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ABSTRACT

This paper examined the efficacies of the electrochemical treatment (Ett) technique in the re-
duction of chloride ion (Cl-) from saline (salty) wastewaters (brine). Saline wastewaters (Sw) 
concentrations between 10 g/l and 40 g/l of Cl- were prepared and subjected to Ett utilising 
a locally developed composite carbon–resin (as the anode) and aluminium (as the cathode) 
electrodes. Ett of the simulated brine was conducted on a laboratory scale. The influence of 
selected factors on the efficacy of the Ett process was monitored utilising fractional factorial 
experiments. These selected factors were optimized using steepest descent technique (between 
the minimum and maximum concentrations) and rate change of Cl- removal efficacy through 
Microsoft Excel Solver. The optimum values of these selected factors were used to purify typ-
ical raw saline water. Efficacies of the Ett process in removing Cl- from the typical raw saline 
water was utilised to predict efficacy of the system using typical Cl- concentration in seawater 
based on literature, previous and published studies. The study revealed the relationship be-
tween chloride removal efficacy (%), initial concentration of chloride, current through the 
wastewater and separation distance between the electrodes were best in the form of exponen-
tials with coefficient of determination of 0.979, 0.920 and 0.977, respectively. The optimum 
values of these selected factors such as current, pH, treatment period and separation distance 
between the electrode (centre to centre of the electrode) were 10.5 A equivalent to 0.795 A cm-
2, 6.7, 2.75 hr and 42 mm, respectively. It was concluded that Ett with composite carbon-resin 
electrodes is among effective tools for removing Cl- from saline wastewater during Ett. The 
performance of the treatment technique was between 68.52 and 94.82 %.

INTRODUCTION

Overall water available on the Earth as a planet has been es-
timated to be equivalent to 1400×106 km3 [1]. This amount 
of water on the planet comprises 97 percent of salty water 
which is filled with a high concentration of salt and other 
minerals. This indicates that 97 percent of the earth’s water 

is not potable. Out of the total remaining volume of water, 
2 percent of the earth’s water is glacier ice at the North and 
South Poles, which are not accessible and usable [1]. It has 
been reported that fewer than 1 percent of Earth’s water is 
freshwater, which is accessible for human uses (drinking, 
transportation, heating and cooling, industry, and many 
other purposes) [2]. With a critical knowledge that water 
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is among the primary life force which sustain all the living 
animals and plants [3], it is important to protect the quality 
of water. It is well established that sources of typical wa-
ter (ground and surface) are facing critical deterioration in 
qualities due to various activities of man such as industrial-
ization, agricultural practices, urbanization, and the relent-
less expansion of population [3]. This critical deterioration 
in qualities is aggravated by environmental adjustments 
and geological moves. Documents and researches have 
been revealed that aquatic environments are daily threat-
ened by releasing large amounts of synthetic pollutants and 
industrial chemicals such as arsenic compounds [4], ioniz-
able aromatic pollutants [5], arsenic and chloride contained 
materials [6, 7], zinc oxide nanocomposites [8], cationic 
and anionic dyes [9], ciprofloxacin antibiotic [10], tannery 
industry, and pharmaceuticals such as cefazolin antibiotic 
and personal care products [11], Bisphenol A, nonylphe-
nols, benzophenones, and benzotriazoles [12]. Among 
the mentioned pollutants, Cl-, which is widely utilised as 
a preservative and stabilizer or antioxidant for many types 
of plastics (polyvinyl chloride), must be removed from the 
environment such as water to make it potable [13]. Brine 
and saline water can be toxic and harmful to the aquatic 
animals and environment due to the presence of high salin-
ity and other chemical substances [14], which indicates that 
these type of water and wastewater must be treated. Saline 
water or brine treatments using adsorption, electrochemi-
cal, membrane and electrodialysis are most promising al-
ternatives to seawater treatments and brine disposal. These 

treatments techniques give an output that reduce the envi-
ronmental pollution materials and environmental friendly, 
production of freshwater with extraordinary recovery and 
minimization of solid or liquid wastes volume [14]. 

In summary, electrochemical, ion-exchange, reverse os-
mosis membrane, distillation, adsorption and electrodial-
ysis processes have been identified to be effective for the 
reduction of Cl-, but some of these processes such as reverse 
osmosis membrane, distillation and ion-exchange are not 
cost-effective treatment processes and produce secondary 
wastes [4−9]. Some of these conventional treatment pro-
cesses for the reduction of Cl- from water and industrial 
wastewaters have other critical disadvantages [8−11]. Ap-
plication of the adsorption process only transfers the target 
pollutant from the liquid phase to the solid phase such as 
nanoclay [15]; pretreated dried activated sludge [16] and 
other adsorbents [17]. Over the past few decades, electro-
chemical treatment technology has attracted great atten-
tion among many researchers as an advanced and emerging 
treatment technology for water and wastewater treatment 
[18]. Figure 1 presents publications on electrochemical 
treatment techniques in selected countries between 1977 
and 2022. Electrochemical treatment techniques are electri-
cal and voltage-driven technologies that have been utilised 
successful in saline water and brine desalination [19−167]. 
The treatment technique is based on the selective transpor-
tation of ions in aqueous solutions or electrolyte and utilises 
an applied electrical voltage gradient, difference, or slope 

Figure 1. Publications on electrochemical treatment technique from selected countries between 1977 and 2022 (Source: Luciano 
et al. [131]).
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to drive anions and cations in opposite directions to the 
electrode. Ett uses electric current and electrodes to neu-
tralize and aggregate pollutants and contaminants in water 
and wastewaters [18−21]. Although, Advanced Oxidation 
Processes (AOPs) are also highly effective for degrading 
recalcitrant organic pollutants in water and wastewater 
treatment, Ett processes are adaptable and can be tailored 
to various types of water and wastewater, addressing spe-
cific treatment needs to meet regulatory requirements 
[21−41, 112]. Ett often complement traditional treatment 
methods, enhancing overall system performance [41−62]. 
Ett is relatively inexpensive due to its lower equipment and 
maintenance costs and because no additional chemicals 
are required [131].The category and treatment of water 
and wastewater using Ett, are controlled by several factors, 

which include nature, and size of reactive species to be gen-
erated in Ett processes the type of the treatment technique, 
electrode or electro catalyst materials, water or wastewater 
composition, water or wastewater pH settings, and oper-
ational constraints [19−170]. Ett can be inform of any of 
these treatment techniques [19−167]:

i. Electrocoagulation: This process uses electric current 
to dissolve metal electrodes, which produces coagu-
lants in situ that neutralizes and aggregates the con-
taminants. Wide range of pollutants can be reduced 
and removed from wastewater using this technique. 
These pollutants are usually negatively charged such as 
microorganisms, inorganic colloidal particles, cyano-
bacteria, organic bacteria and clay [36−58]. Figure 2a 
presents a typical setup for electrocoagulation.

Figure 2. (a) Setup of Electrocoagulation treat-
ment (Source: Luciano et al. [131]). (b) Side view 
of electro-membrane or dialysis treatment set-
up (Source: Knust et al. [122]. (c) Side view of 
capacitive electrodeionisation treatment setup 
(Source: Knust et al. [122]. (d) Hybrid ozone-ul-
traviolet-electrochemical process experimental 
setup. (Source: Asaithambi et al. [168]. (e) A setup 
of electrodeionzation treatment system (Source: 
Jiang et al. [167]. (f) A setup of electro-sorption 
treatment system (Source: Jiang et al. [167]. (g) 
Three (monopolar–parallel; monopolar–series 
and bipolar–series) types of possible electrode ar-
rangements (Source: Luciano et al. [131]). 

(a) (e)

(f)

(g)

(b)

(c)

(d)
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ii. Electrooxidation: The process allows the passage of 
electric current and a chemical reaction in which an 
atom or a molecule losses electron or electrons. At 
the anode (made of the catalytic material needed for 
conversion) the movement of electrons or molecules 
allows for oxidation of the pollutants. These oxidation 
processes can be anodic oxidation where pollutants are 
oxidized directly on the electrode or indirect oxidation 
by generation of oxidizing species or agents. The prin-
ciple of the process can be in the form of [39−71]:
a. Anodic Oxidation: It is possible at low potential 

differences. The main set back of the process is that 
the process allows deposition of polymeric layer on 
the surface of anode, which reduces electrical con-
ductivity. 

b. Indirect Oxidation: In this process there is no di-
rect electrons transfer between the anode and the 
organic matter, which prevents the fouling of anode 
due to organic particulate. 

The process is based on the principle that oxidization of 
pollutants is conducted in the aqueous solution through 
oxidizing agents [39−71].
iii. Electro-flotation: The process uses electrolytically 

generated gas bubbles, which are typically hydrogen 
and oxygen to float and separate suspended solids or 
particles. It is a gravity separation process. The process 
is cost effective process for the separation of many in-
organic and organic pollutants. The process removes 
hydrophobic ions from aqueous solutions [79−88].

iv. Electrodialysis: This technique utilises ion exchange 
membrane for the separation of pollutants and electro-
lytes from the wastewater and water. The process uses 
an electric field to drive ions through selective mem-
branes, thus separate the pollutants from wastewater 
and water. It is based on the principle of potential gra-
dient technique or method. It helps to select the ions 
to pass through the membranes. The main require-
ment for the process is direct current and ion exchange 
membranes (anion exchange membrane and the other 
is cation exchange membrane). The selection of the 
membrane is based on the function and the purpose of 
usage [104−145]. Figure 2b shows an arrangement of 
electrodialysis treatment process.

v. Electrochemical Advanced Oxidation Processes: 
Electrochemical Advanced Oxidation Processes is 
a combination of electrochemical methods and ad-
vanced oxidation processes to generate highly reactive 
species that degrade pollutants [46–51].

vi. Electrochemical Reduction: The process involves re-
duction reactions at the cathode to remove pollutants 
or convert pollutants into less harmful substances. [29− 
35]. In this process one or more electron of an atom 
or molecule is deposited on the surface of the cathode 
due to passage of electric current in the electrochemi-
cal system. Electrochemical reduction can be used for 
removal of organic and heavy metals such as Pb, Hg, 

and similar metals. The system is cost effective, but the 
process efficiency is very sensitive to wastewater com-
position or ingredients. 

vii. Electrochemical Desalination or Capacitive Deion-
ization: The process uses electrochemical techniques 
or methods to remove salts from water, either through 
capacitive deionization or through other electrochem-
ical means. It uses direct current power source. In the 
process current passes through saline water. The ions 
in the solution are absorbed at cathode and anode. Fi-
nally, the ions are de-absorbed form electrodes. This 
technique is use for the purification of saline water and 
brackish desalination [24−29]. Figure 2c presents typi-
cal arrangement of capacitive deionization systems.

viii. Electrochemical Peroxidation: This process is combi-
nation of electrochemical oxidation and hydrogen per-
oxide generation in the process to enhance treatment 
efficacy [31−35].

ix. Electrochemical Disinfection: The process utilises elec-
trochemical techniques to incapacitate microorganisms 
in wastewater and water. The process is more efficient 
method than the conventional chemical disinfection 
techniques or method. The technique works on the prin-
ciple of the anodic generation of strong oxidizing agents 
such as O2, O3, and hypochlorite during water electroly-
sis [56]. Categories of electro-disinfection are as follows:

a. Electro-disinfection using oxygen gas: The tech-
nique involves formation of anodic oxygen that has 
capacity of killing germs to some extent. It is usually 
recommended for the removal odour of water.

b. Electro disinfection using chlorine gas and hypo-
chlorite ions: The process involves activated chlo-
rine for killing the bacteria, fungi, and spores. 

c. Electro disinfection using O3: The technique has 
high oxidation potential and diffusion through the 
cell walls of microorganisms [20−35].

x. Photoelectrochemical Treatment: This technique 
combines photocatalysis and electrochemistry for pol-
lutant degradation using light and electrochemical re-
actions [24−35]. Figure 2d shows the arrangement of 
photoelectrochemical treatment system.

xi. Electrochemical Membrane or Electro-Filtration 
Processes: This process integrates electrochemical 
methods with membrane filtration to enhance separa-
tion and degradation of contaminants. It is used for the 
removal of solid suspended particles. This is upgraded 
by using an electrical field across it for removal of dis-
solved organic carbon [16−30].

xii. Electrodeionzation: This method mainly utilises semi-
permeable membranes and ion exchange method for 
wastewater and water purification. The technique has 
specific semipermeable membranes that allow electri-
cally charged ions to pass through. It is used for high 
purity of water [130−131]. Figure 2e show a setup of 
electrodeionzation treatment system.
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xiii. Electro Floto coagulation: This technique is combi-
nation of electrical charges, gas flotations and coagula-
tion process. It is especially deals with the particle size 
[69−71].

xiv. Photo Electro Catalysis: It is a process in which cat-
alyst and light are utilized for the acceleration of the 
chemical reaction. Catalyst activities are accelerated 
by utilising light irradiation or solar. The technique 
efficiently treats wastewater and water containing in-
organic ions, organic compounds reduction and for 
disinfection. The process is based on the principle of 
photoexcitation. Degradations of organic compounds 
by this technique are due to simultaneous actions of 
light and potential difference between the electrodes 
during the treatment time [130−131]. 

xv. Son electro Catalysis: In this, techniques sound waves 
having frequency 20kHz to 106kHz utilised for treat-
ment of wastewater and water through the series of 
compression and rarefaction cycles, causing the pres-
sure zone in the medium. One of the key set back of 
this technique is the polarization and passivation of 
electrodes due to the reduced mass transfer. In the 
process gas accumulate at electrode, which resulted 
in depletion of pollutants to the surface of electrodes 
boundary layer (Due to polarization). Accumulation of 
reactants at electrodes critically result in poor efficien-
cy (Passivation) [134−145].

xvi. Electro-Fenton Process: The process involves elec-
trochemistry and Fenton reaction. It is an advance 
oxidation process, which is based on radical reactions. 
The process has been used for the removal of organic 
pollutants such as pesticides, pharmaceuticals, phenol, 
dyes, and phenolic compounds. Electro-Fenton pro-
cess can be carried out in the cells that can be divided 
by cation exchange membrane or by not dividing the 
cell with membrane [51].

xvii. Electro-sorption: The process involves combination 
of electrochemical and adsorption processes. In the 
process, the electrodes are passive in nature and par-
ticles from the electrodes or electrode’s surface act as 
an adsorbent to adsorb the adsorbates which are the 
pollutants. [150−167]. Figure 2f show a setup of elec-
tro-sorption treatment system.

In electrochemical treatment of water and wastewater, elec-
trodes play a critical role in driving electrochemical reac-
tions and end-products. Selection of electrode significantly 
influences the performance and efficiency, operational cost, 
longevity and durability of the treatment process [102−170]. 
Literature listed some of the main categories of electrodes 
(passive and active or sacrificial) in use as follows: graph-
ite; titanium; titanium coated with mixed metal oxides; 
Boron-Doped Diamond; stainless steel; Platinum-Coated; 
Iron and Aluminum Electrodes; Carbon Felt and Carbon 
Cloth Electrodes; Lead Dioxide (PbO2) Electrodes, Nick-
el and Nickel-Based, Zinc and Zinc-Based, and Polymer 
Composite Electrodes. There are three types of electrode ar-

rangements (Fig. 2g) for electrochemical cells: monopolar–
parallel, monopolar–series, and bipolar–series [1−95, 131].

Criteria and factors for the selection of any electrode during 
the treatment processes are as follows [1−170]:

a) Electrode Material: Must be conductive and compati-
ble with the specific treatment process.

b) Durability, effectiveness and Corrosion Resistance: Im-
portant for longevity and cost-effectiveness.

c) Initial and operational Costs: Balance between perfor-
mance and budget.

d) Electrocatalytic Activity: Determines efficiency in gen-
erating desired radicals or intermediates

e) Environmental Impact: Toxicity and disposal consider-
ations.

With reference to the urgent needs for sustainable devel-
opment goals, based on relationship between economy, en-
vironment, society and poverty eradication [171], sustain-
able water and wastewater management, the importance 
and performance of Ett techniques in removing pollutants 
from aqueous solutions, there is a critical need to further 
evaluate the efficacy of Ett in reducing Cl- from salty water, 
which is common as sea water. The main objectives of the 
current study are to evaluate the efficacy of Ett process (util-
ising carbon– resin and aluminium electrodes) in removing 
Cl- from salty (saline) water, optimise selected operational 
factors, utilising the optimum values of the selected oper-
ational factors for the treatment typical raw saline waste-
waters with critical focus on Cl- removal and simulate the 
treatment performance. 

MATERIALS AND METHODS

All chemicals and reagents used in this research study had a 
chemical purity of 95% or above. Distilled water was used in 
the preparations of primary and secondary standard solu-
tions. All equipment used in the experiments were calibrat-
ed and the coefficient of determinations of these calibra-
tions (relationship between expected and obtained values) 
were 96 % or above. This section is breakdown as follows:

a. Materials: Development and properties of fabricat-
ed composite Carbon (graphite) - Resin electrodes. 
Carbon (graphite) - resin electrodes were prepared, 
developed and established from wasted dry cells (dry 
cells were used based on availability as household solid 
waste at no additional cost). The discarded dry cells (D 
R20 UM-1) were collected from different dumpsite loca-
tions in Nigeria. These collected cells were segmented 
and carbon (graphite) were removed from these cells, 
crushed and powdered. Powdered carbon was separat-
ed into different particle sizes using British Standard 
particle sizes. A fixed amount by weight of the pow-
dered carbon was mixed with resin (organic binder), 
and moulded into 25- millimetre diameter, 100-milli-
metre long electrode using a fabricated extruder and 
plunger, and a compaction machine. Microstructures 
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and Energy Dispersive Spectroscopy of the developed 
Carbon-resin electrode were monitored to ascertain 
the composition of the electrode using a scanning 
electron microscope (Carl Zeiss Smart Evo 10 of sec-
ondary electron imaging detector, system vacuum of 
89e06Torr and WD of 9.14mm at different magnifica-
tion). Details of the preparation, development, physical 
and chemical properties of the electrodes were doc-
umented in previous studies such as Oke [172, 173]; 
Oke et al. [174−176]; Oke et al. [177]; Oke et al. [178]; 
Oke [179], Oke et al. [180]; Oke and Ogedengbe [181]; 
Olayanju et al. [182] and Oke et al. [183]. 

b. Design and Development of Electrochemical Facility 
(Electrolysing Equipment): Electrolysing equipment 
was designed and developed from local materials to 
convert alternating current to direct current [184]. The 
design, development, fabrication procedure, perfor-
mance and properties of the device are as presented in 
previous publications such as Oke [172] and Oke and 
Ogedengbe [185]. 

c. Preparation of Synthetic Saline Wastewater: Ana-
lytical Sodium Chloride (60.0 grams) was dissolved in 
1000 ml of distilled water as a stock solution and work-
ing salty wastewaters were prepared from the stock. 
The synthesised chloride wastewaters (between 10 g/l 
and 40 g/l) were prepared utilising procedures and 
methods specified in the Standard Methods for Water 
and Wastewater Examination such as APHA [186] and 
Van Loosdrecht et al. [187]. 

d. Laboratory Setup and Electrochemical Treatment 
of synthesised chloride wastewaters (Desalination 
Experiments): Salty wastewaters were subjected to 
Ett utilising developed carbon–resin (anode) and al-
uminium (cathode) electrodes in a 2000 ml reactor. 
electro-coagulation and electro-oxidation based on 
two types of electrodes (aluminum and graphite) The 
choice of electrode impacts the effectiveness of water 
and wastewater treatment systems, influencing opera-
tional costs, treatment efficiency, and system durability. 
Fehintola et al. [188] presents the laboratory setup of 
the Ett of the simulated wastewaters. 

e. Experimental Study of Operational Factors that af-
fects the performance of Electrochemical: The influ-
ence of selected factors (separation distance between 
the electrodes, volume of the wastewater used, applied 
current, flow rate, pH, depth of the electrode, initial 
concentration of the Cl- and contact surface area of the 
electrode used) on the efficacy of Ett process were mon-
itored utilising fractional factorial experiment and op-
timised utilising combination of steepest and Microsoft 
Excel Solver techniques. Fehintola et al. [188] presents 
the standard fractional factorial experiments and the 
factors. The selection of the Microsoft Excel Solver was 
based on the availability of the software at no addition-
al cost (available in all Microsoft Excel packages). Solv-
er is an Add-in for the Microsoft Excel packages which 
are typically not enabled during the initial installation 

of Microsoft Office (Excel). The procedures required 
in using Microsoft Excel Solver can be summarized 
as indicated in Fehintola et al. [188]. The choice of 
these factors to be studied was based on the theoretical 
data about several factors that determine the perfor-
mance of an electrochemical treatment process and the 
knowledge concerning carbon-resin and aluminium 
electrodes [102−170]. 

f. Analysis of Chloride concentrations and Computa-
tion: Chloride determinations in both raw and treat-
ed brine were conducted utilising the argenotometric 
method specified in APHA [186]. Chloride concentra-
tion was calculated using equation (1) as follows:

CI–(mg/l)=35450 Cf

(A-B)N0P1

VS
( (

 (1)

Where; N0 stands for normality of Silver Nitrate used, P1 
stands for dilution factor; Vs stands for volume of sample 
used (ml), A stands for volume of the titrate used for the 
sample (ml), Cf stands for calibration factor and B stands 
for volume of the titrate used for the blank (ml). Efficiencies 
of the process were based mainly on pollutant (chloride) re-
moval (Y,%), which was computed using equation (2). The 
choice of the argenotometric and instrumentation methods 
was based on accuracy, type of wastewater (clear aqueous 
solution) and availability of required reagents.
        Y=100

(C0–Ct)
C0

( (
 (2)

Where: Co stands for initial chloride concentration of the 
synthetic wastewater (mg/l). Ct stands for final chloride 
concentration of the synthetic wastewater (mg/l) and Y 
stands for chloride removed (%) at optimum values of the 
selected operational factors. These selected operational fac-
tors were optimised using steepest descent and rate change 
in the efficacy of the technique. Optimum values of the 
selected operational factors were utilised to purify typical 
raw saline water. The efficacies of the system with typical 
raw saline water were utilised to simulate efficacy and per-
formance in typical seawater with chloride concentration 
of 31000 mg/l with reference to Akindahunsi et al. [189]; 
35.3779 g/l of chloride ion based on Thabit et al. [190]; 
41.80 g/l based on Mehan-Martes and Mertel et al. [191] 
and 43.6995 g/l of chloride ions based on Lior and Kim 
[192]. Figure 3 presents the flow chart of the procedures 
used in the utilization of Microsoft Excel Solver.

RESULTS AND DISCUSSION

Results from this study are presented as follows:

a) Development, Properties, and Stability of the 
electrodes
The study established that electrical resistance per unit 
length, density and stability of composite carbon-resin 
electrode are functions of the following factors particle 
size, compressive pressure and percentage composition of 
the binder. Density of the electrode increased from 1.26 to 
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1.65 gcm-3 when carbon particle size ranged from 245 to 
45×10-6m at 60 MNm-2 applied compressive pressure and 
declines from 1.86 to 1.65 gcm-3 with a range of applied 
compressive pressure from 100 to 60 MNm-2. Electrical re-
sistance per unit length was established to increase with cu-
mulative portion of binder and declines with increasing in 
applied compressive pressure. The stability of the composite 
electrode was of increasing order with cumulative applied 
compressive pressure and declines with increase in current 

density and carbon particle size [175]. Estimated costs re-
vealed that cost of producing composite carbon-resin elec-
trode was cheaper ($13.25 m-1) than that of heat-treated 
electrodes ($33.33 m-1) [179]. 

More on the properties of this composite carbon-resin elec-
trode can be established in literature such as Oke [172; 173]; 
Oke et al. [174, 176]; Oke et al. [177]; Oke et al. [178]; Oke 
et al. [180]; Oke and Ogedengbe [181]; Olayanju et al. [182] 
and Oke et al. [183]. 

Figure 3. Flow chart of the step required in utilization of Microsoft Excel Solver.
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b) Scanned Electro Magnetic and Energy Dispersive 
Spectroscopy of the electrodes
Figure 4a-c and d provide the major and key configurations 
of the selected spots in graphite (carbon) resin electrode. 
The figure shown that the main components of the elec-
trode are Carbon (between 38.27 % and 100 %) Oxygen 
(50.47 %) and Calcium (11.26%). The result specified the 
occurrence of Carbon and Oxygen at spots 2 and 4, as the 
highest composition of the developed carbon-resin elec-
trode. The occurrence of these two components (carbon 
and oxygen) can be accredited to the organic binder used, 
powdered graphite used and likely trapped Oxygen during 
missing processes. This result of the composition revealed 
that removal of chloride may be attributed to adsorption 
by the pores and conversion of some of the components to 
calcium, carbon and oxygen end products such as Ca(O-
Cl)2 and CaCl2. Figure 5a-c and d show and establish the 
Scanned Electro Magnetic (SEM) structures of the elec-
trodes at various magnification of 100, 250, 500 and 750. 
From these figures, it is clearly showed that the powdered 
particles of the powdered carbon electrode were closely 
parked and porosity is very low. This lower porosity can be 
attributed to a lower concentration of binder, higher com-
pressive pressure and nano-particle sizes utilised in the de-
velopment of the carbon-resin electrode stated in Oke et al. 
[178]. The figures established that there are two categories 
of pore with reference to the nature of the pores (contin-
uous and separated or standalone pores). The continuous 
pores have the tendency to accommodate more concentra-

tion of particles at the same time, while standalone adsorb 
different concentration of particles at different time. 

c) Development and Performance of the electrolysing 
Equipment
The performance of the fabricated equipment converting 
(electrolysing equipment) alternating current to direct current 
was 95 % and above. The results of the performance were com-
pared with similar imported equipment and analysed statisti-
cally using analysis of variance, total error, coefficient of deter-
mination, and model selection criterion. The results of total 
error, coefficient of determination and model selection crite-
rion analysis were 22.8, 0.244, and 3.312 and 24.3, 0.243 and 
3.066 for locally developed and imported electrolysing equip-
ment respectively. The results analysis of variance indicates that 
there was no significant difference between the two equipment 
(locally developed and imported electrolysing equipment) at a 
95 % confidence level. Detailed data are available in Literature 
such as Oke [172], Oke and Ogedengbe [185].

d) Desalination of Synthetic Salty Water and Effects of 
Selected Operational Factors on the Performance
The study established that the maximum values the perfor-
mance of the system occurred with 94.82% removal of chlo-
ride concentration when the surface area of the composite 
carbon resin electrode was 19.64 cm2, the flow of the waste-
water was 2.0l/hr, the treatment time of 4.0 hr and the cur-
rent flow through the wastewater was 10.0 A (higher factorial 
factor levels), which indicated that these mentioned factors 

Figure 4. (a) The major constituents of the graphite resin electrode at spot 2. (b) The Result of zeiss smart EDX for spot 2. (c) The 
major constituents of the graphite resin electrode at spot 4. (d) The result of zeiss smart EDX for spot 2.

(a)

(c)

(b)

(d)
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had positive influence on the performance of electrochem-
ical treatment of the wastewater. It was revealed that during 
the treatment process. The lowest value of the performance 
of the process occurred with 68. 52% removal of the chloride 
by the treatment process. This level of performance occurred 
when the initial concentrations of chloride was 40×103 mg /l, 
the separation distances between electrodes was 10.0 cm, the 
depth of the electrode was 1.0 cm and pH was 10.0 (higher 
factorial factor levels), which meant that these latter men-
tioned selected factors contributed negatively to the perfor-
mance of the treatment process. The cations moved toward 
the negatively charged cathode, while anions moved toward 
the positively charged anode. The outcome is the separation 
of concentrated brine aqueous solutions and freshwater. 
The detailed efficacy of the Ett process in the current study 
is presented in another paper specifically such as Oke [172]; 
Oke et al. [184] and Fehintola et al. [188]. The electrolysis 
chemistry of the reactions at the developed carbon-resin 
electrodes and solution are as follows [21, 112, 137]:
Anode: 2Cl–→Cl2+2e– (3)
Cathode: 2H2O+2e–→H2+2OH– (4)
In solution: Cl2+H2OÄ HOCl+Cl–+H+ (5)
HOClÄ H++OCl– (6)

Dissociation constants

K3=
[HOCl] [Cl–]

≈2×10–4

Cl2  
(7)

K4= [HOCl]
[H+] [OCl–]

≈2×10–4 at 0°C
 (8)

Loss reactions at:
Anode:

6OCl– +3H2O→2Cl–
3+4Cl–+6H+ + 32  O2+6e– (9)

Cathode:

2H2O→ O24H++4e– (10)
OCl–+H2O+2e–→Cl–+2OH – (11)
Solution:

2HOCl+OCl–→ClO–
3+2Cl–2H+ (12)

2ClO–→O2+2Cl– (13)
H2+OCl–→H2O+Cl– (14)
Other likely reactions:
Mg2++2OH–→Mg[OH]2 (15)
Ca2++2OH–→Ca[OH]2 (16)
Xn++nOH–→X[OH]n (17)

Figure 5. (a) Scanned electro magnetic (SEM) structures of the electrode at 300 µm. (b) Scanned electro magnetic (SEM) struc-
tures of the electrode at 100 µm. (c) Scanned electro magnetic (SEM) structures of the electrode at 100 µm. (d) Scanned electro 
magnetic (SEM) structures of the electrode at 40 µm.

(a)

(c)

(b)

(d)
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e) Optimisation of the Selected factors in the Desalination 
of Salty water and Simulated Performance
Figure 6a presents relationship between surface area of the 
developed carbon-resin electrodes in the wastewater and ef-
ficacy of the Ett process utilising steepest descent technique. 
The figure establishes that there is an exponential relation-
ship, which is a positive indicating that surface area of the 
developed carbon-resin electrode increases the efficacy of Ett 
process. The figure revealed that at higher surface area of the 
developed carbon-resin electrode in the wastewater efficacy of 
Ett process improves greatly. Figure 6b provides information 
on the optimization and efficacy change in the process due 
to variation in the surface area of the developed carbon-resin 
electrode. The figure revealed that the optimum surface area 
of the developed carbon-resin electrode was 13.2 cm2 of 2000 
ml of the wastewater. The relationship between the surface 
area of the radius and the depth can be expressed as:

Sc=Πr2
c +Πrcde (18)

Where; de stand for the depth of the electrode in the waste-
water; rc represents the actual radius of the electrode and Sc 
stands for the contact surface area of the electrode. The rate 
change in the contact surface area can be expressed as follows:

д(Sc)= (Πr2
c +Πrcde) (Πr2

c +Πrcde)
д д

дrc дrc

+
 (19)

Mishra and Ram [193] stated that steepest descent technique 
is among the conventional, oldest, and well-establish explore 
techniques for decreasing multivariable unrestricted optimi-
zation challenges. This technique has performed a vital role 
in the advance of progressed optimization algorithms. The 
technique is a first-order derivative numerical and iterative 
optimization algorithm that convergence or divergence is 
linear for a situation of quadratic functions. More of steepest 
descent technique can be established in literature such as ef-
ficient numerical method in Wu et al. [194]; numerical tech-
nique for multicriteria optimization highlighted in Bento et 
al. [195]; numerical technique Variable Order Vector Optimi-
zation Problems documented in Wang et al. [196]; numerical 
technique for mining signal transduction network available 
in Bello et al. [197], numerical technique optimization of 
mechanical systems in Haug et al. [198] and numerical tech-
nique for multicriteria optimization Bento et al. [199]. The 
observation is similar to previous researches and studies such 
as Alam et al. [35] statement on treatment on saline wastewa-
ter, Korbahti [200] observation on optimization of Ett of tex-
tile dye wastewater, Szpyrkowicz et al. [201] conclusions on Ett 
of tannery wastewater and Deng et al. [202] on the efficacy of 
Ett of nitrogen- containing organic wastewater by iron filings. 

Figure 7a presents relationship between current flow 
through the wastewater and efficacy of the Ett process util-

Figure 6. (a) Relationship between surface area of the electrodes in the wastewater and performance of the electrochemical 
treatment process using steepest descent technique. (b) Relationship between change in the surface area of the electrodes in the 
wastewater and performance of the electrochemical treatment process using steepest descent technique.

(a) (b)

Figure 7. (a) Relationship between current flow through the wastewater and performance of the electrochemical treatment 
process using steepest descent technique. (b) Relationship between change in the current flow through the wastewater and per-
formance of the electrochemical treatment process using steepest descent technique.

(a) (b)
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ising steepest descent technique. The figure establishes that 
there is a positive relationship, which is exponential form 
between the flow and efficacy of the process, which indi-
cate that current flow through the wastewater increases 
the efficacy of Ett process. This positive relationship can be 
attributed to further influx of chloride ion and flocs forma-
tion of the pollutant. The figure revealed that at higher cur-
rent flow through the wastewater the efficacy of the system 
improves greatly. The observation is similar to previous re-
searches and studies such as Alam et al.[35] statement on 
treatment on saline wastewater, Tulin and Serdar [203] ob-
servation on efficacy of electrooxidation- Ett of container 
washing wastewater, Lyvia [204] conclusion on influence 
of current density of electro-bioreactor treatment on re-
duction of phosphorus and micropollutants, and reduc-
tion or elimination of fouling, Feng et al.[205] on efficacy 
of two new Ett systems for wastewaters and Li and He [206] 
on optimizing the efficacy of a membrane bio- Ett. Figure 
7b provides information on the optimization and effica-
cy change in the process due to variation in the surface 
area of the developed carbon-resin electrode. The figure 
revealed that the optimum current flow through the waste-
water was 10.5 A of 2.0×103 millilitres of the wastewater, 
which is equivalent to current volumetric of 5.25×10-3 A 
per ml and a current density of 0.795 A per cm2, which 
is greater than 30 A per m2 as minimum value stated in 

previous researches and studies such as Phalakornkule et 
al. [207], Acosta-Santoyo et al. [208] and Korbahti [200]. 

Figure 8a presents relationship between initial concentration 
of chloride ions in the saline wastewater and efficacy of the 
Ett process utilising steepest descent technique. The figure 
establishes that there is a negative exponential relationship, 
which indicates that initial concentration of Cl- decline, 
increases the efficacy of Ett process. This efficacy can be at-
tributed to higher concentration load of chloride available 
at a given time than other times and lower contact area and 
current at present. The figure revealed that at higher initial 
concentration of Cl- in the saline wastewater, efficacy of the 
Ett system declines greatly. Figure 8b provides information 
on the optimization and efficacy change in the process due to 
variation in the initial concentration of chloride ions in the 
wastewater. The figure revealed that the optimum initial con-
centration of Cl- in the saline wastewater was 27.5 g/l. This 
behaviour of Cl- reduction is described by the complex com-
position of the initial concentration of Cl- in the saline waste-
water and the low contribution of both direct and indirect 
electro-oxidation and electro-adsorption mechanisms [208]. 

Figure 9a presents relationship between flow rate of the 
wastewater and efficacy of the Ett process utilising steep-
est descent technique. The figure establishes that there is 
an exponential relationship, which is positive indicating 

Figure 8. (a) Relationship between initial concentration of Chloride ion in the wastewater and performance of the electrochem-
ical treatment process using steepest descent technique. (b) Relationship between change in the initial concentration of chloride 
ion in the wastewater and performance of the electrochemical treatment process using steepest descent technique.

(a) (b)

Figure 9. (a) Relationship between flow rate of the wastewater and performance of the electrochemical treatment process using 
steepest descent technique. (b) Relationship between change in the flow rate of the wastewater and performance of the electro-
chemical treatment process using steepest descent technique.

(a) (b)
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that flow rate of the wastewater increases the efficacy of Ett 
process. The figure revealed that at higher flow rate of the 
wastewater, the efficacy of Ett system improves greatly.

These results, finding and observation of optimum initial 
concentration is similar to 31000 mg/l based on Akinda-
hunsi et al. [189]; 35.3779 g/l of chloride ion based on 
Thabit et al. [190]; 41.80 g/l based on Mehan-Martes and 
Mertel et al. [191] and 43.6995 g/l of chloride ions based 
on Lior and Kim [192]. These optimum concentrations 
of saline wastewater are functions of locations, nature of 
the process and other critical factors. In addition, the ob-
servation is similar to previous studies such as Alam et 
al.[35]; Korbahti [200]; Isaac et al.[209]; Garcia-Seura et 
al. [210]; Ensano et al. [211] and Meng et al. [212]. Figure 
9b provides information on the optimization and effica-
cy change in the process due to variation in the flow rate 
of the wastewater. The figure revealed that the optimum 
flow rate of the wastewater was 1.89 l/hr of the wastewater. 
This behaviour of flow rate of the wastewater is explained 
by the complex flow rate of the wastewater, availability 
and accessibility of the initial concentration of Cl- in the 
wastewater, mixing phenomenon and the contribution of 
both direct and indirect electro-oxidation, electrocoagu-
lation and electro-adsorption mechanisms.

Figure 10a presents relationship between pH the wastewa-
ter and efficacy of the Ett process utilising steepest descent 
technique. The figure establishes that there is a negatively 
expressed exponential relationship, which indicates that 
an increase in the pH declines the efficacy of Ett process. 
The figure revealed that at higher pH of the wastewater, the 
efficacy of Ett declines or decreases greatly. Figure 10b pro-
vides information on the optimization and efficacy change 
in the process due to variation in the pH of the wastewa-
ter. The figure revealed that the optimum pH of the sa-
line wastewater was 6.7. Tulin and Serdar. [203] reported 
that higher pH of wastewater required low retention time 
of operation and lower pH value required high detention 
time to perform the efficacy. Figure 11a presents relation-
ship between treatment time of the wastewater and effica-
cy of the electrochemical treatment process utilising steep-
est descent technique. The figure establishes that there is 
a positive exponential relationship, which indicates that 
treatment time of increases the efficacy of electrochemical 
treatment process. This observation agrees with literature 
and previous studies [203]. Figure 11b provides informa-
tion on the optimization and efficacy change in the process 
due to variation in the treatment period of the wastewater. 
The figure revealed that the optimum treatment time of 

Figure 10. (a) Relationship between pH of the wastewater and performance of the electrochemical treatment process using 
steepest descent technique. (b) Relationship between change in the pH of the wastewater and performance of the electrochemical 
treatment process using steepest descent technique.

(a) (b)

Figure 11. (a) Relationship between treatment time of the wastewater and performance of the electrochemical treatment process 
using steepest descent technique. (b) Relationship between change in the treatment time of the wastewater and performance of 
the electrochemical treatment process using steepest descent technique.

(a) (b)
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the wastewater was 2.75 hours. Tulin and Serdar [203] re-
ported a treatment time of 300 minutes (5 hours) for con-
tainer washing wastewater at pH of 3.0 and 120 minutes 
for the same wastewater at pH value of 5.0. 
Figure 12a presents relationship between separation dis-
tance between the electrode in the wastewater and efficacy 
of the electrochemical treatment process utilising steep-
est descent technique. The figure establishes that there 
is a negatively response- exponential relationship, which 
indicates that separation distance between the electrode 
declines the efficacy of Ett process. The figure revealed 
that at higher separation distance between the electrode 
in the wastewater, the efficacy of the system declines or 
decreases greatly. Figure 12b provides information on the 
optimization and efficacy change in the process due to 
variation in the separation distance between the electrode 
in the wastewater. The figure revealed that the optimum 
separation distance between the developed carbon-resin 
electrodes in the wastewater was 42 mm centre to centre 
of the aluminium cathode of 20 mm diameter and car-
bon-resin anode of 25 mm diameter. Phalakornkule et al. 
[207] obtained 8.0 mm as optimum distance between the 
electrodes, contact time of at least 5.0 minutes and current 
density of at least 30 A per m2 for the treatment of reactive 
blue 140 utilising iron anode. Obijole et al. [213] obtained 
a mathematical representation that correlates resistance of 
an aqueous solution (Rc), the distance or separation space 
between the developed carbon-resin electrodes during 
electrochemical treatment of wastewater (Xc), and electri-
cal conductivity of the aqueous solution (Ec) as follows: 

        Rc= ln
Rc

Ec

Rc+Xc

Rc
( (

  (7)

Where; rc stands for the radius of the cylindrical electrode 
in the wastewater.

Although, optimization of Ett salty is limited in literature, 
but the results were similar to optimization of electro-
chemical removal of cefazolin antibiotic from hospital 
wastewater [12], arsenate from aqueous solution by elec-
tro-coagulation [38], arsenic removal from groundwater 
samples utilising iron electrocoagulation treatment [39], 

optimization of arsenic removal from potable and drink-
ing water by electrocoagulation treatment [49]; arsenic 
treatment utilising technology of electrocoagulation [58]; 
arsenite reduction from groundwater samples in a batch 
electrocoagulation treatment process [61] and optimiza-
tion of the electrocoagulation treatment process for the 
reduction of lead from water samples [47]. It is like opti-
mization of the adsorption of a textile dye onto nano-clay 
utilising a central composite design [15] and optimiza-
tion of electrocoagulation treatment process for efficient 
reduction of ciprofloxacin antibiotic utilising iron elec-
trode; kinetic and isotherm studies of adsorption [11]. In 
line with the efficacy, Feng et al. [202] reported that 4 m3 
per hour flow rate of Ett system was established to reduce 
between 87% and 91% of Total-Phosphorous, between 
74% and 96% of Total-Nitrogen, within 70 % and 94 % of 
NH4-N, between 88 % and 91 % of Total Organic Carbon 
and between 75 % and 87% of Chemical Oxygen Demand. 
Similarly, for the same wastewater at a flow rate of 0.5 m3 
per hour, the system attained between 62 % and 90 % of To-
tal-Phosphorous, within 83 % and 92 % of Total-Nitrogen, 
between 90 % and 100 % of NH4-N, and between 75 % and 
83% of Total Organic Carbon, with between 80 % and 100 % 
of Chemical Oxygen Demand. Acosta-Santoyo et al. [207] 
documented that the efficiency of oxyfluorfen degradation 
by electro-oxidation treatment process increases with cur-
rent density meanwhile the degradation of Total Organic 
Carbon follows an opposite trend. This behaviour or efficacy 
is explained by the complex composition of the initial sample 
and the contribution of both direct and indirect oxidation 
mechanisms. Alam et al. [35] documented that the effect of 
current density on efficacy of Ett of wastewaters is considered 
a significant process constraint as it rules the coagulant dos-
age, which based or related to faradays first and second laws 
and hydrogen gas as an end product in the system. In ad-
dition, reduction of pollutants growths with the intensifica-
tion of current density as it produces further flocs because of 
quicker anodic dissolution. Körbahti [200] reported that the 
optimized situations under specified cost driven constraints 
in the Ett of textile dye wastewater were attained for the high-
est desirability at 6.7 mA cm-2, 5.9 mA cm-2 and 5.4 mA cm-2 

Figure 12. (a) Relationship between separation distance between the electrodes in the wastewater and performance of the elec-
trochemical treatment process using steepest descent technique. (b) Relationship between change in the separation distance 
between the electrodes in the wastewater and performance of the electrochemical treatment process using steepest descent 
technique.

(a) (b)
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current density and 3.1 gL-1, 2.5 g L-1 and 2.8 g L-1 supporting 
NaCl concentration. Szpyrkowicz et al. [201] showed that 
selectivity of the removal of deferent pollutants was affect-
ed by current density which direct anodic oxidation as an 
additional process for the destruction of the selected pol-
lutants. The efficacy of the electrochemical of typical raw 
saline wastewater of 45000 mg/l ranges from 19% after 1.0 
hour treatment to 85.9 % after 9 hours of treatment. Figure 
13 present the efficacy of the system in respect of treatment 
time. Simulation with a sequence batch reactor revealed that 
first sequence ended at 6345 mg/l of NaCl at 9 hours, second 
sequence ended at 5450 mg/l of NaCl at 9 hours of treatment, 
third sequence ended at 768.5 mg/l of NaCl and fourth se-
quence ended at 108.4 mg/l of NaCl. Salt and high concen-
trations of dissolved solids in water in the leachate of urban 
sanitary landfill sites, surface runoff, contaminated ground-

water, and the wastewaters subsequent from recycling units 
of gas, mining operations and oil industries [214]. Figures 
14-17 present the efficacy of the system in respect to simulat-
ed process. These figures revealed that at least second batch 
sequence treatments are required for seawater. Figure 14 re-
vealed the system require at least two sequences or two treat-
ment systems in series for the seawater (Atlantic ocean) from 
Nigeria, with 4371.00 mg/l and 616.31 mg/l for first and sec-
ond sequences, respectively. Figure 15 revealed the system 
require at least two sequences or two treatment systems in 
series for the seawater from Qatar, with 4988.28 mg/l and 
703.35 mg/l for first and second sequences, respectively. Fig-
ure 16 revealed the system require at least two sequences or 
two treatment systems in series for the seawater from Spain, 
with 5893.80 mg/l and 831.03 mg/l for first and second se-
quences, respectively. Figure 17 revealed the system require 

Figure 13. Treatment of typical raw saline wastewater utilising optimum values of operational factors.

Figure 14. Simulation of typical raw saline wastewater utilising optimum values of operational factors based on Akindahunsi 
et al. [189].
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at least two sequences or two treatment systems in series for 
the seawater, from United States of America with 6161.63 
mg/l and 868.79 mg/l for first and second sequences, respec-
tively. These sequence treatments are commonly experienc-
es, which make electrochemical treatment applicable as an 
advance treatment or for polishing treated water [215−240]. 
Further information on electrochemical treatment toward 
perfecting water treated water can be established in litera-
ture such as Liu et al. [241], Xiao et al. [242]; Kakavandi and 
Ahmadi [243]; Jeddi et al. [244]; Zhang et al. [245]; Yun and 
Redzwan [246]; Jamal and Pugazhendi [247]; Shahata and 
Urase [248]; Lu et al. [249]; Ahmad et al. [250]; Eom et al. 
[251]; Huang et al [252]; Paredez et al. [253]; Jorfi et al. [254]; 
Maharaja et al. [255]; Formentini-Schmitt et al. [256]; Dolt-
abadi et al. [257]; Ahmadi et al. [258] and Myint et al. [259].

CONCLUSION

It can be concluded based on the study that:

a. The electrochemical treatment with carbon-resin and al-
uminium electrodes is a direct electrolysis of saline or sea 
water, which reduce the concentration of chloride to an 
acceptable level with two or more sequence treatment,

b. The optimum values of these selected factors such as 
current, pH, treatment period and separation distance 
between the electrode (centre to centre of the electrode) 
were 10.5 A equivalent to 0.795 A cm-2, 6.7, 2.75 hr and 
42 mm (centre to centre of the developed carbon-res-
in electrodes equivalent to 19.5 mm space between the 
electrodes), respectively,

Figure 15. Simulation of typical raw saline wastewater utilising optimum values of operational factors based on Thabit et 
al. [190].

Figure 16. Simulation of typical raw saline wastewater utilising optimum values of operational factors based on Melian- Mar-
tel et al. [191].
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c. The process is limited to high concentration of salt such 
as chloride and dissolved solids, treated with graph-
ite-resin and aluminium electrodes, 

d. The challenges of the process include cathode passiva-
tion, periodic replacement of sacrificial anodes, the need 
for post-treatment due to high metal-ion concentra-
tions, and high power-consumption costs in areas with 
limited access to electricity, optimization of operating 
conditions of electrochemical to achieve both low power 
consumption with adequate and high removal efficiency,

e. Future perspectives, utilisation of hypochlorite solu-
tions by direct electrolysis of saline or sea water to de-
crease marine progress is significantly more suitable 
safer and appropriate exploring the techno-econom-
ic feasibility of electrochemical treatment with other 
treatment techniques,

f. The recommendations from this study include identifi-
cation of energy pathways and energy application and 
management of hybrid electrochemical treatment sys-
tems; focus efforts on the effective removal of emerging 
pollutants from the environment utilising hybrid elec-
trochemical treatment systems.
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