preprocessing and postprocessing steps. The preprocessing step involved expanding the 
dataset by randomly cutting fragments from images, calculating anchor box sizes using the K-means clustering 
algorithm, and discarding anchor boxes that were too small a priori. The existing post-processing block of the 
YOLO architecture was modified by giving more weight to false positives in the error function and using the non-
maximum suppression algorithm. Baseline neural networks from the YOLOv4 and YOLOv5 architectures, each 
in two versions (pre-trained and not pre-trained on the MS COCO dataset), were used for comparison without any 
additional modifications. In the overgrown experimental field, multi-season aerial copter surveys and ground 
counts were conducted on several sample plots to gather data. Comparison of multi-season aerial photographs with 
ground-count data showed that the best images in terms of the percentage of visually identifiable trees were those 
taken during the snowy season and when there was no foliage. Using these images and some additional images, 
we manually created a dataset on which we trained and tested neural network models. The model we developed 
showed significantly better results (2 to 10 times better) on the mAP 0.5 metric compared to the alternatives we 
considered.  

Keywords: Individual tree detection, convolutional neural networks, YOLO, pre- and post-processing of data, 
aerial photography, young forest stands.

1. Introduction 
Traditionally, direct ground-based measurement 

methods have been used for this purpose. However, these 
methods are associated with several logistical challenges 
(Li et al., 2023) and require significant labor (Condit, 
1998; Gardner et al., 2008), as well as time costs (Luoma 
et al., 2017). Alternatively, remote sensing methods are 
actively used, such as satellite remote sensing (Bartalev 
et al., 2016; Aleksanin et al., 2019; Ershov et al., 2020; 
Schepaschenko et al., 2021; Zhang Y. et al., 2021) and 
unmanned aerial vehicle (UAV) remote sensing (Bennett 
et al., 2020; Neuville et al., 2021; Ivanova et al., 2021a; 
Ivanova et al., 2021b). Satellite data are often used for 
global and regional studies, as they are readily available. 
This saves scientists from having to create images 
independently. However, they have some limitations, 
such as a certain resolution and satellite revisit time (Al-
Wassai and Kalyankar, 2013) and the presence of 
atmospheric interference (Kondratyev et al., 2013). The 
use of the PCA (radar aperture synthesis) method solves 
the problem of meteorological conditions, but it faces its 
own challenges. One of these challenges is the limited  

 
range-dependent sensitivity (Tanase et al., 2019). 
Another challenge is the decreasing sensitivity as we 
reach the "saturation" point (Joshi et al., 2017; Khati and 
Singh, 2022). 

 The use of unmanned aerial vehicles can 
significantly alleviate these limitations (Zhang et al., 
2021). UAV data has a much higher resolution, up to 1 
centimeter per pixel, which allows its use in the study of 
young forests on a local scale, including the development 
of methods for detecting individual trees. 

The detection of individual trees within a forest 
provides opportunities for obtaining valuable data. 
Researchers from Japan (Fujimoto et al., 2019) are using 
single-tree detection technologies to develop a forestry 
decision-support system that accounts for forest carbon 
sequestration. Detection of individual crowns has been 
used in studies on biodiversity (Saarinen et al., 2018), 
forest health (Shendryk et al., 2016) and forest cover 
closure (Brūmelis et al., 2020). This method also finds 
its application in forest management (Koch et al., 2006; 
Berland et al., 2017), modeling ecosystem services 
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(Livesley et al., 2016), supply chain planning (Sparks et 
al., 2022) and reforestation projects (Pouliot et al., 2002). 

Many studies that focus on tree detection currently 
use lidar data to generate dense point clouds (Wallace et 
al., 2016; Wu et al., 2016; Ayrey et al., 2017; Maschler et 
al., 2018). Other studies utilize high-resolution optical 
imagery to process images. Approaches based on the 
construction of dense point clouds using 
photogrammetry (Bohlin et al., 2012; Vastaranta et al., 
2013; Rahlf et al., 2014; Holopainen et al., 2015; Puliti 
et al., 2017) as well as image processing algorithms 
(watershed algorithm, template matching) (Pollock, 
1996a; Brandtberg and Walter, 1998; Pouliot et al., 2002) 
can be used. Algorithms based on machine learning (k-
means algorithm, support vector machine, decision tree, 
random forest) (Malek et al., 2014; Chemura et al., 2015; 
Li et al., 2015), and deep learning algorithms 
(convolution neural network) (Secord and Zakhor, 2007; 
Cheang et al., 2017; Rizeei et al., 2018) have also been 
used. A number of studies have shown that the use of 
convolutional neural networks to solve the problem of 
tree detection yields the best results (Li et al., 2018; Sun 
et al., 2022).  

One of the most popular solutions for object detection 
based on convolutional neural networks is the YOLO 
(You Only Look Once) model, which has been developed 
by Redmon et al. (Redmon et al., 2016) and has since 
been updated to various versions. YOLOv2 was released 
and outperformed all other neural networks in terms of 
accuracy and runtime efficiency (Redmon and Farhadi, 
2017). YOLOv4 further improved upon YOLOv2 and 
outperformed other models such as SSD513, 
FPN+Faster R-CNN, and RetinaNet-101-800, both in 
terms of mAP-50 and execution speed (Bochkovsky et 
al., 2020), when tested on the MS COCO dataset (Lin et 
al., 2015). YOLOv5 maintains the high performance of 
YOLOv4 while also improving speed and memory 
efficiency (Nelson and Solawetz, 2024). 

To improve the performance of convolutional neural 
networks, various image preprocessing and post-
processing techniques are employed. One of the most 
used methods of data pre-processing is augmentation. 
This involves creating additional images from a given set 
of images. These new images can be created by taking 
fragments of existing images, rearranging parts of the 
images, rotating them, or modifying the color and 
brightness. Augmentation has been shown to 
significantly enhance the performance of neural 
networks by alleviating the limitations imposed by small 
and non-diverse datasets (Mumuni and Mumuni, 2022). 
Some of the post-processing techniques include non-
maximum suppression (Song et al., 2019), 
morphological operations (Li et al., 2019), thresholding 

(Fang et al., 2023), and multi-scale feature extraction 
(Shen et al., 2022). Majority voting (Jhang, 2020) is also 
used in some cases. Various post-processing techniques 
can improve the performance of neural networks for 
detection, classification, and segmentation tasks (Salvi et 
al., 2021).  

 It should be noted that, in most cases, tree detection 
is performed on summer aerial images. The formed 
crowns of trees have different colors, textures, and 
geometric shapes, depending on the species. Using these 
differences, algorithms have been developed to detect 
and classify different tree species, mainly for 
biodiversity studies (Pollock, 1996b; Brandtberg and 
Walter, 1998; Pouliot et al., 2002). However, several 
detection and classification studies have utilized winter 
images, where the contrast between forest vegetation and 
the ground surface is enhanced due to the presence of 
snow. For instance, a study by Kuzmin et al. (Kuzmin et 
al., 2016) identified pine, spruce, and birch trees in high-
resolution winter aerial imagery using a linear 
discriminant analysis of segments created through 
object-oriented image processing. Winter satellite 
images were used in (Baumann et al., 2012) to 
differentiate between forested and non-forest areas. In 
quantifying bamboo undergrowth in a mixed forest 
(Wang et al., 2009) the use of winter imagery achieved 
an accuracy of 89% in detecting it. However, the 
possibility of automatically detecting individual trees in 
young deciduous forests with snow cover remains 
unexplored.  

In this study, we tested two hypotheses: (1) aerial 
images of young forests during the snowy season can be 
used to detect trees of all size classes, including those 
that form subgrade layers; (2) the accuracy of detecting 
individual trees in aerial images can be enhanced by 
adding pre- and post-processing steps to the neural 
network model.  

For this purpose, we tested the detection of individual 
trees in winter-spring aerial images of young forests on 
fallow land using five neural networks. These included 
the basic YOLOv4 and YOLOv5 models, each in two 
variations, with and without pre-training on the MS-
COCO dataset (Lin et al., 2015), as well as a developed 
model based on YOLOv4 that was modified during the 
stages of data pre- and post-processing.  

 
2. Materials and Methods 

The studies were conducted on the territory of the 
experimental field station of the Institute of Basic 
Biological Problems of the Russian Academy of 
Sciences. The coordinates of the study site center are 
54.832778 N, 37.570278 E (Pushchino, Moscow Region, 
Russia) (Figure 1). 
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Figure 1. The location of the overgrown experimental field where the measurements were taken (Google image source) 

 
The object is located in an area of broadleaf forests 

(Suslova, 2019). The process of soil formation occurs on 
the cover of loess-like rocks, which are represented by 
medium and heavy loams and light clays, with a 
predominance of the dusty fraction (Alifanov, 1995). The 
microrelief of the area is characterized by alternating 
furrows and linear hillocks. The soil is gray 
postagrogenic (Luvisol (Aric)). The re-establishment of 
forest vegetation occurred on the site, which previously 
had been used for potato gardens that were abandoned 
between 2003 and 2004. The forest stand is mainly 
composed of birch (Betula spp.) and common aspen 
(Populus tremula L.). There are also single clumps of 
goat willow (Salix caprea L.) and some individual 
common pine trees (Pinus sylvestris L.). The average 
height of the trees is around 10 meters. The average 
undergrowth is negligible, consisting of the same 
species. The spatial distribution of trees on the plot is 
non-uniform. Ribbon-shaped zones extending from 
north to south and irregularly-shaped glades that are not 
covered by forest or only covered by single trees, as well 
as open stands, can be distinguished. These structures 
may have been formed due to various anthropogenic 
influences, such as ribbon-shaped zones without trees 
that could have arisen at the site of former roads dividing 
cultivated areas, and glades and open stands due to spring 
grass fires (Khanina et al., 2018). It should also be noted 
that there is a close proximity to settlements, which 
determines the anthropogenic influence in the study area. 

Within the study area, eight temporary sample plots 
(TSPs) measuring 5 x 5 meters were laid out in the spring 
of 2022. The TSPs were oriented on the sides of the 
world, taking into account magnetic declination, and 
identifying signs were placed at their corners. At each 
TSP, a count of trees was conducted. This included 
species identification, measuring the trunk diameter at 
breast height, and assessing the vital status of the trees. 

The same study area was captured in its entirety using 
UAVs. The images were taken in March, July, October 
2022, and January and March 2023, using DJI Phantom 
IV Pro and DJI Mavic 2 quadcopters and Pix4Dcapture 

(Pix4D, Pix4Dcapture) and Ctrl+DJI (Pix4D, Ctrl+DJI) 
applications, over an area of 200×200 m, from a height 
of 40 m. The overlap between the images is 95%, and the 
direction of the shot is towards the nadir. The resolution 
of the images is 5742×3648 px. The diverse structure of 
plant growth allowed us to capture aerial images with 
various stand densities and tree arrangements. 

A comparison of various seasonal aerial photographs 
of TPSs was carried out by overlapping identification 
marks. Then, for each TPS, the centers of the trunk bases 
were manually counted in winter-spring images. The 
centers of the trunk base and crown, which were 
preserved with foliage, were counted in autumn images, 
and the visually distinguishable crowns of the trees were 
counted in summer images. 

The preparation of the dataset for training the neural 
network included manual processing of a photo array. 
After aerial photography, photos of young growths were 
supplemented with images of stands in winter taken from 
the internet. During processing, trees were distinguished 
in the photos by marking their bounding boxes, with the 
trunk and clearly visible branches forming the tree's 
crown. We selected and prepared 102 images, 40 of 
which were from our survey, and 62 were from the 
internet. The total number of trees selected was 7710. It 
should be noted that we took images of very sparse 
stands from the internet in order to improve the quality 
of delineation of individual trees in more closed stands. 
Thus, most of the identified trees belong to our study 
area. 

We have used the YOLOv4 architecture as a basis for 
the neural network we used. YOLO (You Only Look 
Once) is a family of neural networks that integrate a 
neural network framework with feature extraction, 
bounding box prediction, non-maximum suppression 
algorithm, and contextual reasoning (Redmon et al., 
2016). We optimized the neural network for images with 
a resolution of 608 x 608 pixels. We performed following 
data preprocessing: 

• The set of images was expanded by cutting 
random fragments from the original images using 
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the RandomCrop method from the 
albumentations package (Buslaev et al., 2020) for 
the Python language. 

• Using the K-means clustering algorithm, we 
calculated the sizes of anchor boxes used in the 
model. 

• Anchor boxes smaller than a certain size were 
deemed unsuitable, as they corresponded to 
shrubs and not trees. 

Changes were also made to the data post-processing 
block. Due to the complex fractal structure of tree 
crowns, the neural network selected multiple bounding 
rectangles for each tree. To minimize this effect, we 
redesigned the neural network's loss function and non-
maximum suppression algorithm. 

• The loss function has been rewritten to give 
higher values to false positives. 

• The following changes have been made to the 
Non-Maximum Suppression (NMS) algorithm: 
Bounding boxes with an area less than 80% of the 
area of the smallest anchor box have been 
removed; Bounding boxes that overlap 
significantly have been merged; Bounding boxes 
within other bounding boxes have been removed 
if their area is n times smaller than the outermost 
bounding box (n is a configurable 
hyperparameter). A genetic algorithm has been 
used to select the NMS hyperparameters. 

We used the standard metric, mAP 0.5, which is the 
mean AP (average precision) value for all images. This 
is calculated using an IoU (intersection over union) 
threshold of 0.5.  

 
𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
        (1) 

 
TP stands for the number of true positive detections, 

and FP stands for the number of false positives. A true 
positive is defined as a detection for which the IoU ⩾ 0.5, 
i.e., the area of intersection of the bounding rectangle 
selected by the human and drawn by the neural network 
is greater than or equal to half of the area of their union. 

To select the hyperparameters for the non-maximum 
suppression algorithm, we used a metric that is based on 
the relation ∑𝐼𝐼𝐼𝐼𝐼𝐼

𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝑒𝑒𝑒𝑒
 where ∑𝐼𝐼𝐼𝐼𝐼𝐼 - is the sum of all 

intersection-over-union values in the image.  The error 
rate, ercoef, is calculated as follows: 

 

𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝑒𝑒𝑒𝑒 = �
ℎ
𝑎𝑎

,𝑎𝑎 ⩾ ℎ
𝑎𝑎
ℎ

, ℎ > 𝑎𝑎
�            (2) 

where, h is the number of trees that a human expert 
identifies in the image and a is the number that a neural 
network identifies. 

For comparison, we also used neural networks based 
on the YOLOv4 and YOLOv5 architectures, both in two 
versions: pre-trained on the MS-COCO (Lin et al., 2015) 
dataset and without any additional training. In these 
cases, we did not make any additional changes to the 
neural network architecture or perform any additional 
pre- or post-processing on the data. 

Neural networks based on the YOLO architecture 
utilize a parameter called confidence threshold, which is 
a predefined level of probability that a tree will be found 
within the predicted bounding box. The model will only 
include this information in the final output if the 
confidence threshold is reached. When training the 
unmodified YOLOv4 and YOLOv5 neural networks, a 
standard confidence threshold value of 0.25 was used. 
During post-processing, the confidence threshold for our 
model was increased to 0.6 in order to suppress false 
positive detections. When testing the neural networks, 
confidence thresholds were selected based on 
visualization convenience. 
 
3. Results  

The following results were obtained by counting 
trunk and crown bases in different seasonal images. In 
winter/spring images (when the snow cover had not 
melted, but small thawing had already occurred around 
many trees), it was possible to identify a proportion of 
trees (between 35 and 97% depending on the image) 
based on the number of trees identified in the site during 
the tree inventory process (avg. 62%) (Figure 2). Fall 
aerial photographs showed a proportion of between 13 
and 65% (avg. 20%), while summer aerial photographs 
identified a lower number of trees than images from 
other seasons, between 9 and 39% (avg. 20%). The 
correlation coefficients between the number of trees 
identified in the images and the number of trees during 
the enumeration were 0.13 for summer images, 0.26 for 
fall images, and 0.48 for winter-spring images. However, 
all of these correlations were not statistically significant 
(p > 0.1). In contrast, the correlation coefficient between 
the number of trees detected in the images and the 
number of counted trees with a DBH of 3 cm or more 
(diameter at breast height, approximately 1.3 m) was 
0.51, 0.61, and 0.88 for the summer, fall, and 
spring/winter images, respectively (see Table 1). 
However, only the correlation between the spring/winter 
images and trees with a DBH of 3 cm or more was 
statistically significant (p = 0.003686). 
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Figure 2. Comparison of the number of trees based on the enumeration results and those detected in different seasonal UAV 
images. On the X-axis are the temporary sample plots, and on the Y-axis is the number of detected trees. The red columns 

represents the enumeration data, the green columns represents data from winter-spring images, the blue columns represents 
data from summer images, and the purple columns represent data from fall images. The number of trees with different diameter 
at breast height (DBH) levels (0≤1cm, 1≤2cm, 2≤3cm, >3cm) based on the enumeration results are marked by different colors 

gradation 
 

Table 1. Correlation coefficients between the number of trees detected in multi-seasonal images and the number of trees 
counted during ground surveys. A statistically significant correlation is highlighted in bold 

 All accounted trees Counted trees with DBH* > 3 cm 

Fall 0.13 0.51 

Summer 0.26 0.61 

Winter/Spring 0.48 0.88 
*DBH - diameter at breast height (~1.3 m) 

 
The fractions of trees identified from summer and 

autumn images are strongly correlated with each other (R 
= 0.96, p = 0.0001). However, the correlation with these 
fractions is smaller and not significant when using 
winter-spring images (R = 0.62, p = 0.10 in both cases). 
Therefore, we can conclude that the differences in the 
number of identified trees are primarily determined by 

season and secondarily by the stand structure at different 
locations. By training the neural networks until they 
achieved the best possible performance (with expert 
supervision to prevent overfitting), we obtained the mAP 
0.5 values for shown in Table 2. Figures 3 and 4 show 
the results of processing one of the snapshots from the 
dataset using all five neural networks. 

 
Table 2. The results of applying different neural networks to the same set of images 

Model mAP 0.5 

YOLOv4 0.073 

YOLOv4 (MS-COCO) 0.064 

YOLOv5 0.251 

YOLOv5 (MS-COCO) 0.335 

Our model 0.606 
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Figure 3. Tree detection results on the same image using different neural networks with a confidence threshold of 0.15 and pre-
trained on our own dataset. (A) is the baseline YOLOv4 model, (B) is YOLOv4 pre-trained on the MS-COCO dataset, and (C) 

is the baseline YOLOv5 model. (D) is YOLOv5 pre-trained on the MS-COCO dataset. 
 

 
Figure 4. Tree detection results on the same image using our YOLOv4-based model with a confidence threshold of 0.9945 

 
Based on the results above, we can see that YOLOv4, 

when used as-is and trained on our data set, tends to 
produce false negatives (missed existing trees), and 
YOLOv5, on the other hand, tends to generate false 
positives (detection of trees that do not exist). Both 
models also have very low confidence in their 
predictions (no trees were identified with a confidence 
level of 0.3 or higher). Our model, however, has 
managed to somewhat reduce the severity of these issues.  

The data preprocessing block we added to YOLOv4 
resulted in a significant reduction in the number of false 
negatives, but at the same time the number of false 
positives increased, bringing the results closer to those of 
YOLOv5. In turn, changes in the post-processing block 
reduced the severity of this problem. 

Among its own issues, there is a slight decrease in 
accuracy on the densest images and a tendency for the 

bounding boxes to be over-fitted. We hypothesize that 
these issues can be corrected by a more careful selection 
of the hyperparameters. 

During the research, we started to have doubts about 
whether mAP was the best metric for determining the 
efficiency of neural networks in detecting trees. We 
found that even the overfitted neural network on our data 
did not achieve mAP values greater than 0.69. We 
hypothesize that the problem lies in the fractal nature of 
deciduous tree structures in images during the leaf-less 
season. Due to this fractal property, one of the main 
sources of false positives is the neural network's 
identification of large tree branches as separate trees, 
leading to underestimation of accuracy. It has been 
shown in the (Padilla et al., 2021) that the performance 
evaluation of a convolutional neural network can depend 
significantly on the metric used and that some metrics 
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are better suited for certain classes of objects. Thus, for 
the task of tree detection (and possibly all objects with a 
fractal structure), it may be more efficient to use other 
metrics that more accurately reflect the progress 
achieved by the neural network. 

Nevertheless, even with the mAP values, we can 
conclude that the YOLOv5 baseline neural network 
performs better than YOLOv4 for tree object detection. 
However, YOLOv4 with the modifications made to the 
pre- and post-processing data significantly outperforms 
the baseline YOLOv5, even. In earlier studies it was 
noted that YOLOv5 is not unambiguously better than 
YOLOv4, it depends on the type of task. In the (Kutyrev 
et al., 2023) it was found that YOLOv4 performed 10.2% 
better on the task of recognizing apple tree fruit on the 
tree crown. 

It should be noted that pre-training the neural network 
on the MS-COCO dataset shows inconsistent results. 
This is consistent with the results of a study (Zoph et al., 
2020) that found that pre-training has limited utility for 
object detection, which is even more severely reduced 
for highly augmented data. 

Even with these considerations, the metric values 
achieved by the baseline neural networks seem to be 
extremely low, which can be explained by the size of the 
used dataset. Therefore, we can conclude that our 
proposed pre- and post-processing methods can help 
improve the performance of neural networks trained on 
smaller datasets. 

We plan to further develop this study by estimating 
the biomass of young stands through the segmentation of 
detected tree trunks and the determination of their 
heights. Another potential direction for the study's 
development could involve investigating the 
applicability of additional metrics for tree detection, 
including in the context of young stands and images 
taken in winter. 
 
4. Conclusion 

Thus, we tested five different neural networks on a set 
of images from overgrown fields: the basic YOLOv4 and 
YOLOv5 networks, each with two variants (pre-trained 
on the MS-COCO dataset and not pre-trained), and our 
own modified YOLOv4 model, which underwent pre- 
and post-processing changes. These modifications 
partially solved the problems caused by the small size 
and homogeneity of the dataset and improved the 
performance of the neural network. Our model exhibited 
significantly fewer false negatives than unmodified 
YOLOv4 and fewer false positives than unmodified 
YOLOv5. In addition, the confidence of the model 
estimates was significantly improved. However, we 
believe that using the mAP 0.5 metric for tree detection 
may not be optimal. The use of images collected during 
the snow cover season opens new opportunities for forest 
ecology research. Specifically, automated measurement 
of key allometric tree characteristics detected by neural 

networks can be used to estimate the carbon storage 
capacity of the trees. 
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