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Abstract 

In this work the exact free axisymmetric pure radial vibration of hollow infinite cylinders made of hypothetically 

functionally power-graded materials having identical inhomogeneity indexes for both Young’s modulus and the material 

density is addressed. The equation of motion is obtained as a linear second-order Bessel’s ordinary differential equation 

with constant coefficients based on the axisymmetric linear elasticity theory.  For traction free boundaries, a closed form 

frequency equation is offered. After verifying the present results for cylinders made of both isotropic and homogeneous 

materials, and isotropic functionally graded materials, an extensive parametric study is carried out to investigate the 

influences of both the thickness and inhomogeneity indexes on the natural frequencies. Results are presented in both 

graphical and tabular forms. It was revealed that the fundamental frequency in the radial mode is principally affected from 

the inhomogeneity parameters than the higher ones. However, the natural frequencies except the fundamental ones are 

dramatically affected from the thickness of the cylinder. As the thickness decreases, the natural frequencies considerably 

increase.  It is also revealed that, there is a linear relationship between the fundamental frequency and others in higher 

modes. 

Keywords: Free vibration, natural frequency, thick-walled hollow cylinder, functionally graded. 

1. Introduction 

Vibration of thin/thick-walled cylinders is of great significance in many engineering applications such 

as pressure vessel, heat exchangers, nuclear reactor containments, various pipes and tubes. Pioneering 

studies concerning the vibration of cylinders date back late of 1800s.  One of the earliest works on the 

vibration of cylinders was carried out by Chree [1]. Using the linear three dimensional elasticity theory, 

Greenspon [2] studied the flexural vibrations of infinitely long traction free hollow thick-walled 

cylinders. Gazis [3] studied the vibration of infinitely long traction free hollow cylinders on the basis 

of three dimensional elasticity theory. Gladwell and Tahbildar [4] solved the problem of axisymmetric 

vibrations of cylinders with the help of the finite-element method. Gladwell and Vijay [5] also analyzed 

the vibration of free finite length circular cylinders based on the finite element approach. Hutchinson 

[6] first handled the vibrations of finite length rods and solid cylinders on the basis of linear 3D 

elasticity and offered a semi-analytical highly accurate method to solve the problem. Then, Hutchinson 

and El-Azhari [7] applied the same method for the vibrations of free hollow finite length circular 

cylinders. By employing the energy method based on the 3D theory of elasticity, Singal and Williams 

[8] studied theoretically and experimentally the vibrations of thick hollow cylinders and rings. The 

axisymmetric stress-free vibration of a thick elastic cylinder has been studied under plane strain 

conditions by Gosh [9]. Gosh [9] obtained the solution for forced vibration by using the Laplace 

transform and presented natural frequency and dynamic stresses for various types of loading, Poisson’s 
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ratio and aspect ratios of the cylinder. Leissa and So [10], and So and Leissa [11] studied three-

dimensional analysis of the vibrations of free and cantilevered solid cylinders using simple algebraic 

polynomials in the Ritz method. Liew et al. [12] investigated the free vibrations of stress free hollow 

cylinders of arbitrary cross-section based on the three dimensional energy displacement expressions. 

Hung et al. [13] considered the free vibration of cantilevered cylinders. Wang and Williams [14] 

presented vibrational modes of thick-walled cylinders of finite length based on the finite element 

method. On the basis of linear 3D theory of elasticity, and by using the Ritz method and Chebyshev 

polynomials, Zhou et al. [15] worked on the vibration analysis of solid and hollow circular cylinders 

including rods and curved panels. In this general semi-analytical series solution having high accuracy 

and good convergence, offered by Zhou et al. [15], the technique of variables separation is developed 

for  various boundary conditions. Mofakhami et al. [16] studied the free vibration of cylinders with 

finite length under fixed-fixed and free-free boundaries based on the solutions of infinite cylinders and 

the technique of separation of variables. Abbas [17] treated with the free vibration of a poroelastic 

hollow cylinder. Yahya and Abd-Alla [18] considered pure radial vibrations in an isotropic elastic 

hollow cylinder with rotation.  

As time progresses and engineers familiarize themselves with new advanced materials such as 

anisotropic, functionally graded, carbon nanotube composites, studies have focused on the vibration 

problems of cylinders made of such advanced materials. From those Nelson et al. [19] worked on 

vibration and waves in laminated orthotropic circular cylinders. Vibration of anisotropic composite 

cylinders is addresses by Huang and Dong [20]. Yuan and Hsih [21] investigated three dimensional 

wave propagation in composite cylindrical shells. By using the Ritz method, Kharouf and Heyliger 

[22] presented a numerical method for finding approximate solutions to static and axisymmetric 

vibration problems for piezoelectric cylinders, including those composed of more than one material. 

Markus and Mead [23-24] studied both axisymmetric and asymmetric wave motion in orthotropic 

cylinders. Ding et al. [25-26] studied elasto-dynamic and thermoelastic-dynamic problems of a non-

homogeneous orthotropic hollow cylinders. 

As to the functionally graded materials (FGM), Heyliger and Jilani [27] studied the free vibrations of 

inhomogeneous elastic cylinders and spheres. By using strains-displacement relations from Love’s 

shell theory and the eigenvalue governing equation from Rayleigh-Ritz method, Loy et al. [28] 

presented a study on the vibration of cylindrical shells made of a functionally graded material (FGM) 

composed of stainless steel and nickel. The properties are graded in the thickness direction according 

to a volume fraction power-law distribution in Loy et al’s [28] study. Their results showed that the 

frequency characteristics are similar to that observed for homogeneous isotropic cylindrical shells and 

the frequencies are affected by the constituent volume fractions and the configurations of the 

constituent materials. Han et al. [29] presented an analytical-numerical method for analyzing 

characteristics of waves in a cylinder composed of functionally graded material (FGM) by dividing the 

FGM cylinder into a number of annular elements with three-nodal-lines in the wall thickness. Han et 

al. [29] assumed a linear variation of material properties along the thickness direction and used the 

Hamilton principle to develop the dispersion equations for the cylinder. Their numerical results 

demonstrated that the ratio of radius to thickness has a stronger influence on the frequency spectra in 

the circumferential wave than on that in the axial wave. Patel et al. [30] studied the free vibration 

analysis of functionally graded elliptical cylindrical shells based on the higher-order theory. Pelletier 

and Vel [31] studied analytically the steady-state thermoelastic response of functionally graded 

orthotropic cylindrical shells. Arciniega and Reddy [32] considered a large deformation analysis of 

functionally graded shells. Yang and Shen [33] investigated the free vibration of shear deformable 

functionally graded cylindrical panels. Jianqiao et al. [34] dealt with wave propagation in non-

homogeneous magneto-electro-elastic hollow cylinders. Abd-Alla et al. [35] studied influences of the 

inhomogeneity on the composite infinite cylinder of isotropic material. Based on the first-order shear 
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deformation theory and linear elasticity, Tornabene et al. [36] studied the dynamic behavior of 

functionally graded moderately thick conical, cylindrical shells and annular plates via the generalized 

differential quadrature (GDQ) method. They considered two different power-law distributions for the 

ceramic volume fraction.  Keleş and Tutuncu [37] analytically performed free and forced vibration 

analyses of power-law graded hollow cylinders and spheres. Although their subject matters are out of 

the present study, it may be useful to cite some studies concerning the vibration of cylinders and 

cylindrical shells which are functionally graded with state-of-the-art technological structural materials 

[38-40] in the open literature. 

As seen from the above literature survey, vibration problems of solid/hollow cylinders made of 

functionally graded materials are not studied widely over the time. This was the motivation to the 

author. As a fundamental work, the present study may be thought of as an extension of Gosh’s [9] 

study to traction free cylinders made of isotropic functionally graded materials. In the present study, 

to achieve an analytical solution for natural frequencies in purely radial modes, the inhomogeneity 

indexes of both elasticity modulus and Poisson’s ratio are assumed to be identical by necessity. As 

stated in the related section, otherwise, it is not possible to get a closed form solution. In these cases, 

the employment of any numerical procedure becomes compulsory. One of the aims of the present study 

is to have a rough idea about the general response of such cylinders to the free vibration before 

numerically treatment of the problem. In the parametric study, almost all the variables which 

substantially influence on the natural frequencies are considered except the effect of Poisson’s ratio. 

In Gosh’s study [9] the effect of Poisson’s ratios on the natural frequencies was clearly disclosed. The 

numerical results given here may also be served as a benchmark solution to some advanced numerical 

studies. 

2. Clarification of the Problem 

 
 

Fig. 1. Geometry of a cylinder 

Let’s consider a thick-walled hollow cylinder with inner radius 𝑎  and outer radius 𝑏   (Fig. 1). Under 

axisymmetric conditions, relationships between strain and displacement are written in polar 

coordinates as 

dr

dur
r      ;     

r

ur                                                               (1) 
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 where the radial unit strain and the circumferential unit strain are symbolized by r  , and 
 , 

respectively. In Eq. (1), the radial displacement is represented by ru . If  r  , and   signify the radial 

stress and the hoop stress, respectively, then Hooke’s law for an infinite cylinder made of an isotropic 

and homogeneous linear elastic material  is given by 

   )()( 1211 rCrC rr 
 

  (2)                                                                       

     )()( 1112 rCrC r 
 

Where under plain strain assumptions  

𝐶11(𝑟) = 𝐸(𝑟)
(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
 

       (3) 

𝐶12(𝑟) = 𝐸(𝑟)
𝜈

(1 + 𝜈)(1 − 2𝜈)
 

For an isotropic but non-homogeneous FGM material, the material grading rule in the radial direction 

is assumed to obey the following simple power rule 

𝐸(𝑟) = 𝛦𝑏 (
𝑟

𝑏
)

𝜂

 

 (4) 

𝜌(𝑟) = 𝜌𝑏(
𝑟

𝑏
)𝜂 

where  is the material density. The material inhomogeneity index is denoted by 𝜂;  𝛦𝑏 and 𝜌𝑏 are the 

reference values of the mixture of the material at the outer surface. Poisson’s ratios of both graded 

materials are assumed to be unaffected along the radial direction as in the most of the related realm.  

In Eq. (4) those properties do not completely correspond to a physical material since both Young’s 

modulus and density are assumed to have the same inhomogeneity index. To get an analytical solution 

to the problem, as seen later, taking both inhomogeneity indexes as if they are identical is going to be 

inevitable because it is not possible to find a closed-form solution in other choices which require 

exactly numerical solution techniques.  

If the body forces are neglected, the equation of motion in the radial direction is written as follows 
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where t  is the time. Substitution both Eq. (1) and (2) together with Eq. (4) into Eq. (5) gives  
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By assuming a harmonic motion, 
ti

rr erutru 
 )(),( * , with an angular velocity )/( srad  , Eq. (6) gives 

way to Bessel’s differential equations [41-43].  



V. Yıldırım 

32 

 

− (
1 − 𝜂 (

𝜈
1 − 𝜈

)

𝑟2
+ 𝛺2) 𝑢𝑟

∗ + (
1 + 𝜂

𝑟
)

𝑑𝑢𝑟
∗

𝑑𝑟
+

𝑑2𝑢𝑟
∗

𝑑𝑟2
 = 0                            (7)      

where 

𝛺 = √
𝜌(𝑟)

𝐶11(𝑟)
𝜔 = √

(1 − 2𝜈)(1 + 𝜈)𝜌𝑏

(1 − 𝜈)𝛦𝑏
𝜔 = √

(1 − 𝜈 − 2𝜈2)𝜌𝑏

(1 − 𝜈)𝛦𝑏
𝜔 =

𝛽

𝑎
                           (8)      

           

and 𝛽 is the dimensionless natural frequency. The solution to this equation, Eq. (7), is going to be in 

the form of [41-43] 

𝑢𝑟
∗(r) = 𝑟−𝜂 2⁄ (𝐶1𝐽𝜉

2

(𝑟𝛺) + 𝐶2𝑌𝜉

2

(𝑟𝛺))                                            (9) 

where 𝐶1 and 𝐶2  are arbitrary constants and 𝐽𝜉

2

(𝑟𝛺)    and   𝑌𝜉

2

(𝑟𝛺) denote Bessel’s functions of the first 

and second kind of order  
𝜉

2
, respectively, and  𝜉   is                                                                                 

𝜉 = √4 + η2 − 4η (
ν

1−ν
) = √

(−4−𝜂2+(2+𝜂)2𝜈)

(𝜈−1)
                                      (10) 

The first derivative of the solution of the radial displacement, 𝑢𝑟
∗ , and the radial stress, 𝜎𝑟

∗, may be 

obtained in terms of integration constants, 𝐶1 and 𝐶2, as follows 

𝑑𝑢𝑟
∗

𝑑𝑟
= 𝑟−𝜂 2⁄ (

1

2
𝐶1𝛺 (𝐽𝜉

2
−1

(𝑟𝛺) − 𝐽𝜉
2

+1
(𝑟𝛺)) + 𝐶2𝛺 (𝑌𝜉

2
−1

(𝑟𝛺) − 𝑌𝜉
2

+1
(𝑟𝛺)))

−
1

2
𝜂𝑟−

𝜂
2

−1 (𝐶1𝐽𝜉
2

(𝑟𝛺) + 𝐶2𝑌𝜉
2

(𝑟𝛺)) 

(11) 

𝜎𝑟
∗(𝑟) =

𝛦𝑏𝑟−
𝜂
2

−1 (
𝑟
𝑏

)
𝜂

2(2𝜈2 + 𝜈 − 1)
(𝐶1(𝜂 − (𝜂 + 2)𝜈)𝐽𝜉

2

(𝑟𝛺) + 𝐶1(𝜈 − 1)𝑟𝛺𝐽𝜉−2
2

(𝑟𝛺) − 𝐶1(𝜈 − 1)𝑟𝛺𝐽𝜉+2
2

(𝑟𝛺)

+ 𝐶2(𝜂 − (𝜂 + 2)𝜈)𝑌𝜉
2

(𝑟𝛺) + 𝐶2(𝜈 − 1)𝑟𝛺𝑌𝜉−2
2

(𝑟𝛺) − 𝐶2(𝜈 − 1)𝑟𝛺𝑌𝜉+2
2

(𝑟𝛺)) 

Eqs. (9) and (11) are used when applying the boundary conditions given at both surfaces. The radial 

displacement vanishes,  𝑢𝑟
∗ = 0, at the fixed surface while the radial stress becomes zero, 𝜎𝑟

∗ = 0,  at 

the free surface. For instance, if surface-free boundaries are considered then one may obtain   

{
𝜎𝑟

∗(𝑎)

𝜎𝑟
∗(𝑏)

} = [
𝐴1,1 𝐴1,2

𝐴2,1 𝐴2,2
] {

𝐶1

𝐶2
} = 𝑨 {

𝐶1

𝐶2
} = {

0
0

}                                         (12) 

To get non-trivial solutions, natural frequencies are determined from the frequencies which make the 

determinant of the characteristic coefficient matrix, 𝑨, zero.  Considering traction-free boundary 

conditions for a hollow infinite cylinder made of a hypothetically functionally power-graded material, 

elements of the coefficient matrices are found in closed forms as follows 
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𝐴1,1 =

𝑎−
𝜂
2

−1 (
𝑎
𝑏

)
𝜂

(𝑎(𝜈 − 1)𝛺𝐽𝜉−2
2

(𝑎𝛺) + (𝜂 − (𝜂 + 2)𝜈)𝐽𝜉
2

(𝑎𝛺) − 𝑎(𝜈 − 1)𝛺𝐽𝜉+2
2

(𝑎𝛺)) 𝛦𝑏

2(2𝜈2 + 𝜈 − 1)
 

 

𝐴1,2 =

𝑎−
𝜂
2

−1 (
𝑎
𝑏

)
𝜂

(𝑎(𝜈 − 1)𝛺𝑌𝜉−2
2

(𝑎𝛺) + (𝜂 − (𝜂 + 2)𝜈)𝑌𝜉
2

(𝑎𝛺) − 𝑎(𝜈 − 1)𝛺𝑌𝜉+2
2

(𝑎𝛺)) 𝛦𝑏

2(2𝜈2 + 𝜈 − 1)
 

 (13) 

𝐴2,1 =

𝑏−
𝜂
2

−1 (𝑏(𝜈 − 1)𝛺𝐽𝜉−2
2

(𝑏𝛺) + (𝜂 − (𝜂 + 2)𝜈)𝐽𝜉
2

(𝑏𝛺) − 𝑏(𝜈 − 1)𝛺𝐽𝜉+2
2

(𝑏𝛺)) 𝛦𝑏

2(2𝜈2 + 𝜈 − 1)
 

 

𝐴2,2 =

𝑏−
𝜂
2

−1 (𝑏(𝜈 − 1)𝛺𝑌𝜉−2
2

(𝑏𝛺) + (𝜂 − (𝜂 + 2)𝜈)𝑌𝜉
2

(𝑏𝛺) − 𝑏(𝜈 − 1)𝛺𝑌𝜉+2
2

(𝑏𝛺)) 𝛦𝑏

2(2𝜈2 + 𝜈 − 1)
 

3. Authentication of the Formulation 

To confirm the present dimensionless frequencies, as a first example, a hollow infinite thin-walled 

cylinder made of an isotropic and homogeneous material is considered. The first ten natural frequencies 

are listed in Table 1. As seen from this table there is full agreement with those of Gosh’s [9] 

frequencies. 

As a second example a hollow infinite cylinder made of a hypothetically power-law graded material is 

taken into account. Results, which are all based on the similar procedure, are tabulated in Table 2 in a 

comparative manner. In this table, 𝜂 = 0 corresponds a cylinder made of an isotropic and homogeneous 

material. It is seen from Table 2 that present results are in good harmony with the others. Figure 2 

shows also the determinant-dimensionless frequency curve for 𝜂 = −5, and b/a=2. 

 
Table 1. Comparison of the present non-dimensional results with the open literature for thin-walled 

cylinder made of an isotropic and homogeneous material (𝜈 = 0.3; 
𝑏

𝑎
= 1.02) 

  
Present     [9] 

𝛽1 0.894602 0.89 

𝛽2 157.082 157.10 

𝛽3 314.161 314.20 

𝛽4 471.24 471.20 

𝛽5 628.319 628.30 

𝛽6 785.399 785.40 

𝛽7 942.478 942.50 

𝛽8 1099.56 1100.00 

𝛽9 1256.64 1257.00 

𝛽10 1413.72 1414.00 
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Table 2. Comparison of the present FGM results with the open literature (b/a=2, 𝜈 = 0.3 ). 

 
 𝜂 = −5 𝜂 = −2 𝜂 = 0 𝜂 = 2 𝜂 = 5  

Present [37] Present [37] Present  [9]  [37] Present [37] Present  [37] 

𝛽1 0.752017 0.77435 0.684418 0.69407 0.633263 0.6335 0.63563 0.586987 0.58309 0.537493 0.52547 

𝛽2 3.4389 3.43985 3.20038 3.20181 3.21655 3.218 3.21793 3.3714 3.37244 3.81843 3.81886 

𝛽3 
6.44741 6.44802 6.31288 6.31356 6.3193 6.319 6.31999 6.40267 6.40331 6.66528 6.66578 

𝛽4 
9.53654 9.53698 9.44462 9.44508 9.44864 9.449 9.44910 9.50494 9.50538 9.6854 9.68579 

𝛽5 
12.6508 12.65115 12.5813 12.58161 12.5842 12.58 12.58455 12.6266 12.62695 12.7634 12.76368 

𝛽6 
15.7758 15.77602 15.7199 15.72016 15.7222 15.72 15.72249 15.7562 15.75647 15.8661 15.86638 

𝛽7 
18.9062 18.90638 18.8595 18.85972 18.8614 18.86 18.86165 18.8898 18.89000 18.9816 18.98183 

𝛽8 
22.0397 22.03991 21.9997 21.99987 22.0013 22.00 22.00151 22.0256 22.02583 22.1045 22.10466 

𝛽9 
25.1753 25.17544 25.1402 25.14037 25.1416 25.14 25.14180 25.1629 25.16309 25.232 25.23214 

𝛽10 
28.3122 28.31231 28.281 28.28112 28.2822 28.28 28.28239 28.3012 28.30131 28.3626 28.36273 

 

 
Fig. 2. Determinant-dimensionless frequency curve for 𝜂 = −5,  and b/a=2 

 

4. Effects of the Aspect Ratios and Material Gradients on the Natural Frequencies 

In this section a FGM cylinder of 𝜈 = 0.3 is considered. The functionally graded material (FGM) is 

taken to be a hypothetical one exhibiting significant inhomogeneity.  

Variation of the natural frequencies with the aspect ratio, which is defined as the ratio of the outer and 

inner radii, and inhomogeneity indexes is presented in Tables 3 and 4. Table 3 indicates the influence 

of the aspect ratios and inhomogeneity indexes, which is defined in Eq. (4), on the first ten natural 

frequencies of a FGM free-free infinite cylinder for 𝜂 = −5, 𝜂 = 0, 𝜂 = 7, and 𝜂 = 10. Table 4 shows 

the influence of the aspect ratios and inhomogeneity indexes on the first three natural frequencies of a 

FGM free-free infinite cylinder for some inhomogeneity indexes whose values are changed from 𝜂 =

−4  to 𝜂 = 5 with an increase by the unit, except 𝜂 = 0. 

 

 



V. Yıldırım 

35 

 

 

 
Table 3. The influence of the aspect ratios and inhomogeneity indexes on the first ten natural frequencies of a 

FGM free-free infinite cylinder (𝜈 = 0.3) for 𝜂 = −5, 𝜂 = 0, 𝜂 = 7, and 𝜂 = 10 

 

𝑏/𝑎 

 

1.02 1.03 1.04 1.05 1.075 1.10 1.25 1.50 1.75 2.00 

 𝜂 = −5 

𝛽1 0.894748 0.890568 0.886514 0.882583 0.873263 0.864622 0.82422 0.785036 0.764088 0.752017 

𝛽2 157.093 104.74 78.566 62.8643 41.9354 31.4778 12.7008 6.49988 4.45582 3.4389 

𝛽3 314.166 209.449 157.093 125.68 83.7996 62.8628 25.2007 12.6787 8.52027 6.44741 

𝛽4 471.243 314.166 235.628 188.506 125.68 94.2684 37.7445 18.9249 12.6628 9.53654 

𝛽5 628.322 418.884 314.166 251.336 167.564 125.679 50.2996 25.1894 16.8278 12.6508 

𝛽6 785.401 523.603 392.704 314.166 209.449 157.092 62.8591 31.4613 21.0022 15.7758 

𝛽7 942.48 628.322 471.243 376.997 251.335 188.506 75.421 37.737 25.1813 18.9062 

𝛽8 1099.56 733.041 549.782 439.828 293.222 219.92 87.9841 44.0147 29.3632 22.0397 

𝛽9 1256.64 837.761 628.322 502.659 335.109 251.335 100.548 50.2939 33.5468 25.1753 

𝛽10 1413.72 942.48 706.861 565.49 376.996 282.75 113.112 56.5739 37.7316 28.3122 

 𝜂 = 0 

𝛽1 0.894602 0.890244 0.885946 0.881708 0.871366 0.861367 0.807616 0.736002 0.67955 0.633263 

𝛽2 157.082 104.724 78.5453 62.8386 41.8978 31.4289 12.595 6.33146 4.25189 3.21655 

𝛽3 314.161 209.442 157.082 125.667 83.7808 62.8383 25.147 12.5902 8.40834 6.3193 

𝛽4 471.24 314.161 235.621 188.498 125.667 94.2521 37.7086 18.8654 12.5868 9.44864 

𝛽5 628.319 418.88 314.161 251.329 167.554 125.667 50.2726 25.1446 16.7704 12.5842 

𝛽6 785.399 523.6 392.7 314.161 209.441 157.082 62.8375 31.4254 20.9562 15.7222 

𝛽7 942.478 628.319 471.24 376.992 251.329 188.498 75.403 37.707 25.1429 18.8614 

𝛽8 1099.56 733.039 549.779 439.824 293.217 219.913 87.9687 43.9891 29.3302 22.0013 

𝛽9 1256.64 837.759 628.319 502.656 335.104 251.329 100.535 50.2714 33.5179 25.1416 

𝛽10 1413.72 942.478 706.859 565.487 376.992 282.745 113.1 56.5539 37.7059 28.2822 

 𝜂 = 7 

𝛽1 0.894397 0.88979 0.885153 0.880487 0.868724 0.856851 0.785445 0.676595 0.587642 0.517028 

𝛽2 157.133 104.799 78.6447 62.9616 42.0777 31.6628 13.0978 7.11859 5.18815 4.22088 

𝛽3 314.186 209.479 157.132 125.729 83.8709 62.9557 25.4038 13.0114 8.93897 6.92433 

𝛽4 471.257 314.186 235.654 188.539 125.727 94.3304 37.8805 19.1498 12.9492 9.8673 

𝛽5 628.332 418.899 314.185 251.36 167.599 125.726 50.4017 25.3589 17.0445 12.9023 

𝛽6 785.409 523.615 392.72 314.185 209.478 157.129 62.9409 31.5972 21.1763 15.9782 

𝛽7 942.487 628.332 471.256 377.013 251.359 188.537 75.4891 37.8503 25.3268 19.0754 

𝛽8 1099.57 733.05 549.794 439.842 293.243 219.947 88.0425 44.112 29.488 22.1851 

𝛽9 1256.64 837.768 628.332 502.671 335.127 251.358 100.599 50.379 33.6561 25.3026 

𝛽10 1413.72 942.487 706.87 565.501 377.012 282.771 113.158 56.6496 37.8288 28.4255 

 𝜂 = 10 

𝛽1 0.89431 0.889597 0.884814 0.879968 0.86761 0.854972 0.777305 0.66029 0.568707 0.498278 

𝛽2 157.178 104.866 78.733 63.0709 42.2372 31.8695 13.5291 7.74807 5.88568 4.9228 

𝛽3 314.209 209.513 157.176 125.783 83.9511 63.06 25.6302 13.3752 9.38644 7.42197 

𝛽4 471.272 314.208 235.684 188.575 125.781 94.4001 38.0328 19.3995 13.2639 10.2267 

𝛽5 628.343 418.916 314.208 251.387 167.639 125.778 50.5163 25.5481 17.2851 13.1796 

𝛽6 785.418 523.628 392.738 314.207 209.51 157.171 63.0327 31.7493 21.3705 16.203 

𝛽7 942.494 628.343 471.271 377.031 251.386 188.572 75.5657 37.9774 25.4894 19.2641 

𝛽8 1099.57 733.059 549.806 439.857 293.265 219.977 88.1082 44.2211 29.6278 22.3475 

𝛽9 1256.65 837.776 628.343 502.685 335.147 251.385 100.657 50.4746 33.7787 25.4452 

𝛽10 1413.73 942.494 706.88 565.513 377.03 282.794 113.209 56.7346 37.9379 28.5524 
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Table 4. The influence of the aspect ratios and inhomogeneity indexes on the first three natural frequencies of 

a FGM free-free infinite cylinder (𝜈 = 0.3) for 𝜂 = −4, −3, −2, −1, 1, 2, 3, 4, and  5 

 

𝑏/𝑎 

 

1.02 1.03 1.04 1.05 1.075 1.10 1.25 1.50 1.75 2.00 

 𝜂 = −4 

𝛽1 0.894719 0.890503 0.8864 0.882408 0.872884 0.863973 0.820964 0.775819 0.748964 0.731791 

𝛽2 157.088 104.732 78.5558 62.8516 41.9168 31.4536 12.6484 6.41608 4.35369 3.32657 

𝛽3 314.163 209.446 157.088 125.674 83.7903 62.8507 25.1741 12.6348 8.46472 6.38368 

 𝜂 = −3 

𝛽1 0.89469 0.890438 0.886287 0.882233 0.872505 0.863323 0.81766 0.766172 0.732559 0.709067 

𝛽2 157.084 104.726 78.5486 62.8427 41.9037 31.4366 12.6114 6.35679 4.28103 3.24623 

𝛽3 314.161 209.443 157.084 125.669 83.7837 62.8422 25.1554 12.604 8.42558 6.33871 

 𝜂 = −2 

𝛽1 0.89466 0.890373 0.886173 0.882058 0.872125 0.862671 0.814323 0.756219 0.715205 0.684418 

𝛽2 157.082 104.723 78.5444 62.8375 41.8962 31.4268 12.5902 6.32271 4.23937 3.20038 

𝛽3 314.16 209.441 157.082 125.667 83.78 62.8373 25.1447 12.5862 8.40307 6.31288 

 𝜂 = −1 

𝛽1 0.894631 0.890308 0.88606 0.881883 0.871746 0.862019 0.81097 0.746108 0.697358 0.658769 

𝛽2 157.081 104.722 78.5433 62.8362 41.8943 31.4242 12.5847 6.31423 4.22961 3.19044 

𝛽3 314.16 209.441 157.081 125.666 83.779 62.836 25.1419 12.5816 8.39732 6.30639 

 𝜂 = 1 

𝛽1 0.894573 0.890179 0.885833 0.881534 0.870986 0.860715 0.804279 0.726062 0.662312 0.609035 

𝛽2 157.085 104.728 78.5503 62.8448 41.9069 31.4407 12.6209 6.37414 4.30563 3.2776 

𝛽3 314.162 209.443 157.085 125.67 83.7853 62.8443 25.16 12.6119 8.43609 6.35149 

 𝜂 = 2 

𝛽1 0.894543 0.890114 0.885719 0.881359 0.870607 0.860065 0.800975 0.71644 0.646107 0.586987 

𝛽2 157.089 104.734 78.5584 62.8549 41.9216 31.4598 12.6626 6.44176 4.38954 3.3714 

𝛽3 314.164 209.447 157.089 125.675 83.7927 62.8538 25.181 12.6466 8.48039 6.40267 

 𝜂 = 3 

𝛽1 0.894514 0.890049 0.885606 0.881184 0.870228 0.859416 0.797719 0.707266 0.631274 0.567654 

𝛽2 157.095 104.742 78.5695 62.8686 41.9418 31.4861 12.7197 6.5335 4.50181 3.49505 

𝛽3 314.167 209.451 157.094 125.682 83.8028 62.867 25.2099 12.6943 8.54101 6.47243 

 𝜂 = 4 

𝛽1 0.894485 0.889984 0.885492 0.88101 0.86985 0.85877 0.794525 0.698641 0.618006 0.5512 

𝛽2 157.102 104.753 78.5837 62.8862 41.9675 31.5196 12.792 6.64832 4.64025 3.64521 

𝛽3 314.17 209.456 157.102 125.691 83.8156 62.8838 25.2466 12.7548 8.61761 6.56019 

 𝜂 = 5 

𝛽1 0.894456 0.88992 0.885379 0.880835 0.869474 0.858127 0.791408 0.690634 0.606359 0.537493 

𝛽2 157.111 104.766 78.601 62.9076 41.9987 31.5602 12.8794 6.78502 4.80243 3.81843 

𝛽3 314.175 209.463 157.11 125.702 83.8313 62.9041 25.2912 12.828 8.70979 6.66528 
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Fig. 3. Variation of the first three natural frequencies with the inhomogeneity indexes  

for 1.1 ≤ 𝑏/𝑎 ≤ 2 and −5 ≤ η ≤ 10. 
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Fig. 4. Variation of the second and the third natural frequencies with the inhomogeneity indexes for 

1.5 ≤ 𝑏/𝑎 ≤ 2 and −5 ≤ 𝜂 ≤ 10. 

Both Table 3 and Table 4 suggest that as the thickness increases, the dimensionless natural frequencies 

decrease. This response is slightly observed for fundamental frequencies. However, there is sharply 

decrease in frequencies of higher modes as the thickness build up. 

 
Fig. 5. The relationship between the frequencies of the same cylinder 
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For the dimensionless frequencies, the degree of to be influenced from the change of inhomogeneity 

indexes is rather slow. This is demonstrated in Figs. 3 and 4. Figure 3 shows the variation of the first 

three natural frequencies with the inhomogeneity indexes for 1.1 ≤ 𝑏/𝑎 ≤ 2  and −5 ≤ 𝜂 ≤ 10. 

Variation of the second and the third natural frequencies with the inhomogeneity indexes for 1.5 ≤
𝑏/𝑎 ≤ 2 and −5 ≤ 𝜂 ≤ 10 is illustrated in Fig. 4. As seen from Fig. 3, the fundamental frequencies 

are more affected from the change in the inhomogeneity index. In the interval of the aspect ratio, 1.1 ≤
𝑏/𝑎 ≤ 1.5, it is almost impossible to observe the variation of natural frequencies in higher modes with 

the change in the inhomogeneity index. However, as in Fig. 4, this may be clearly observed for 1.5 ≤
𝑏/𝑎 ≤ 2 for the second and third frequencies. 

In this study, it is also revealed that, there is a linear relationship between the pure radial fundamental 

frequency and others in higher modes of the same cylinder for all inhomogeneity indexes and aspect 

ratios as seen from Fig. 5.  

5. Concluding Remarks 

In the present study, the free vibration of hypothetically power-law graded hollow infinite stress-free 

cylinders is analytically studied to investigate the influences of inhomogeneity indexes and aspect 

ratios, whose figures are chosen in the broadest possible range of values that can be used in practice, 

on the natural frequencies.  The following conclusions are drawn: 

 The fundamental frequency is mainly affected from the variation of the inhomogeneity index 

than those of other higher frequencies. This may be acceptable as plausible because of huge 

differences between the fundamental and higher frequencies. For example, for b/a=1.02 the 

natural frequency in the second mode is more than 150 times the fundamental frequency, 

however it is around four times the first one for b/a=2 (see Tables 3-4). 

 The effects on the frequencies of the changes in thickness of the cylinder are clearly observed. 

Increasing thickness produce a substantial decrease in dimensionless frequencies which are 

particularly in frequencies in higher modes. 

 There is also a linear relationship between the frequencies of fundamental and higher modes of 

the same cylinder.   

As stated before, the present results pertaining to the cylinders made of hypothetically FGM materials 

are obtained by using the same inhomogeneity index for both elasticity modulus and material density. 

It is a great possibility that there is no such a physical material that provides this feature. For this sense, 

it may be useful to confirm the present conclusions with physical materials. As mentioned above, this 

requires the putting numerical solution techniques into practice.  
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