
Politeknik Dergisi  Journal  of Polytechnic 
Cilt: 7   Sayı: 1   s. 13-21,  2004  Vol: 7    No: 1   pp. 13-21,  2004 

13 

STUDY OF SIMULTANEOUSLY DEVELOPING FLOW AND TEMPERATURE FIELD IN 
RECTANGULAR DUCTS WITH CONSTANT WALL TEMPERATURE 

 
Halit KARABULUT, H. Serdar YÜCESU 

Gazi University, Technical Education Faculty, Automotive Department,  
06500 Teknikoklullar, ANKARA 

 
ABSTRACT 

In this research, the heat transfer and flow friction characteristics of hydrodynamically and thermally developing flows at 
the entrance of rectangular ducts have been theoretically studied. In calculating components of velocity, parabolic momentum 
equations were used. Temperature field was also determined using parabolic form of energy equation. Besides, pressure 
distribution was calculated by means of a Poisson equation, which is obtained from combination of momentum and continuity 
equations. In numerical solution of finite difference equations, Newton-Raphson method was used. Numerical results were 
presented for channels with 1/3, 2/3 and 3/3 aspect ratio and range of Reynolds number 250 ≤ Re ≤ 2250. Accuracy of the 
analysis was confirmed by comparing the fully developed Nusselt numbers obtained in this study with the literature. 
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DİKDÖRTGEN KESİTLİ KANALLARDA SABİT DUVAR SICAKLIĞINDA EŞZMANLI 
GELİŞEN AKIŞIN ISI TRANSFERİNİN İNCELENMESİ 

ÖZET 
Bu çalışmada dikdörtgen kanalların girişinde hidrodinamik ve termal yönden gelişmekte olan akışın akış ve ısı transferi 

karakteristikleri teorik olarak incelenmiştir. Hız bileşenlerinin hesaplanmasında parabolik momentum denklemleri kullanılmıştır. 
Sıcaklık dağılımın belirlenmesinde ise enerji denkleminin parabolik biçimi kullanılmıştır. Basınç dağılımı, süreklilik ve 
momentum denklemlerinden elde edilen Poission denklemi yardımı ile belirlenmiştir. Sonlu fark denklemlerinin sayısal 
çözümlemelerinde Newton-Raphson metodu kullanılmıştır. Sayısal sonuçlar Reynold sayısının 250 ≤ R e≤ 2250 aralığında 1/3, 
2/3 ve 3/3 kenar oranları için verilmiştir. Analizin doğruluğu literatürden elde edilen tam gelişmiş akışın Nusselt sayıları ile 
kıyaslanarak sağlanmıştır. 

Anahtar Kelimeler: Kompakt ısı değiştiricileri, Dikdörtgen kanallarda laminer akış, Giriş bölgesi akışı, Sonlu farklar 
metodu

INTRODUCTION 

The external flow heat transfer and flow 
friction characteristics of compact heat exchangers 
may be estimated via entrance flow analysis. 
Compact heat exchangers are installed with 
different external flow channels such as rectangle, 
triangle, hexagon, oval, etc. In the entrance of such 
channels, there appear three-dimensional flow and 
temperature fields. Estimation of heat transfer and 
flow friction is more laborious than circular ducts 
or parallel plates, which are two-dimensional 
patterns. The rectangular channel is the simplest 
case of the three-dimensional entrance flow. 

At solid boundaries of flow field, boundary 
conditions are apparently known. However, at the 
inlet and outlet, boundary conditions are not so 
apparent. Velocity distributions at the inlet and 
outlet are parabolic, but undefined. At the inlet, in 
order to use a more authentic velocity distribution, 
Nguyen and Maclaine-cross (1) expanded the 
solution domain to include the upstream region of 
virtual entrance of the parallel plate channel. At the 

exit, Nguyen and Maclaine-cross (1) used the fully 
developed velocity distribution by taking the 
channel length large enough. However, in most of 
studies, the velocity distribution is assumed to be 
uniform at the virtual entrance of the channel, 
Schlichting (2), Cheng et al. (3), Gupta (4) and 
Magno et al. (5). The uniform inlet velocity is also 
valid for rectangular ducts. When governing 
equations are parabolized in z coordinate, the 
outlet boundary conditions required for velocity 
components are avoided.  

For the estimation of nodal values of 
pressure, several difference equations were devised 
manipulating continuity and momentum equations, 
Shyy (6). It is also possible to transform the 
continuity and momentum equations into a Poisson 
type differential equation to describe the pressure 
field. The boundary conditions of this equation 
impose some difficulties. In flow direction, two 
boundary conditions are required, and both of them 
may be chosen as initial conditions. One of them 
may be a uniform pressure distribution as the other 
one is the pressure gradient. In air cooled heat 
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exchangers, since the front end of the channel is 
open to air, assuming the pressure gradient as zero 
may be reasonable. For solid boundaries, as 
demonstrated by Vradis et al. (7), derivative 
boundary conditions may be obtained by using the 
momentum equations perpendicular to the relevant 
boundaries. These type boundary conditions are 
second order accurate. At any cross cut of a 
rectangular duct, a circumferentially uniform 
boundary condition may be used in terms of 
pressure. Its value is determined by means of trial 
and error using the overall continuity equation; 
∫∫ =A CdxdyW . 

At rectangular air channels, two of four 
sides are outer surfaces of two parallel hot fluid 
channels as the other two are plate fins 
interconnecting the hot fluid channels to each 
other. On the fin surfaces, the temperature is 
slightly variable. On the surface of hot fluid 
channels, the temperature is less variable than that 
of fins. Therefore, the constant wall temperature is 
a pertinent boundary condition for temperature 
field. At the real entrance of an airflow channel, 
the temperature is equal to the ambient 
temperature. At the exit, the boundary condition is 
not known. However, by parabolizing the energy 
equation, the exit boundary condition is avoided. 

The parallel plates entrance flow problem 
was first handled by H.Schlichting in 1934. Since 
then a large number of theoretical and 
experimental studies have been presented. Before 
1980, flow and temperature field equations were 
solved using integral techniques, Schlichting (2). 
After 1980, in most of studies numerical methods 
have been used. Nguyen and Maclaine-cross (1) 
presented a numerical study where the Navier-
Stokes equations are transformed into the vorticity 
transport equation and solved on a domain 
including upstream region of virtual entrance as 
well. As the result of study; Nusselt number, 
incremental heat transfer number and thermal 
entrance length are presented, where Pr ranged 
from 0.2 to 10.0 and Re ranged from 40 to 2000. 
Magno et al. (5), investigated the heat transfer 
characteristics of hydrodynamically and thermally 
developing entrance flow of the non-Newtonian 
power-law fluids. In the study boundary layer 
equations are solved with the generalized integral 
transform techniques. As the result, dimensionless 
temperature profiles and axial distribution of local 
Nusselt number was illustrated in diagrams. 

The entrance flow heat transfer of 
rectangular duct is currently investigated. The 
problem is treated under three specific cases, 
namely slug flow, hydrodynamically developed 
thermally developing flow and thermally-
hydrodynamically developing flow. For slug flow, 
Spiga and Morini (8) obtained an analytical 
solution in terms of orthogonal functions. They 
presented some cross cut temperature profiles and 
axial temperature profiles were presented. The 
fully developed Nusselt number and entrance 
length were illustrated as the function of aspect 
ratio. The normalized form of local Nusselt 
number with respect to the fully developed Nusselt 
number were also given in tables. For the case of  
hydrodynamically developed-thermally developing 
flow Sayed-Ahmed (9) conducted an numerical 
study to examine the heat transfer characteristics of 
a Herschel-Bulkley fluid, which is non-Newtonian. 
Variation of Nusselt number was studied for 
constant wall temperature and constant heat flux 
and illustrated in diagrams as function of Graetz 
number. Effect of viscous dissipation on the 
Nusselt number was also examined and illustrated 
as function of Brinkman and Graetz number. 

Since the Prandtl number of air is about 1, in 
air-cooled heat exchangers the velocity and 
temperature profiles develop simultaneously. In the 
present study, the flow friction and heat transfer 
characteristics of entrance flow in rectangular 
ducts are investigated for flow and temperature 
fields simultaneously developing 

PHYSICAL SYSTEM AND 
MATHEMATICAL MODEL 

The physical mechanism of hydrodynamically 
and thermally developing flow is illustrated in 
Figure 1. The flow enters the channel with a 
uniform velocity and temperature distribution. 
Therefore, at the entrance edge of the channel wall, 
velocity and thermal boundary layers have zero 
thickness. In the flow direction, the thickness of 
velocity and temperature boundary layers 
increases. The heat flux and flow friction are 
dependent on the thermal and velocity boundary 
layers. The predominant velocity component 
within the flow field is the one parallel to the 
channel axis. In air cooled heat exchangers, the 
variation of density due to the temperature change 
is insignificant. The pressure variation has also an 
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insignificant effect on density, and therefore, the 
air is assumed to be incompressible. 

 

 

 

 

 

 

 

Figure 1. Velocity and Thermal Boundary Layers 
in Entrance Flow. 

Coordinates are illustrated in Figure 2 where 
the flow direction is assumed to be the z 
coordinate. 

 

 

 

 

 

 

 

 

 
Figure 2. Coordinates and Grid Installation as the 

others are x and y. The non-dimensional 
forms of governing equations for flow 
field are, 
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For constant wall temperature, the governing 
equation of temperature field becomes, 
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where, 
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Nusselt number is defined as,  
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The flow and temperature field equations are 
elliptic in x and y coordinates and parabolic in z 
coordinate. Boundary conditions are, 
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GRILLING OF SOLUTION DOMAIN AND 
FINITE DIFFERENCE EQUATIONS 

 Grilling of solution domain is illustrated in 
Figure 2 where i, j and k indicate number of grills 
in X, Y and Z coordinates respectively. In X and Y 
smaller, in Z larger grid sizes are used. In solving 
the finite difference equations, Newton-Raphson 
method is used. The U, V and W components of 
velocity are calculated from Equations 1, 2 and 3 
respectively. In Newton-Raphson method, for the 
calculation of nodal values of U, 
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is used where 1nU −  and nU  are estimated and 
corrected values of U, respectively, Burden and 
Douglas (10), Kincaid and Cheney (11). In 
entrance flow, the W component of velocity 
always takes positive values. The other 
components may take either positive or negative 
values. To obtain Ru from Equation 1, second 
order derivatives of U with respect to X and Y are 
replaced with their central difference 
approximations. The first order derivative of U 
with respect to Z is replaced with backward 
difference approximation. First order derivatives of 
U with respect to X and Y are replaced with their 
forward or backward difference approximations 
regarding whether U and V are positive or 
negative.  

Using backward difference approximation 
for first order derivatives of U, Ru  is stated as, 
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From the last equation,  
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is obtained. If forward difference approximation of 

first order derivatives are used, Ru  and 1n
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If Ru is calculated using the same inputs in 
equation 9 and 11, almost the same results are 
obtained from both equations whatever the sign of 
U and V are. Therefore, in calculating Ru , any of 
above equations can be used. In calculating 

1n
k,j,iU

Ru
−∂

∂
however, Equation 10 and 12 give 

different results. If U and V have positive values, 
Equation 10 is appropriate to use. In the case of U 
and V have negative values, all of the terms of 
Equation 12 will be positive and appropriate to 
use. If we state  
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Conditional use of 4 different equations will 
be avoided. Equation 13 is appropriate to use in all 
of the cases that U and V are positive, U and V are 
negative, U is positive and V is negative, or U is 
negative and V is positive. The other momentum 
equations and energy equation have the same 
feature and similarly discretized. 

To solve Equation 5 by using Newton-
Raphson method, nodal values of pressure is stated 
as, 
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Due to the nature of Newton-Raphson 
method, in the last equation ignoring the last term 
does not create any error in the result. Moreover, 

the other terms can also be multiplied by a 
convergence factor to speed up the iterative 
solution process. 

In Z coordinate, since the problem is an 
initial value problem and two initial conditions are 
given for pressure field, solution is started from the 
third X-Y plain where 0Z = , and marched 
forward plain by plain as described by Madhav and 
Malin (12). The first and second grid plains are out 
of channel. At first, a reasonable pressure 
distribution is obtained by shooting a value for the 
wall boundary condition. In the first prediction of 
pressure distribution, nodal values of Φ  are 
assumed to be zero all over the plain. After 
pressure distribution, the velocity components are 
predicted over the same plane, and nodal values of 
Φ  are determined. Then, pressure distribution is 
iterated. By continuing to iterate the distribution of 
pressure and velocity components one after the 
other, the stable results are obtained, and then, the 
flow rate crossing the grid plain is determined. By 
correcting the flow rate by changing the wall 
boundary condition, the overall continuity is 
satisfied. Nodal values of pressure and velocity 
components obtained, correspondingly to the 
satisfaction of overall continuity, are the correct 
results. Then, over the subsequent plains, velocity 
components are similarly calculated.  

Prediction of temperature field can be made 
after ending the flow field calculations all over the 
solution domain. It is also conducted plain by plain 
starting from the third plain. Since the boundary 
conditions of temperature field equation are 
apparently known, the calculation is straight 
forward. 

RESULTS AND DISCUSSION  

To ensure the consistency of the 
mathematical model with the theoretical 
expectations, velocity and temperature profiles are 
examined initially. In Figure 3, W profiles 
occurring on the X-Z midplain of the channel are 
illustrated. Numerical results used in Figure 3 are 
obtained for a channel having 1/3 aspect ratio and 

375Re = . As expected, about the real entrance of 
the channel, W displays too big variation in the 
vicinity of the wall, and no variation about the 
center. As Z increases, profile of W converges to 
the fully developed velocity profile, which is seen 
on the same figure.  
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Figure 3. W Profiles in X-Z Midplain 
Since the transition of entrance flow velocity 

profile to the fully developed velocity profile is an 
asymptotic variation, there is not a certain border 
between entrance flow and the fully developed 
flow region. In profiles of W, there appears a slight 
unsymmetry, which is plausibly due to the 
algorithm used in discretization.  

If W profiles obtained in this analysis were 
compared to axial velocity profiles given by 
Schlichting (2) for parallel plates, important 
differences are seen. The axial velocity profiles 
represented by Schlichting are obtained from the 
solution of axial momentum and continuity 
equations, and the velocity profile, given for the 
virtual entrance of the channel is more likely the 
uniform velocity of the fluid entering the channel 
yet. The velocity profile obtained in this study for 
the virtual entrance of the channel is rather 
parabolic. Therefore, lower frictional losses and 
heat transfer coefficients are expected from this 
analysis. 

In Figure 4, variation of V in Y coordinate is 
illustrated. The highest value of V which is 

2108.2 −⋅  appears on the grid plain at the real 
entrance of the channel. As Z increases, a sharp 
decrease in V is seen. Despite it is not illustrated in 
this study, U has similar profiles. Comparison of 
curves to each other indicates that a slight 
fluctuation exist. 

 

 

 

 

 

 
Figure 4. Variation of V Along Symmetry Axis of 

X-Y Plains 

In the case of that fluid is hot and wall is 
cold, a dimensionless temperature profile in the 
form of D letter is expected. In Figure 5, 
dimensionless temperature profiles occurring in X-
Z midplain are seen and consistent with 
expectations. The asymptote of dimensionless 
temperature profile is a vertical straight line. As 
seen in Figure 5, while Z increases, temperature 
profiles approach to a vertical straight line. In 
dimensionless temperature profiles also, a slight 
unsymmetry appears. 

 

 

 

 
Figure 5. Temperature Profiles in X-Z Midplain 

Figure 6, 7 and 8 illustrate the variation of 
the peripherally averaged local Nusselt number 
with axial distance for 3/1 , 3/2  and 1/1 aspect 
ratio. The horizontal straight line below the curves 
is the Nusselt number of the fully developed flow 
and temperature field. From down to up, curves 
correspond to 250, 375, 750, 1500 and 2250 values 
of Reynolds number, respectively. As expected the 
highest value of Nusselt number occurs at the real 
entrance of the duct. Since equations used for flow 
and temperature field are parabolic, local Nusselt 
number should be independent of aspect ratio but 
dependent on Reynolds number at the virtual 
entrance. As seen form Figure 6, 7, and 8, in great 
extend, expectation is confirmed. The small 
deviation may be due to the use of different values 
for dX  and dY at different aspect ratios.  

 

 

 

 

 
 
Figure 6. Variation of Nuselt Number With Axial 

Distance in a Rectangular Duct With 1/3 
Aspect Ratio 
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Figure 7. Variation of Nuselt Number  With Axial 
Distance in a Rectangular Duct With 2/3 
Aspect Ratio 

Curves given for several values of Reynolds 
number and the same value of aspect ratio 
approach to the same limit, that is, the fully 
developed flow Nusselt number. At sufficiently 
higher values of Z and lower values of Reynolds 
number, the difference between the fully 
developed flow Nusselt number and local Nusselt 
becomes sufficiently small. For 3/1 , 3/2  and 

1/1 aspect ratio, the fully developed flow Nusselt 
numbers are 3.96, 3.118 and 2.976 respectively. At 

40Z =  and 250Re = , Local Nusselt numbers 
are 4.068, 3.186 and 3.028, respectively, and 
decreasing yet. In the case of high values of 
Reynolds number, the difference between fully 
developed flow Nusselt number and local Nusselt 
number becomes greater than that of 250Re =  at 

40Z = . 

 

 

 

 

 

 

Figure 8. Variation of Nuselt Number  With Axial 
Distance in a Square Duct  

Figure 9, 10 and 11 illustrate the gradient of the 
wall pressure. Since the pressure is normalized by 
dynamic pressure, the lowest curve corresponds to 
the highest Reynolds number while the highest 
curve corresponds to the lowest Reynolds number. 
Figure 9, 10 and 11 indicate that the variation of 
pressure gradient almost vanishes before 10Z = . 

As seen from Figure 6, 7 and 8, beyond 10Z =  
the local Nusselt number displays a significant 
variation. 

CONCLUSION 

The hydrodynamic and thermal entrance 
region of rectangular ducts were analyzed for 
airflow. For the correction of pressure, a poison 
type differential equation was used. In solving 
pressure correction equation, Drichlet type 
boundary condition was used. Axial velocity 
profiles obtained from this analysis were different 
than that given by Schlichting (2) in shape. 
Distribution of Local Nusselt number and pressure 
gradient were calculated for three different aspect 
ratios and several values of Reynolds number at 
each aspect ratio, and results were graphically 
presented. Developing length of Nusselt number 
was longer than that of pressure gradient. The use 
of Newton-Raphson method provided a better 
convergence in solving finite difference equations. 

 

 

 

 

 

 

Figure 9. Axial Gradien of the Wall Pressure In a 
Rectangular Duct With 1/3 Aspect Ratio 
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Figure 10.Axial Gradien of the Wall Pressure In a 
Rectangular Duct With 2/3 Aspect Ratio 
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Figure 11. Axial Gradien of the Wall Pressure in a 

Square Duct. 

NOMENCLATURE 

A  area of the duct (m2) 
hD   Hydraulic diameter (m) 

Nu   Nusselt number 
P  Pressure (Pa) 

P   
2
wp

2
∞ρ

 

wP   Dimensionless pressure at the   
 wall 

rP   Prandtl number 
Re   Reynols number 
T  Temperature (K) 

inT   Inlet temperature (K) 

wT   Temperature at the wall (K) 
u  Velocity component in x   

 coordinate (m/s) 
v  Velocity component in y   

 coordinate (m/s) 
w  Velocity component in z   

 coordinate (m/s) 
U  ∞W/u  
V  ∞W/v  
W  ∞W/w  
W∞  Mean velocity (m/s) 
x, y, z  Coordinate elements 
X, Y, Z  hD/x , hD/y , hD/z  respectively 

mX   Maximum value of X 

mY   Maximum value of Y 

Greek symbols 

ρ   Density (kg/m3) 
θ   Dimensionless temperature 

mθ   Mean value of dimensionless   
 temperature 
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