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Abstract 

The quantum entanglement of mixed XXZ Heisenberg spin-1/2 chain is examined. We quantify localizable entanglement 

(LE) in terms of upper/lower bounds through Quantum Monte Carlo simulations. Loop algorithm is chosen to numerically 

calculate thermodynamic quantities including spin-spin correlations. The exchange coupling, Zeeman energy, and dipolar 

interaction are taken into account. Findings summarize that the strength of dipole-dipole interaction (D) and external magnetic 

field (Bz) are notable in entanglement formation driving the creation and extinction of entanglement. The creation and extinction 

of entanglement depend on D and Bz. Furthermore, strong fields at critical temperatures lead to a non-monotonic/monotonic 

behavior introducing revival phenomena. Nevertheless, strong D provides the distance-dependent stability of LE values, 

preserving unity. 

 

Keywords: Mixed magnetic state; Quantum entanglement; Monte Carlo simulation; Revival phenomena; Critical temperature. 

1. INTRODUCTION 

A significant information resource is provided by entanglement, which is a notable aspect of executing quantum 

information operations like quantum teleportation [1-3] and quantum computation [4-9]. Since their literal and 

straightforward construction makes them ideal for studying entanglement and strong correlations, Heisenberg and 

Ising-like models, determining the magnetic state of a spin system [10, 11], have been notably preferred. 

Additionally, a remarkable number of studies revealing magnetic characterization and particularly spin-spin 

correlations have been performed [12-19]. Since 1D-spin arrays, which considerably incorporate entangled states, 

can be presented as a credible choice for quantum information operations, have exhaustively concentrated on the 

Heisenberg Hamiltonian introducing quantum spin-1/2 chains [20-23]. Additionally, they concentrated on the 

concurrence of mixed states of two qubits. Wang concludes that zero-field concurrence has unity at low temperatures 

until T = 0.2, and vanishes at T = 1.1 [24]. For an isotropic XY chain, however, a quantum phase transition for a 

critical value of B is observed at zero temperature [25]. 
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For the isotropic XXX model (J = 1), entanglement disappeared at T = 0.9, according to Rigolin's calculations 

[26]. In addition to measuring the concurrence of the two nearby spins, multi-particle entanglement can yield useful 

information between distant pairs of spins. An eligible measurement tool is LE. Androvitsaneas et al. seek a close 

relation between LE and anisotropy in the case of XY and XYZ models in the absence/presence of the applied 

magnetic field reporting Bz = 0.75 as a quantum critical point. Besides, rival regions under specific magnetic fields 

and thermal agitations are displayed for the 10 closest neighboring spins [27]. Spherical nanostructures are dressed 

with dipoles by Sinyagin et al. to ascertain the aggregation of the considered structure [28]. A strong argument for a 

topological storage may be ensured through inevitably long-distant entangled couples [29]. However, [30] examined 

the two-qubit long-range entanglement and revealed the coupling of qubits across long distances. There is also a 

wealth of possible research material for several long-ranged interacted systems [31-41]. Several experimental 

investigations utilizing low-dimensional quantum-spin models have been conducted to explore the characteristics of 

quasi-particle excitations [39, 40, 42]. Sahling evaluates the first example of entangled spins in bulk materials at 

relatively low temperatures [43].  

In theory, it is necessary to comprehend quantum phase transitions in the context of condensed matter physics 

[44-46]. The dipole-dipole interaction under transverse magnetic field stressing a quantum phase transition on 

antiferromagnetic (AFM) spin chains is underlined by Bravo et al. [46]. We have previously concentrated on 

quantifying LE of an AFM spin-chain taking the dipolar interaction (D) and the external magnetic field (Bz) into 

account. Rival zones are connected to the temperature for specific values of D and Bz [47]. Under a uniform external 

magnetic field (Bz), this work highlights the impact of dipole-dipole interaction (D) on the upper and lower bounds 

of entanglement in isotropic ferromagnetic spin-1/2 Heisenberg chains. The ALPS package [48] is preferred to 

calculate and simulate the model by loop algorithm to specify LE in terms of upper and lower bounds. LE is a useful 

tool to figure out how much a multipartite system is entangled, measuring bipartite entanglement. It quantifies the 

average maximal entanglement between two parts of the system by performing local measurements throughout the 

rest of the system [49-51]. LE and the entanglement of assistance are connected (EoA). The authors have built a 

Phyton script for post-processing simulation data. Our objective is to address the impact of dipolar interaction on LE 

using numerical methods. Additionally, we sought to measure the entanglement of long-ranged neighboring spins in 

multipartite systems. 

In this article, the Hamiltonian and expectation values using a loop algorithm and Quantum Monte Carlo 

techniques are described in Section 2. In Section 3, the determination of upper and lower bounds of localizable 

entanglement is discussed. Temperature, spin-spin interaction, strength of dipolar interaction, and additionally 

external magnetic field are taken into consideration related to the n neighboring spins. Section 4 includes a summary 

of the findings.   

2. MODEL & METHOD 

2.1 Background of Loop Algorithm 

The Loop algorithm [57-59], has been first developed in “Lattice 91” (Tsukuba, Japan) as a Quantum Monte 

Carlo procedure. It overcomes almost all the difficulties of world-line algorithms by considering non-local changes 

in the world-line configuration determined by local stochastic decisions. Moreover, it can be comprehensively 

applied to numerous models, including stochastic series expansion (SSE) [60-62], and the imaginary time world 

lines formulation [63]. It corresponds to the cluster algorithms developed by Swendsen-Wang [64] in a classical 

statistical system. Main features: autocorrelations are reduced, it can be easily formulated for continuous time Monte 

Carlo (by eliminating the Trotter approach), and observables can be formulated in terms of loop features by reducing 

the errors of the quantities measured with Improved Estimators. Besides, non-diagonal operators can be measured 

with advanced evaluators and the sign problem can be overcome (especially in fermionic systems). However, it can 

be coded more easily than traditional worldlines. 
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Sp, given in Equation 1, corresponds to the possible spin local configurations where eigenvalues are 𝑆𝑖,𝑗
𝑧 = ∓1/2 

constrained through z direction.  

𝑆𝑝 ≡ (𝑆𝑖,𝑗
𝑧 , 𝑆𝑖+1,𝑗

𝑧 , 𝑆𝑖,𝑗+1
𝑧 , 𝑆𝑖+1,𝑗+1

𝑧 )                                            (1) 

The statistical weight of the entire possible configurations can be represented by W(sP) in a density 

matrix formalism. Equation 2 contains probable spin configurations including the Heisenberg Hamiltonian, 

Ĥi, which operates spin-1/2 pairs exponentially. 

𝑊(𝑠𝑃) ≡ ⟨𝑆𝑖,𝑗
𝑧 , 𝑆𝑖+1,𝑗

𝑧 |𝑒−𝛥𝜏 �̂�𝑖|𝑆𝑖,𝑗+1
𝑧 , 𝑆𝑖+1,𝑗+1

𝑧 ⟩        (2) 

The Hamiltonian cooperates with exchange coupling energy, dipole-dipole interaction, and Zeeman 
energy along the z-direction. 

ℋ̂ = − ∑ [𝐽𝑥�̂�𝑖
x�̂�𝑖+1

x + 𝐽𝑦�̂�𝑖
y
�̂�𝑖+1

y
+ 𝐽𝑧�̂�𝑖

z�̂�𝑖+1
z + 𝐵𝑧(�̂�𝑖

𝑧)] + ℋ̂𝐷
𝑁
𝑖=1      (3) 

ℋ̂𝐷 =
𝐷

2
∑ [

�̂�𝒊�̂�𝒊+𝟏

𝑟𝑖 𝑖+1
3 − 3

(�̂�𝒊.𝒓𝒊 𝒊+𝟏)(�̂�𝒊+𝟏.𝒓𝒊 𝒊+𝟏)

𝑟𝑖 𝑖+1
5 ]𝑁

𝑖=1         (4) 

where Jα(α: x, y, z) is exchange coupling constant, Bz and D represents the magnetic field along the z-axis 

and the strength of dipole-dipole interaction. The periodic boundary conditions (PBC) are satisfied 
declaring σ1 = σN+1. The abovementioned statistical weight matrix evolves to Equation 5 when the graph 

configurations are conceptually considered. 

𝑊𝑝(𝑆𝑝) = ∑ 𝑊𝑝(𝑆𝑝, 𝐺𝑝)𝐺𝑝
         (5) 

Gp is a graph variable that has particularly been defined in the plaquette. It has to satisfy Wp(Sp, Gp) ≥ 0. 

Graph examples are shown in Figure 1. Gp=1, Gp=2, and Gp=3 graph variables represent the pair flip of any 
two spins at the edges. Gp = 4 indicates that the direction of all spins flips. It is also called a frozen breakup. 
The rest divides plaquettes into two parts. Frozen breakups induce larger clusters. Note that smaller clusters 
bring about efficient simulation. Hence, the transition probability to frozen breakups will be low. The graph 
variables are crucial to deciding whether a transition to a new four-spin state is allowed or not using  

∆(Sp, Gp). 

 

Figure 1. Plaquette breakups of 4-fold spin-1/2 states 

The partition function, Z, 

𝑍 = ∑ ∏ 𝑊(𝑆𝑝)𝑝𝑆 = ∑ ∏ 𝑊𝑝(𝑆𝑝, 𝐺𝑝)𝑝𝑆,𝐺        (6) 

∑  G  summation expands the partition function over the entire possible configurations of the graph 
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variable. If a plaquette has N number of components, the number of breakups, Nb(N), is defined as in 
Equation 7 and Equation 8. 

𝑁𝑏(𝑁) = ∑ 𝑔(𝑁, 𝑘)𝑁
𝑘           (7) 

∑ 𝑃𝑖𝑔(𝑁, 𝑖) = 𝑘𝑁      (𝑘 = 1, 2, … , 𝑁)𝑘
𝑖=1         (8) 

If the spin orientation is changed for a certain breakup, there are multiple spin configurations obtained 
from a single one. The value of the graph variable Gp defines such a set of spin configurations. The number of 
GP states increases rapidly to O(αN). This is not very important since the number of states is small enough 
during the Monte Carlo simulation. 

According to Fortuin [65] and Kasteleyn [66], W(Sp, Gp) can be expressed as in Equation 9 where vp(Gp) 

is the graph weight of Gp.  

𝑊𝑝(𝑆𝑝, 𝐺𝑝) = 𝑣𝑝(𝐺𝑝)∆(𝑆𝑝, 𝐺𝑝)         (9) 

∆(𝑆𝑝, 𝐺𝑝) = {
1,                  𝑆𝑝 ∈ 𝐺𝑝

 0,                  𝑜𝑡ℎ𝑒𝑟𝑠  
         (10) 

The conventional Monte Carlo Markov chain proposes S(1) → S(2) → S(3) → ⋯ in spin configuration space. 

The spin configuration space follows a graph configuration space in a Markov process of a clustering 

algorithm. (S(1) → G(1) → S(2) → G(2) → S(3) → G(3) → ⋯). The transition probabilities from spin to graphs are 
explicitly given in Equation 11 and Equation 12. 

𝑃(𝑆 → 𝐺) ≡
∏ 𝑊𝑝(𝑆𝑝,𝐺𝑝)𝑝

∑ ∏ 𝑊𝑝(𝑆𝑝,𝐺𝑝
′)𝑝𝐺′

         (11) 

𝑃(𝐺 → 𝑆) ≡
∏ 𝑊𝑝(𝑆𝑝,𝐺𝑝)𝑝

∑ ∏ 𝑊𝑝(𝑆′𝑝,𝐺𝑝)𝑝𝑆′
         (12) 

S ≡∪p Sp and G ≡∪p Gp, represent the global spin and graph configurations, respectively. Each local transition 

in a plaquette is determined via Equation 13.  

𝑃(𝑆𝑝 → 𝐺𝑝) ≡
𝑊𝑝(𝑆𝑝,𝐺𝑝)

∑ 𝑊𝑝(𝑆𝑝,𝐺𝑝
′)

𝐺𝑝
′

         (13) 

The transition probabilities noted below are consistent with the detailed balance condition. The probability of 

any S spin and G graph configuration is defined by Equation 14 and Equation 15.  

𝑃(𝑆) =
1

𝑍
∑ ∑ 𝑊𝑝(𝑃𝐺 𝑆𝑝, 𝐺𝑝) =

1

𝑍
∏ 𝑊𝑝(𝑆𝑝)𝑝        (14) 

𝑃(𝐺) =
1

𝑍
∑ ∑ 𝑊𝑝(𝑃𝑆 𝑆𝑝, 𝐺𝑝)         (15) 

Since G global graph configurations specify only how the spins are divided in the system, a spin configuration 
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can be determined among different configurations according to Equation 12. There are global differences between 

these spin configurations. In the Monte Carlo process, such a non-local spin orientation change is extracted by every 

local stochastic decision on every plaquette given by Equation 13. The algorithm that simultaneously updates the 

spins in clusters is called the cluster algorithm. The clustering algorithm has significant advantages over traditional 

local spin orientation change algorithms. The binary spin correlation function is identical to the probability function 

that tells us that these binary lattice points belong to the same cluster. Thus, the clustering algorithm significantly 

reduces the autocorrelation time between successful Monte Carlo configurations. To ensure ergodicity in quantum 

models, the Worldlines algorithm requires artificial global spin orientation variation. In the clustering algorithm, 

only natural global spin orientation variation is present. The loop algorithm can be implemented in both discrete 

imaginary time and continuous imaginary time. 8 possible quadruple spin configurations are shown in Figure 2. 

 

Figure 2. 8 possible 4-fold spin-1/2 states and their vertex weights (Wi): the black dots in the upper row represent 

upward spins and the white dots represent downward spins. 

These configurations and  plaquette breakups are illustrated in Figure 3, and Figure 4, respectively. Blackened 

arrows denote up-spins and gray arrows stand for the down-spins.  

 

Figure 3. Vertex arrows representation of possible 4-fold spin-1/2 states 

 

Figure 4. An example of an update of loop algorithm (a) worldline representation (b) vertex arrow representation 
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The thick solid line, in Figure 4(a), is a single world line. The dotted line represents a possible cycle. When the 

spins are reversed throughout the cycle, a dashed worldline is formed. The cycle here is not small enough to be 

local. Figure 4(b) illustrates the worldline with vertex arrows. The cycle is represented by thick arrows. In vertex 

representation, each cycle follows the arrows of the spin configuration. In other words, the cycle creates a worldline 

with upward spins along the imaginary time direction. Downward arrows do not create a world line. The most basic 

procedure of a Monte Carlo update of the loop algorithm consists of two stochastic mappings: from spins to spins 

and loops, thence to new spins. A breakup is selected for each shaded (gray) plaquette with the transition probability 

of the configuration of the spins in the selected plaquette. Clusters are established to create these breaks. When the 

directions of all arrows are changed along the cycle, each set is reversed with the appropriate probability. Thus, new 

spin configurations are formed. The value of the probabilities depends on the Hamiltonian and the previous spin 

configurations. The worldlines are continuous at every site along the Trotter direction due to the imaginary time-

space ∆τ → 0 (
β

M
→ 0) with an occasional jump to neighboring lattice sites. These jumps are instantaneous. Ĥi, can 

be represented by Gp graph variables due to the infinitesimal imaginary time intervals. 

⟨𝜑𝑗|�̂�𝑖|𝜑𝑗+1⟩ ≡ − ∑ 𝑎𝑝(Gp)∆(𝑆𝑝, 𝐺𝑝) − 𝐵𝑝(𝑆𝑝)Gp       (16) 

∆(Sp, Gp) is as defined in discrete imaginary time. Wp(Sp), vertex weights, takes the form given in Equation 17 

for each  ϵ ≡ ∆τ ≪ 1 along continuous imaginary time. 

Wp(Sp) ≡ ⟨𝜑𝑗|𝑒−𝛥𝜏 �̂�𝑖|𝜑𝑗+1⟩ ≈ 𝑒−𝜖𝐵𝑝(𝑆𝑝) [𝐼𝑝(𝑆𝑝) + 𝜖 ∑ 𝑎𝑝(Gp)∆(𝑆𝑝, 𝐺𝑝)Gp
]    (17) 

Ip(Sp), is the unit operator in a plaquette. Taking ∆(Sp, 1) ≡ Ip(Sp), makes things easier. Taking the limit at 

ϵ → 0, a transition probability in a plaquette can be reduced to: 

i. If the present 𝑆𝑝 the state is consistent with  𝐺𝑝 = 1 graph, for instance, spin splitting is not available at a 

(𝑡, 𝑡 + 𝜖) time interval, 

𝑃(𝑆𝑝 → 𝐺𝑝) = 𝜖𝑎𝑝(Gp)∆(𝑆𝑝, 𝐺𝑝)           (𝐺𝑝 = 1)

𝑃(𝑆𝑝 → 1) = 1 − ∑ 𝑃(𝑆𝑝 → Gp
′)Gp

′≠1 

      (18) 

ii. If the present 𝑆𝑝 the state is inconsistent with  𝐺𝑝 = 1 graph, for instance, the state at 𝑡 is different from the 

state at 𝑡 + 𝜖, 

𝑃(𝑆𝑝 → 𝐺𝑝) =
𝑎𝑝(Gp)∆(𝑆𝑝,𝐺𝑝)

∑ 𝑎𝑝(Gp
′)∆(𝑆𝑝,Gp

′)
Gp

′≠1 

           (𝐺𝑝 = 1)

𝑃(𝑆𝑝 → 1) = 0

      (19) 

Eq.18 is applied to plaquette on worldlines along the Trotter direction. The probability of choosing a graph with 

Gp ≠ 1 in the imaginary time interval. ϵ is determined by ϵap(Gp)∆(Sp, Gp). In fact, Gp graphs are distributed over 

a uniform interval with a probability density such as ap(Gp)∆(Sp, Gp) in the continuity limit. On the other hand, 

Eq.19 specifies the probability expression with the graph relative to the point in time when two neighboring 

worldlines exchange or a local state change. Note that, the expression here is not probability density. 
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The loop algorithm in continuous imaginary time can be generally summarized as follows. For each pair of 

adjacent world lines, 

i. 𝐺𝑝(≠ 1) graphs, as in Equation 18, worldlines are distributed over each imaginary time interval in such a 

way that they are not overlapped. 

ii. At each time point where states can be exchanged between two lattice points, a graph 𝐺𝑝 is selected by 

Equation 19. 

iii. 𝐺𝑝 = 1 is assigned to the rest. 

Then the spin values are updated by changing the clusters. This algorithm has some advantages over the loop 

algorithm in discrete imaginary time. The most important of these is that the need for Trotter extrapolation to reduce 

the systematic error arising from the finite Trotter number m in Suzuki-Trotter decomposition disappears in the 

continuity limit. Thus, KMC simulations become more convenient at low temperatures. Discrete imagery can 

sometimes be implemented more easily on computers than in real-time [57]. The 2-dimensional classical mesh in 

continuous imaginary time is shown in Figure 5 and Figure 6. 

 

Figure 5. Local update of two worldlines (a) discrete imaginary time (b) continuous imaginary time 

 

Figure 6. Worldlines (a) discrete imaginary time representation (b) continuous imaginary time representation 

A cluster update in continuous imaginary time with the loop algorithm is exemplified in Figure 7. 
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Figure 7.  An update scheme of the loop algorithm 

Figure 7(a) is the worldlines configuration before an update (thick black lines indicate upward spins, thin gray 

lines indicate downward spins). In Figure 7(b), there is a cluster update shown with thick gray lines with worldlines 

configuration. Figure 7(c) shows the world lines configuration after the directions of all spins in the cluster are 

changed. 

2.2 Expected Value & Thermodynamic Quantities 

In the lattice model, the partition function and the expected value of an observable are given by Equation 20 and 

Equation 21 where β =
1

kBT
, T is temperature, and kB is the Boltzmann constant. 

𝑍 = 𝑇𝑟[𝑒−𝛽�̂�]           (20) 

〈𝐴〉 =
𝑇𝑟[𝐴𝑒−𝛽�̂�]

𝑇𝑟[𝑒−𝛽�̂�]
           (21) 

The tough part is to deal with the Hamiltonian of the system in the statistical mechanics of many-particle quantum 

systems since the observables are in the form of large matrices. It is crucial to represent 〈A〉, by vertex weights, 

W(S), and the A(S) estimators belong to observables to apply the MCMC technique and calculate the expected 

values, 

〈𝐴〉 =
∑ 𝐴(𝑆)𝑊(𝑆)𝑆

∑ 𝑊(𝑆)𝑆
          (22) 

In the loop algorithm, the graph configuration G contains a wealth of information about the physical properties of 

the system. Estimators developed in conjunction with the loop algorithm are used to reduce measurement errors [15, 

57]. The expected value of an observable A over G graph, A(G), 

 

𝐴(𝐺) =
∑ 𝐴(𝑆)∆(𝑆,𝐺)𝑆

∑ ∆(𝑆,𝐺)𝑆
          (23) 

A(G) is the average of A(S) over 2NS(G) number of the worldlines configurations. NS(G) represents the number of 

clusters. 
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〈𝐴(𝐺)〉𝐺 =
1

𝑍
∑ 𝐴(𝐺)𝑊(𝐺) =

1

𝑍
∑ [

∑ 𝐴(𝑆)∆(𝑆,𝐺)𝑆

∑ ∆(𝑆,𝐺)𝑆
]𝐺 [∑ ∆(𝑆, 𝐺)𝑉(𝐺)𝑆 ]𝐺

〈𝐴(𝐺)〉𝐺 =
1

𝑍
∑ 𝐴(𝑆)[∑ ∆(𝑆, 𝐺)𝑉(𝐺)𝐺 ]𝑆 = 〈𝐴(𝑆)〉𝑆

    (24) 

The calculation of A(G) calculation is not cost-effective. It can be done more with the help of the symmetries 

found in an original physical system using improved evaluators. In addition, improved evaluators for correlation 

functions can be built and the calculation of correlation functions can be facilitated. The significant thermodynamic 

quantities that are calculated via the improved estimators in this study are given by Equation 25 and Equation 26, 

respectively. The thermal agitations are included in the atomic scale. 

𝑀𝛼 = ∑ 𝑆𝑖
𝛼

𝑖         (𝛼 = 𝑥, 𝑦, 𝑧)  (magnetization)       (25) 

𝐸 = −
1

𝑍

𝜕𝑍

𝜕𝛽
   (internal energy)        (26) 

2.3 The Boundaries of the Localizable Entanglement 

The entanglement has been quantified via a variety of measurement approaches, including concurrence, 

entanglement entropy, entanglement witness, and negativity. Verstraete, F., established a close connection between 

correlation functions and entanglement by describing localized entanglement between two sub-parts. It is the 

maximum amount of entanglement that can be localized via making local measurements in the rest of the system 

using the upper and lower limits.  Hence, this content focuses on determining the upper and lower limits of the 

entanglement of an N-qubit system. Nonetheless, a close relationship between entanglement phenomena and 

classical correlations has been established. The classical two-point correlation function (Equation 27) is associated 

with the upper limit [51]. 

𝑄𝛼𝛽
𝑖𝑗 (|𝜓⟩⟨𝜓|) = ⟨𝜓|�̂�𝛼

𝑖 ⊗ �̂�𝛽
𝑗
|𝜓⟩ − ⟨𝜓|�̂�𝛼

𝑖 |𝜓⟩⟨𝜓|�̂�𝛽
𝑗
|𝜓⟩      (27) 

By unrolling the equation LEij(ψ) ≥ max ∣ Qαβ
ij (ψ) ∣ for a given pure state |ψ⟩ of N qubits, a relationship 

between concurrence and localizable entanglement in spin-1/2 systems may be applied to higher-dimensional spin 

systems. The left side of the Eq.28 is associated with the lower bound of entanglement (LEij
lb) while the right side 

represents the upper bound of the entanglement (LEij
ub). However, the use of entanglement of assistance (EoA) 

reveals the upper bound. Thus, the following equation provides an easy way to express the bounds of entanglement. 

𝑚𝑎𝑥(|𝑄𝑥𝑥
𝑖𝑗

|, |𝑄𝑦𝑦
𝑖𝑗

|, |𝑄𝑧𝑧
𝑖𝑗

|) ≤ 𝐿𝐸𝑖,𝑗 ≤
√𝑋+

𝑖𝑗
+√𝑋−

𝑖𝑗

2
       (28) 

𝑥±
𝑖𝑗

= (1 ± ⟨𝜎𝑧
𝑖𝜎𝑧

𝑗
⟩)

2
− (⟨𝜎𝑧

𝑖⟩ ± ⟨𝜎𝑧
𝑗
⟩)

2
        (29) 

A strong methodology based on spin clustering on discrete imaginary time is introduced by loop algorithms as a 

significant means of simulating quantum spin systems. The Markov process exhibits a continuous loop of the 

transition from the spin (S) to graph (G) configurations, in contrast to the conventional Markov Chain Monte Carlo 

(MCMC). The simulation process has been carried out after introducing a spin-1/2 lattice with exchange coupling 

interactions and the model's Heisenberg Hamiltonian. Long equilibration times can be shortened by gradually 

lowering the temperature during thermalization. The thermalization cost is 103 of the Monte Carlo steps before the 

physical quantity measurement method. Here, we concentrated on the internal energy as a function of temperature 
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through the MC updates. Simulated data is used to calculate the Qαβ
ij

 and x±
ij

. N=40 quantum spin-1/2 particles are 

considered as a chain. The thermodynamic properties and the boundaries of entanglement are determined by Loop 

algorithm-based Quantum Monte Carlo simulation by ALPS package [48] in parallel. The temperature interval has 

been set to Tϵ(0,4]. The dipole-dipole interaction strength (Dϵ(0,4]) and the external magnetic field (Bzϵ(0,5]) are 

taken into account to emphasize the effect of these interactions to the boundaries of entanglement. Note that, 

exchange coupling constants are set to Jz=1, Jx=Jy=-1. 

3. FINDINGS & DISCUSSION 

A clear illustration of the spin chain and exchange coupling of a mixed magnetic state is given in Figure 8. FM 

and AFM states are indicated by Jz, Jx, and Jy couplings in a XXZ mixed state. Jx and Jy specify an AFM 

interaction while Jz indicates a FM interaction in a spin-1/2 chain. We have previously worked on isotropic AFM 

[47] and FM models [67] considering the dipole-dipole interaction, and thermal agitations. 

 

 

 

Figure 8. Illustration of spin chain with (a) random spin orientation (b) spin constrained to z-axis (c) exchange 

coupling constants.  

The average magnetization and internal energy per spin as a function of temperature are shown in Figure 9. 

Firstly, the dipole-dipole interaction is neglected. The spin chain shows ferromagnetic behavior. It is probably 

originated from ferromagnetic exchange interaction in the -z projection even though antiferromagnetic coupling lies 

for neighboring spins along the x and y-axis. A stronger external field leads to a higher phase transition temperature 

(Figure 9(a)). Even the phase seems to be transited, the average magnetization does not vanish. The highest field 

dominates the thermal agitations, ensuring the spin pairs are constrained along the magnetic field direction. The 

increasing magnetic field reduces the internal energy (Figure 9(b)). Moreover, increasing temperature causes an 

increment in internal energy. Under zero fields and lower magnetic fields, the energy gets closer to zero but does not 

converge, and tends to be zero for infinite temperature. 
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Figure 9. (a) Magnetization per spin (b) internal energy, as a function of temperature under external magnetic field, 
Bz=0.5, 1, 2, 5. 

In the absence of dipole-dipole interaction (D=0), the lower and upper limits of entanglement as a function of 

temperature under an external magnetic field are clearly shown in Figure 10. The lower limit of entanglement 

(Figure 10(a)) is inversely proportional to the temperature. The external field contributes to lower limit values of LE. 

It is more than 3 times the lower limit of Bz=0 at nearly zero temperature. The maximum value of lower limit LE is 

calculated as 0.25. The strongest field preserves it up to T=1 and inhibits the lower limit from vanishing. There is an 

analogy between magnetization and lower limit (Figure 10(b)). The upper limit of LE is almost 1 (unity) at every 

temperature regime in the absence of an external field. Increasing the magnetic field estranges the upper limit from 

the saturation area. At low temperatures and strong fields, the value of this limit is around 0.75. Consequently, the 

external field acts directly to the bounds. 

 

Figure 10. (a) LE lower limit (b) LE upper limit as a function of temperature under external magnetic field, Bz=0.5, 
1, 2, 5. 

In the absence of external field, lower bound values are decreasing by the increasing dipolar strength for D=0 and 

D=1 at low temperatures (Figure 11). For D≥1, increasing D hoist the lower limit. The temperature-dependent 

behavior is monotonic decreasing. We take a sensitive focus on the effect of dipolar strength in the range of Dϵ(0,1). 

The lower bound values show a decreasing-increasing behavior, briefly fluctuating, for consecutive temperature 

values.  This can be sort of an awakening phenomenon. Each D creates an individual turning point. The strength of 

D is a natural tuner of these points as well (Figure 11(b)).  
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Figure 11. LE lower limit as a function of temperature under zero magnetic field with exchange coupling constants 
Jx=-1, Jy=-1, Jz=1 for (a) D=0, 1, 2, 4 (b) D= 0.25, 0.5, 0.75, 1. 

When Bz=0.5, the lower limit values decrease as D increases in the range 1>D>0. The lowest D value (D=0.25) 

entails the highest lower limit values at low temperatures. For D>1, it is seen that as D increases, the values of the 

lower limit increase. D=2 and D=4 are not as entangled at very low temperatures as they are at D=0.25 and D=0.5. 

However, D=4 resists the distorting effect of temperature and keeps the amount of entanglement farther from zero 

(see Figure 12). 

 

Figure 12. LE lower limit as a function of temperature under Bz=0.5 magnetic field with exchange coupling 
constants Jx=-1, Jy=-1, Jz=1 for (a) D=0, 1, 2, 4 (b) D= 0.25, 0.5, 0.75, 1. 
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Figure 13. LE lower limit as a function of temperature under Bz=1 magnetic field with exchange coupling constants 
Jx=-1, Jy=-1, Jz=1 for (a) D=0, 1, 2, 4 (b) D= 0.25, 0.5, 0.75, 1. 

The behavior changes as the external field increases. The reason is the dominancy of the external field to the 

dipolar effect and thermal. The lower limit decreases monotonically (Figure 14 and Figure 15) inverse proportional 

to the D.  

 

Figure 14. LE lower limit as a function of temperature under Bz=2 magnetic field with exchange coupling constants 
Jx=-1, Jy=-1, Jz=1 for (a) D=0, 1, 2, 4 (b) D= 0.25, 0.5, 0.75, 1. 

 

Figure 15. LE lower limit as a function of temperature under Bz=5 magnetic field with exchange coupling constants 
Jx=-1, Jy=-1, Jz=1 for (a) D=0, 1, 2, 4 (b) D= 0.25, 0.5, 0.75, 1. 
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The upper limit has its maximum value for all D values in the absence of an external field (Figure 17). As the 

external field increases, the upper limit decreases for lower temperatures as D decreases for T≥1.5; besides, they all 

overlap at the maximum value. Although this behavior does not change for 5>Bz≥0, the value of the T temperature 

at which all D curves begin to overlap increases. When Bz=5, the upper limit values corresponding to all D values 

decrease and reach their maximum with temperature and do not overlap. 

 
Figure 17. The upper limit of localizable entanglement under zero magnetic field for exchange coupling constants 

Jx=-1, Jy=-1, Jz=1 and dipolar interaction with D=0, 1, 2, 4. 

 
Figure 18. The upper limit of localizable entanglement under Bz=0.5 magnetic field for exchange coupling 

constants Jx=-1, Jy=-1, Jz=1 and dipolar interaction with D=0, 1, 2, 4. 

 
Figure 19. The upper limit of localizable entanglement under Bz=1 magnetic field for exchange coupling constants 

Jx=-1, Jy=-1, Jz=1 and dipolar interaction with D=0, 1, 2, 4. 
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Figure 20. The upper limit of localizable entanglement under Bz=2 magnetic field for exchange coupling constants 
Jx=-1, Jy=-1, Jz=1 and dipolar interaction with D=0, 1, 2, 4. 

 

Figure 21. The upper limit of localizable entanglement under Bz=5 magnetic field for exchange coupling constants 
Jx=-1, Jy=-1, Jz=1 and dipolar interaction with D=0, 1, 2, 4. 

Localizable entanglement between nearest neighboring spins is determined through lower and upper bounds for 

mixed magnetic states. The distance-dependent entanglement is discussed including the temperature and external 

field. In the absence of field (Bz = 0), LE of neighboring 20 spins is gradually measured (Figure 22). D = 4 

dominates the thermal effects maximizing the lower bounds except T = 3.5. At very high temperatures (T = 3.5), this 

behavior does not change but is not at its maximum value. Accordingly, it can be said that as the temperature 

increases, the lower limit does not change according to the distance for D=4. The situation is slightly different for 

other dipole constants. In the absence of dipole-dipole interaction at T = 0.1, the lower limit of the entanglement is 

not damped until n = 10 adjacent spins. At T = 0.5 temperature, the distortion effect of temperature reduced the 

number of spins of the nearest n = 10 neighbors entangled for D = 0. At T ≥ 1 temperature, the lower limit is damped 

for all D values starting from the 2nd adjacent spin. When D < 4, the distorting effect of temperature dominates the 

dipole-dipole interaction. 
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Figure 22. The lower limit of LE under zero magnetic field for 20 nearest neighboring at temperatures (a) T=0.1 (b) 
T=0.5 (c) T=1 (d) T=3.5 

According to Figure 22(c) (𝐷 = 2), there is non-monotonic 𝐿𝐸𝑖𝑗
𝑙𝑏  values underlying "rival regions" at low 

temperatures and under low magnetic fields. 
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Figure 23. The illustration of the lower limit of LE under Bz=0.5 magnetic field for 10 nearest neighboring spins. 

The variation of the lower limit of entanglement with temperature according to the nth neighboring spins under 

the external magnetic field Bz = 0.5 is given in Figure 23 for D = 0, 1, 2, and 4, respectively. At Bz = 0.5, for D = 0, 

the behavior of the first 10 neighboring spins with temperature is monotonous but does not change according to the 

length at low temperatures. At D = 1, the lower limit for all neighboring spins suddenly fell at low temperatures and, 

immediately after, increased until T = 0.5. At these low temperatures, the first and second neighboring spins, n=1 

and n=2, have subdued lower bound values than the rest. D = 4 is the strength where the lower limit is maximized at 

both high and low temperatures. Except for D = 4 and Bz = 2, all other D strengths do not affect the system. D=4 

causes a weak odd-even effect for n = 4. However, as D increases, the lower limit values decrease related to 

temperature and n. The change of the lower limit of entanglement with temperature according to the number of nth 

neighbors under the external magnetic field Bz = 2 is given in Figure 24 for D = 0, 1, 2, and 4, respectively. In the 

absence of a dipolar interaction, an external field merely takes place and influences the bounds of entanglement. As 

shown in Figure 24(a), there is a monotonic behavior in which LE decreases by increasing temperature for all nth 

neighboring spins except the nearest one. This discrepancy is abolished through the existence of dipolar interaction. 

According to Figure 24(d) (𝐷 = 4), there is non-monotonic 𝐿𝐸𝑖𝑗
𝑙𝑏  values pointing to "revival regions" at low 

temperatures under low magnetic fields. Note that n=3 (3rd neighboring spins) is a clear fluctuation point that the 

value of the lower limit abruptly changes. 
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Figure 24. The illustration of the lower limit of LE under Bz=2 magnetic field for 10 nearest neighboring spins. 

4. CONCLUSION 

The upper and lower bounds of LE are quantified to measure entanglement between any two parts of the 

multipartite XXZ spin chain. In the T→0 case, the lower bound possesses a monotonically increasing trend 

proportional to the applied field when dipole-dipole interaction is disregarded. This behavior works for increasing 

temperature. As expected, thermal agitations distort the lower bound, and non-monotonic behavior takes place at 

relatively low temperatures. In the absence of dipole-dipole interaction at T = 0.1, the lower limit of the 

entanglement is not damped until n = 10 adjacent spins. At T = 0.5, the distortion effect of temperature reduced the 

number of spins of the nearest n = 10 neighbors entangled for D = 0. There is a monotonic behavior in which LE 

decreases by increasing temperature for all nth neighboring spins except the nearest one under when D = 0 under Bz 

= 0.5 magnetic field while a non-monotonic attitude points to rival regions at low temperatures. 
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