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Abstract 

The Delta-Birnbaum-Saunders distribution is a combination of positive values that follow the 
Birnbaum-Saunders distribution and zeros that follow the binomial distribution, making it a 
relatively new distribution. The coefficient of variation is calculated as the ratio of the standard 
deviation to the mean. It is important for comparing the dispersion of datasets. Therefore, this 
paper aims to generate confidence intervals for ratios of coefficients of variation under the Delta-

Birnbaum-Saunders distributions. We have proposed four methods for constructing confidence 
intervals, namely, the method of variance estimates recovery, the bootstrap confidence interval, 
the generalized confidence interval based on the variance stabilized transformation, and the 
generalized confidence interval based on the Wilson score method. The assessment of their 
performance relies on coverage probabilities and average widths obtained through Monte Carlo 
simulations. The overall study results reveal that the generalized confidence interval based on the 
variance stabilized transformation and the generalized confidence interval based on the Wilson 
score methods provide similar values in both the coverage probabilities and average widths, 

making them the two most efficient methods. Furthermore, it was found that the method of 
variance estimates recovery performs well when the shape parameters are small. Finally, all the 
proposed methods will be applied to wind speed data in Thailand.  
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1. INTRODUCTION 

 

The Birnbaum-Saunders distribution originated from a study on vibrations in commercial aircraft leading 
to material fatigue. Fatigue, characterized by structural deterioration under fluctuating stress, prompted 

Birnbaum and Saunders [1] to introduce the fatigue life distribution (commonly referred to as the 

Birnbaum-Saunders distribution). This distribution is utilized to model the failure time of materials and 
equipment, where the failure results from the initiation and progression of a predominant fracture. 

Moreover, the Birnbaum-Saunders distribution is very effective for fitting data that is all positive. Despite 

its origins in materials science, the Birnbaum-Saunders distribution has recently been applied to various 

other fields, including the medical sciences, business, finance, industry, and environment [2–5]. In some 
situations, various random variables, assumed to be continuous and nonnegative, are often characterized 

using probability distributions. The probability density functions associated with these variables tend to 

exhibit asymmetrical and positive skewness, making neither the normal distribution nor symmetrical 
distributions suitable for their description. To address this, the Birnbaum-Saunders distribution, a 

positively skewed distribution, has gained significant attention as an appropriate model for representing 

such random variables. Additionally, several researchers have developed and extended the Birnbaum-

Saunders distribution to enhance its versatility for various applications. For example, Cordeiro et al. [6] 
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introduced the odd log-logistic Birnbaum-Saunders-Poisson distribution, which is an extended fatigue 

lifetime model. They developed a regression model based on the logarithm of this distribution. Martínez-
Flórez et al. [7] presented the flexible Birnbaum-Saunders distribution, a bimodal extension of the 

Birnbaum-Saunders model that includes an extra parameter. They also studied the skew Birnbaum -

Saunders model. Benkhelifa [8] proposed the Weibull-Birnbaum-Saunders distribution, which is a mixture 

of the Weibull and Birnbaum-Saunders distributions. This distribution extends the Birnbaum-Saunders 
distribution and provides significant flexibility in practical data modeling.  
 
In practical situations, there are scenarios where we encounter data that is distorted and has a relatively high 
proportion of zero values. Examples include rainfall data, wind speed data, medical data, fisheries survey 

data, and many others. This renders the standard Birnbaum-Saunders distribution unsuitable for application. 

Therefore, the Delta-Birnbaum-Saunders distribution is utilized, which is a mixture distribution combining 
a binomial distribution and the Birnbaum-Saunders distribution. The concept of the Delta-Birnbaum-

Saunders distribution originated from Aitchison [9] The Delta-Birnbaum-Saunders distribution represents 

an extended version of the Birnbaum-Saunders distribution. Suppose that random variable H  follows the 

Delta-Birnbaum-Saunders distribution with parameters  ,  , and  . Therefore, based on the concept 

proposed by De la Mare [10], the probability density function (PDF) for the Delta- Birnbaum-Saunders 

population is expressed as  

 

( )   ( ) ( )  
1 2 3 2

0 0,2

1 1
; , , 1 exp 2

22 2

h
f h h h

h h h

  
    

  


       
=  + − + − + −         

         

, 

 

where   is an indicator function, in which  0 h  takes the value 1 when 0h =  and 0  otherwise, and 

( )  0,
h


 takes the value 0  when 0h = and 1 when 0h  . The graph of the PDF of the Delta-Birnbaum-

Saunders distribution is shown in Figure 1. 

 

       
Figure 1. (P1) The graph of the PDF of the Delta-Birnbaum-Saunders distribution with different shape 

parameters (alpha); (P2) The graph of the PDF of the Delta-Birnbaum-Saunders distribution with 

different proportions of zero (lambda) 
 

The first term denotes the discrete probability mass at the origin, while the subsequent term signifies the 

probability density. Since the Delta-Birnbaum-Saunders distribution is a new probability distribution, no 
researchers have utilized it before. However, the concepts introduced by Aitchison [9] and De la Mare [10], 

involving the use of delta distributions, have been applied to other distributions such as lognormal 

distributions [11,12], gamma distributions [13,14], and two-parameter exponential distributions [15]. 
 

The coefficient of variation (CV) is a widely used statistical measure that expresses the relative variability 

of a dataset about its mean. It is calculated as the ratio of the standard deviation to the mean, often presented 

as a percentage. The CV is particularly valuable for comparing the dispersion of datasets, allowing for 
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meaningful comparisons even when the datasets have different measurement units. Researchers commonly 

utilize the coefficient of variation to analyze and compare variability in diverse fields such as meteorology, 
medical science, economics, and agriculture [16–19]. Its popularity arises from its ability to provide insights 

into the proportional variability of data concerning the mean, making it a valuable tool for assessing and 

comparing datasets with differing scales. Furthermore, in statistical inference, considering various 

approaches to establish confidence intervals for the ratio of coefficients of variation between populations 
has attracted the interest of many researchers. For example, Buntao and Niwitpong [20] introduced the 

generalized variable approach (GPA) and the method of variance estimates recovery (MOVER) to construct 

confidence intervals in the delta-lognormal distribution. Then, Sangnawakij et al. [21] presented confidence 
intervals in gamma distributions using the MOVER method, along with the Score and Wald interval 

methods. In the following year, they utilized two-parameter exponential distributions to construct 

confidence intervals and compare two methods: the MOVER and the generalized confidence interval (GCI) 
[22]. Next, Nam and Kwon [19] employed Wald-type, Fieller-type, log methods, and MOVER to construct 
confidence intervals in the lognormal distribution. Hasan and Krishnamoorthy [23] suggested confidence 

intervals for two lognormal distributions using the MOVER method and a fiducial approach for lognormal 

distributions. After that, Puggard et al. [24] studied the GCI with the biased-corrected percentile bootstrap 
method and the biased-corrected and accelerated method for constructing confidence intervals for 

Birnbaum-Saunders distributions. Yosboonruang and Niwitpong [25] introduced approaches that 

incorporate the GCI concept and the MOVER. These methods are utilized in conjunction with three 
techniques: variance stabilizing transformation, the Wilson score method, and the Jeffreys method. 

Subsequently, Yosboonruang et al. [26] created confidence intervals for lognormal distributions with excess 

zeros by proposing the fiducial GCI, Bayesian methods relying on left-invariant Jeffreys, Jeffreys rule, and 

uniform priors, as well as the Wald and Fieller log-likelihood methods. Meanwhile, Thangjai et al. [27] 
developed a Bayesian method for creating confidence intervals for two normal distributions. The 

effectiveness of this Bayesian approach is assessed by comparing it to two conventional methods: the GCI 

and the MOVER. Chankham et al. [28] presented techniques including the fiducial confidence interval, the 
fiducial-highest posterior density confidence interval, and the MOVER. These methods were compared 

with the GCI methods for constructing confidence intervals for the inverse Gaussian distribution. Recently, 

La-ongkaew et al. [29] constructed confidence intervals for Weibull distributions using various methods, 
including the GCI, the MOVER, and Bayesian methods based on gamma and uniform priors.  
 
A comprehensive review of research studies reveals that the coefficient of variation is an important 
parameter in analysis and that no research has yet investigated the Delta-Birnbaum-Saunders distribution. 

Additionally, using statistical estimation to create confidence intervals for the ratio of coefficients of 

variation is an important method that can effectively analyze data. However, there are currently no 

researchers examining the ratio of coefficients of variation in the Delta-Birnbaum-Saunders distributions. 
Consequently, this research investigated confidence intervals for ratios of the coefficients of variation for 

the Delta-Birnbaum-Saunders distributions. The methods employed for comparison include MOVER, 

Bootstrap confidence interval, GCI based on the variance-stabilized transformation, and GCI based on the 
Wilson score method. The efficiency of these methods is compared using coverage probabilities and 

average widths. Finally, all these methods will be applied to wind speed data from Thailand. 

 
2. MATERIAL METHOD 

 

Suppose that ( )1 2, ,..., ;
iij i i imH H H H= 1,2i =  and 1,2,..., ij m=  be a non-negative random sample 

from the Delta- Birnbaum-Saunders distribution with the proportion of zero values
i , shape parameter    

i , and scale parameter i , denoted as ( )~ , ,ij i i iH DBS    . The instances with zero observed values 

( )0i
m follow the binomial distribution denoted as ( ) ( )0

~ ,i ii
inom al mim B  , while the positive observed 

values 
( )1i

m adhere to the Birnbaum-Saunders distribution, with im  being the sum of 
( )0i

m  and 
( )1i

m . The 

cumulative distribution function (CDF) of ijH can be expressed as  
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where ( ); ,ij i iF h    is the Birnbaum-Saunders cumulative distribution function. The graph of the CDF 

of the Delta-Birnbaum-Saunders distribution is shown in Figure 2. 

 

 
Figure 2. The graph of the CDF of the Delta-Birnbaum-Saunders distribution with different scale 

parameters (bata) 
 

According to the concept proposed by Aitchison [9], the expected value of ijH  is given by  

 

( ) ( )
2

1 1
2

i
ij i iE H


 

 
= − + 

 
,                       (1) 

 

and the variance of ijH  is given by  
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2

2 2
2 25
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From Equations (1) and (2), the coefficient of variation of ijH  is defined as  

 

( )
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2
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+ −
              (3) 

 
Therefore, the ratios of the coefficient of variation for the Delta- Birnbaum-Saunders distributions can be 

written as  
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The method for constructing confidence intervals for the ratios of the coefficient of variation for the Delta- 
Birnbaum-Saunders distributions will be presented in the subsection. 

 

2.1. Method of Variance Estimates Recovery  

 

Zou and Donner [30] introduced the concept of the method of variance estimates recovery (MOVER) in 
their work, and further details were provided by Zou et al. [31]. Additionally, Donner and Zou [32] put 

forward a confidence interval method for a parameter ratio, denoted as 1

2




.  

Let 
( )( )
11 2, ,..., ;

iij i i imG G G G= 1,2i =  and ( )11, 2,...,
i

j m=  be positive random variables from the 

Birnbaum-Saunders distributions. According to Ng et al. [33], the modified moment estimators (MMEs) 

for i  are  

 

( )

( )1

1 2
1 2

1

#

1 1

ˆ 2 1 ,
im

ij

i i

j i

g
g

m


−

=

      = − 
      

  

 

where 
( )

( )1

#

1 1

im

ij

i

j i

g
g

m=

= . Hence, from Equation (3), the estimates for i  can be written as 

 

( ) ( )
2

2 2 2

2

ˆˆ ˆ ˆ4 5 21
ˆ ,

ˆˆ2 1

i i i i

i

i i

   


 

+ + +
=

+ −
                 (4) 

 

where the maximum likelihood estimates of 
i  are ( )0

ˆ .i ii
m m =   For the asymptotic variance of the 

estimator i , we applied the delta method to obtain an asymptotically normal distribution based on the 

Taylor series, as follows:  

 

( ) ( )
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( )
( )

( )
, ,

ˆ ˆˆ ˆ, , ,
i i i i

i i i i i i i i

i i

g g
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where ( )
( ) ( )

2
2 2 2

2

4 5 21
,

12

i i i i

i i
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g
   

 


+ + +
=

−+
. In the process of computing the partial derivatives, the 

results are as follows:  
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and  
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From the Taylor series, we can express that  
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It is well known that the asymptotic distribution of ˆ
i  and ˆ

i  is represented as 
2

(1)
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N
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. Thus, the asymptotic variance of ˆi , is defined as 
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where ( )
2

2
2 ; 1, 2

i i
O i= + = . Due to the unknown values of parameters i  and i  in this context, we will 

estimate the parametric function i with the sample. Consequentially, we use the plug-in estimators of 

( )ˆiV  , which can be expressed as  
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where ( )
2

* 2ˆ2 ; 1, 2
i i

O i= + = . Suppose that il and iu are the lower and upper limits of the interval for ˆ ,i  

respectively. Then, the ( )1 100%−  asymptotic confidence interval for ˆi  can be expressed as  

 

( )1 2
ˆˆ ˆ

i i il z V −= −    

 
and  
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i i iu z V −= + . 
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Therefore, the ( )1 100%−  confidence interval for 1

2




 using the MOVER method is obtained as 

            

 ,
MOVER MOVER MOVER

CI L U= ,                    (6) 

 

where  
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and  
( ) ( )( )
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+ − − −
=

−
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Algorithm 1: For the MOVER 

Step   I:  Generate dataset 1 2, ,...,
ii i imh h h  from the Delta-Birnbaum-Saunders distribution. 

Step  II:  Compute ˆ
i  and ˆi . 

Step III:  Compute ˆ
i  by employing Equation (4). 

Step IV:  Compute ( )ˆ ˆ
iV   by employing Equation (5). 

Step  V:  Compute 
MOVERL and 

MOVERU  by employing Equation (6). 

Step VI:  Repeat steps I. – V. 3,000 times. 

 

2.2. Bootstrap Confidence Interval 

 

The bootstrap method, introduced by Efron [34], involves repeatedly resampling to estimate the sampling 

distribution of a statistic. Let /ˆ
i  and 

/ˆ
i  be observed values of ˆ

i  and ˆ
i  based on bootstrap samples. 

Assume we have P bootstrap samples that are available. The estimator of the bias is defined as 

( ) ( )ˆ ˆ,i i i iP E   = − . Suppose that /ˆ
il  is the sequence of the bootstrap maximum likelihood estimates 

of i
 ; 1,2i =  and 1,2,...,l P= , then the bootstrap expectation ( )ˆi

E   can be approximated using the mean 

/ /

(.)

1

1
ˆ ˆ

P

i il

lP
 

=

=  . The bootstrap bias estimate base on P replications of ˆ
i  is ( ) /

(.)
ˆ ˆ ˆ ˆ,i i i iP    = − .  

Following this, the constant-bias-correcting estimates, as Mackinnon and Smith [35] define them, are 

utilized to generate the bias-corrected estimator denoted as  

 

( )* / ˆˆ ˆ2 ,i i i iP   = − .                    (7) 

 

Subsequently, the bootstrap estimator of ,i  can be expressed as  
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,                (8) 

 

where ( )* / /1 1ˆ ˆ ˆ~ , 1
2 2

i i i i iBeta m m  
 

+ − + 
 

, was presented by Brown et al. [36].  
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Furthermore, we can establish the coefficient of variation ratio 1

2





 
 
 

 from Equation (9), resulting in  
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Hence, the ( )1 100%−  confidence interval for 1

2




 using the BCI method can be written as 

 

  ( ) ( ) ( ) ( )ˆ ˆ, 2 , 1 2
Boot Boot

BCI BCIL U     = −
 

,                (10) 

 

where 
( ) ( )ˆ Boot

   as the 100 th percentile of ( )ˆ Boot
 . 

 

Algorithm 2: For the BCI 

Step   I:  Generate dataset 1 2, ,...,
ii i imh h h  from the Delta-Birnbaum-Saunders distribution. 

Step  II:  At the kth step 

a) Compute 
* * *

1 2, ,...,
ii i imh h h  with replacement from 1 2, ,...,

ii i imh h h . 

b) Compute ˆ
i and ( )ˆ ˆ ,i iP   . 

c) Compute *

i  by employing Equation (7), and compute 
*ˆ
i . 

d) Compute 
( )ˆ Boot

i  by employing Equation (8). 

e) Compute ( )ˆ Boot
  by employing Equation (9). 

Step III:  Repeat step II. 500 times. 

Step IV:  Compute 
BCIL and 

BCIU  by employing Equation (10). 

Step  V:  Repeat steps I. – IV. 3,000 times. 

 

2.3. Generalized Confidence Interval  

 

Weerahandi [37] introduced the generalized confidence interval (GCI), which relies on the generalized 

pivotal quantity (GPQ) concept. This is a general characteristic of the usual pivotal quantity. The GPQ 
features an unknown parameter that is distribution-free and an observed pivotal independent of the nuisance 

parameter. Let 
( )( )
11 2, ,..., ;

iij i i imQ Q Q Q= 1,2i =  and ( )1
1,2,...,

i
j m=  be positive random variables from 

the Birnbaum-Saunders distributions. When generating confidence intervals for parameter   using GCI, 

consideration is given to the GPQs for parameters 
i and 

i  recommended by Sun [38] and Wang [39], 

respectively. According to Sun [38], it is suggested that the GPQ is calculated using  

 

( )
( )

( )
1 2

1 2

max , ; 0
;

min , ; 0i

i i i

ij i

i i i

R q

 

 

  
 = 

 
 ,                (11)
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where 
i  follows the t-distribution with ( )1 1

i
m −  degrees of freedom, which is represented by 

( )( )1
~ 1i i

t m − , and this distribution is independent of the unknown parameters 
i and 

i .  From Equation 

(11), we get algebraic rearrangement and the two solutions for 
i  denoted as 

1i  and 
2i  can be derived 

by solving the following equation:  
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( )

( )1

11

1 im

i ij
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C Q
m =

=  , and  ( )
( )1 2
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im

i ij i

j

D Q C
=

= − .  

Meanwhile, the GPQ of the i  can be calculated using  
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where 

( )1

1

1

im

i ij

j

E Q
=

= , 
( )1

2

1

1im

i

j ij

E
Q=

=  , and 
i  follows the Chi-squared distribution with 

( )1i
m  degrees of 

freedom, which is represented by 
( )1

2~
ii m .  

 
Subsequently, the GPQs for 

i  will be employed, focusing on two concepts: the variance stabilized 

transformation (VST) and the Wilson score method (WS). The details will be explained in the following 

subsections. 
 

2.3.1. GCI based on the VST (G.VST) 

 

DasGupta [40] employed the delta method to construct the VST. Subsequently, Wu and Hsieh [41] 

explained the application of the GPQs based on the VST to establish a confidence interval. Therefore, the 

GPQ of 
i  can be expressed as  

 

( ) 2 ˆsin arcsin
2

i

VST i
i

i

W
R

m
 

 
= − 

  

,                 (13) 

 

where  ( ) ( )ˆ2 arcsin arcsin ~ 0,1 ; 1,2i i i iW m N i = − = . Therefore, we can use Equations (12) and 

(13) to calculate the GPQs for i , and the result is  
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2
2 2 2
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2 1

i i i i

i

i i
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VST
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R R R R
R
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+ + +
=

+ −
.               (14)

     

Furthermore, Equation (14) will be used to calculate the ratio of the coefficient of variation, which is  
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R
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+ + +

+ −
= =

+ + +

+ −

              (15) 

Consequently, the ( )1 100%−  confidence interval for 1

2




 using the G.VST method can be written as 

  ( ) ( ) ( ) ( ). ., 2 , 1 2
VST VST

G VST G VSTL U R R   = −
 

,                (16) 

 

where 
( ) ( )VST

R   as the 100 th percentile of 
( )VST

R . 

 

2.3.2. GCI based on WS (G.WS) 

 

Li et al. [42] presented the GPQs for parameter 
i  in the binomial distribution by employing the score 

interval, as outlined by Wilson [43], with a calculated value of 
 

( ) ( ) ( )
( )

( )
2 2

0 0

02 2

2
1

4i

ii iWS i i

i

i i i i i

m m
R m

m m m


+    
= − − +  +  +  

,              (17) 

 

where  
( )

( )

0

1

i ii

i

i i i

m m

m



 

−
 =

−
 follows a standard normal distribution. From Equations (12) and (17), we can 

consequently calculate the GPQs for i  and 1

2




 as  

 

( ) ( ) ( ) ( )
( )

2
2 2 2

2

4 5 21

2 1

i i i i

i

i i

WS

WS

WS

R R R R
R

R R

   



 

+ + +
=

+ −
              (18)

  

and 

 

( )
( )

( )

( ) ( ) ( )
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( ) ( ) ( )
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1 1 1 1

1 11

2
2 2 2 2

2 2

2
2 2 2

2

2
2 2 2

2

4 5 21

2 1

4 5 21

2 1

WS

VSTWS

WS

WS
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+ + +

+ −
= =

+ + +

+ −

,              (19) 

respectively. Finally, the ( )1 100%−  confidence interval for 1

2




 using the G.WS method can be created 

as follows: 

 

  ( ) ( ) ( ) ( ). ., 2 , 1 2
WS WS

G WS G WSL U R R   = −
 

,                (20)

   

where 
( ) ( )WS

R  as the 100 th percentile of 
( )WS

R . 
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Algorithm 3: For the G.VST and G.WS 

Step    I:  Generate dataset 1 2, ,...,
ii i imh h h  from the Delta-Birnbaum-Saunders distribution. 

Step   II:  Compute
1, , , ,i i i i iA B C D E  and 

2iE , respectively. 

Step  III:  At the kth step 

a) Generate ( )( )1
~ 1i i

t m − , and then compute ( );
i ij iR q   by employing Equation 

(13). 

b) If ( ); 0,
i ij iR q   regenerate ( )( )1

~ 1i i
t m − . 

c) Generate 
( )1

2~
ii m , and then compute ( ); ,

i ij i iR q    by employing Equation (12). 

d) For the G.VST method, compute ( )

i

VST
R , ( )

i

VST
R , and 

( )VST
R  employing Equations 

(13), (14), and (15), respectively. 

e) For the G.WS method, compute  ( )

i

WS
R

, ( )

i

WS
R

, and 
( )WS

R  employing Equations (17), 

(18), and (19), respectively. 

Step  IV:  Repeat step III. 1,000 times. 

Step   V:  Compute 
.G VSTL and 

.G VSTU  by employing Equation (16). 

Step  VI:  Compute 
.G WSL and 

.G WSU  by employing Equation (20). 

Step VII:  Repeat steps I. – VI. 3,000 times. 

 

 

3. THE RESEARCH FINDINGS AND DISCUSSION 

 

The simulation study will be conducted using different sample sizes and parameter values to cover a range 

of possible scenarios. Since 
i  is the scale parameter, ( )1 2,  = (1.0, 1.0) was fixed to avoid loss of 

generality. The shape parameters ( )1 2,   are (0.5, 0.5), (1.0, 1.0), and (2.0, 2.0), and the sample sizes  

( )1 2,m m  are (30, 30), (30, 50), (30, 100), (50, 50), (50, 100), and (100, 100) as recommended by Puggard 

et al. [44]. Additionally, we selected proportions of zero values ( )1 2,   as (0.1, 0.1), (0.1, 0.3), (0.1, 0.5), 

(0.3, 0.3), (0.3, 0.5), and (0.5, 0.5). A total of M = 3,000 simulation runs were performed, containing 1,000 
iterations for the GCI and 500 iterations for the BCI. We will use coverage probabilities greater than or 

equal to the nominal confidence level of 0.95, along with the shortest average widths from Monte Carlo 

simulations in the statistical software R, to compare the performance of the MOVER, BCI, G.VST, and 
G.WS methods used to construct confidence intervals. Algorithm 4 shows the computational steps to 

estimate the coverage probability and average width performances of all the methods. Figure 3 depicts a 

flowchart that illustrates the process of studying the simulated scenario. 

 
The results in Table 1 indicate that the MOVER method provides coverage probabilities greater than the 

nominal confidence level of 0.95 in almost every case. However, it consistently yields the widest average 

widths when compared to other methods. For the BCI method, although the average widths are shorter than 
those of the MOVER method in all cases, it provides coverage probabilities that are mostly below 0.95. 

Considering the G.VST and G.WS methods, they provide coverage probabilities close to the target. 

Additionally, both methods yield the shortest average widths and are very close to each other. In Figure 4, 

the graphs compare the efficiency of the sample sizes versus coverage probabilities and average widths for 
the shape parameter = (0.5, 0.5). It was found that as the sample size increases, the average width of all 

methods decrease, resulting in improved efficiency. In Figure 5, the graphs compare the efficiency of the 

proportion of zeros versus coverage probabilities and average widths for the shape parameter = (0.5, 0.5). 
When considering equal proportions of zeros, it was found that as the proportion of zeros increases, the 

average widths of the MOVER and BCI methods increase, while those of the G.VST and G.WS methods 
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decrease. For unequal proportions of zeros, it was found that as the proportion of zeros increases, the 

average widths for all methods tend to decrease. 
 

The results in Table 2 clearly show that the MOVER method provides coverage probabilities greater than 

0.95, except for the case where ( ) ( )1 2, 0.1,0.1  = and ( ) ( )1 2, 30,100m m = . On the other hand, the BCI 

method generally yields coverage probabilities below 0.95. Furthermore, the BCI method provides average 

widths that are shorter than the MOVER method. As for the G.VST and G.WS methods, both show similar 
and highly efficient performance, demonstrating consistent coverage probabilities and the shortest average 

widths. In Figure 6, the graphs compare the efficiency of the sample sizes versus coverage probabilities and 

average widths for the shape parameter = (1.0, 1.0). It was found that as the sample size increases, the 
average widths for all methods tend to decrease. In Figure 7, the graphs compare the efficiency of the 

proportion of zeros versus coverage probabilities and average widths for the shape parameter = (1.0, 1.0). 

When considering equal proportions of zeros, it was found that as the proportion of zeros increases, the 
average widths for all methods increase. For unequal proportions of zeros, it was found that as the 

proportion of zeros increases, the average widths for all methods decrease. 

 

The results in Table 3 show that, considering coverage probabilities, it is evident that both MOVER and 
BCI methods have probabilities lower than the specified confidence level. Meanwhile, the G.VST and 

G.WS methods provide probabilities close to the target. Furthermore, in terms of average widths, the G.VST 

and G.WS methods are shorter than the MOVER and BCI methods. In Figure 8, the graphs compare the 
efficiency of the sample sizes versus coverage probabilities and average widths for the shape parameter = 

(2.0, 2.0). It is evident that as the sample size increases, the average widths for all methods tend to decrease. 

In Figure 9, the graphs compare the efficiency of the proportion of zeros versus coverage probabilities and 

average widths for the shape parameter = (2.0, 2.0). When considering equal proportions of zeros, it was 
found that as the proportion of zeros increases, the average widths for all methods increase. For unequal 

proportions of zeros, it was found that as the proportion of zeros increases, the average widths for all 

methods tend to decrease. 
 

Algorithm 4: Comparison of coverage probabilities and average widths for all confidence intervals 

Step   I:  For 1k =  to M.  
Step  II:  Generate ijh  from the Delta-Birnbaum-Saunders distribution by: 

i) Generate 0h  where the number of zero values is ( ) ( )0
,~

i ii
inom al mim B  .  

The number of positive values will be ( ) ( )1 0i i i
m m m= − . 

ii) Set parameters for the BS distribution ( i , i ), then generate random values ( )1h  

from the BS distribution using the package `rbs( ( )1i
m , i , i )` in the R program. 

iii) Combine 0h  and 1h  together to obtain ijh . 

Step III:  Compute the unbiased estimates ˆ
i  and ˆi . 

Step IV:  Compute the 95% confidence intervals for   based on the MOVER, BCI, G.VST, and  

               G.WS via Algorithms 1, 2, and 3, respectively. 

Step  V:  Let 1kC =  if  falls within the intervals of MOVER, BCI, G.VST, or G.WS, else  

               0kC = . 

Step VI:  The coverage probability and average width for each method are obtained by  

               
1

1 M

k

k

CP C
M =

=  and 
U L

AW
M

−
= , respectively, where U  and L  are the upper and  

                lower confidence limits, respectively. (end k loop) 
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Figure 3. A flowchart of the simulation study 
 

  



Usanee JANTHASUWAN, Sa-Aat NIWITPONG, Suparat NIWITPONG/ GU J Sci, 38(1): x-x (2025) 

 

 

Table 1. The coverage probabilities and average widths for the 95% CIs for ;  
1 2,  = 0.5,0.5 

1 2,m m  
1 2,   

Coverage probabilities Average widths 

MOVER BCI G.VST G.WS MOVER BCI G.VST G.WS 

30,30 0.1,0.1 0.9593 0.9470 0.9537 0.9550 0.9272 0.8370 0.5909 0.5912 

 0.1,0.3 0.9580 0.9413 0.9466 0.9483 0.6767 0.6090 0.3725 0.3726 

 0.1,0.5 0.9690 0.9467 0.9510 0.9493 0.5151 0.4587 0.2656 0.2657 

 0.3,0.3 0.9753 0.9537 0.9554 0.9547 0.9951 0.8867 0.4564 0.4567 

 0.3,0.5 0.9750 0.9490 0.9540 0.9550 0.7529 0.6637 0.3226 0.3228 

 0.5,0.5 0.9797 0.9407 0.9563 0.9543 1.0897 0.9695 0.4397 0.4398 

30,50 0.1,0.1 0.9583 0.9537 0.9527 0.9503 0.7844 0.7417 0.5321 0.5322 

 0.1,0.3 0.9563 0.9487 0.9533 0.9533 0.5670 0.5349 0.3428 0.3426 

 0.1,0.5 0.9597 0.9447 0.9491 0.9480 0.4268 0.4001 0.2444 0.2439 

 0.3,0.3 0.9663 0.9490 0.9470 0.9480 0.8453 0.7866 0.4062 0.4063 

 0.3,0.5 0.9640 0.9470 0.9522 0.9513 0.6308 0.5848 0.2870 0.2863 

 0.5,0.5 0.9717 0.9453 0.9514 0.9470 0.9230 0.8623 0.3876 0.3876 

30,100 0.1,0.1 0.9440 0.9437 0.9580 0.9553 0.6836 0.6648 0.4821 0.4815 

 0.1,0.3 0.9417 0.9417 0.9460 0.9467 0.4912 0.4773 0.3224 0.3225 

 0.1,0.5 0.9490 0.9470 0.9487 0.9490 0.3621 0.3508 0.2292 0.2285 

 0.3,0.3 0.9623 0.9510 0.9493 0.9489 0.7405 0.7108 0.3681 0.3685 

 0.3,0.5 0.9613 0.9483 0.9520 0.9457 0.5463 0.5228 0.2618 0.2618 

 0.5,0.5 0.9640 0.9463 0.9478 0.9483 0.8116 0.7837 0.3492 0.3492 

50,50 0.1,0.1 0.9580 0.9487 0.9437 0.9480 0.6865 0.6368 0.4457 0.4464 

 0.1,0.3 0.9610 0.9470 0.9480 0.9480 0.4990 0.4621 0.2778 0.2780 

 0.1,0.5 0.9653 0.9480 0.9463 0.9470 0.3787 0.3480 0.1962 0.1960 

 0.3,0.3 0.9637 0.9487 0.9537 0.9503 0.7366 0.6761 0.3360 0.3357 

 0.3,0.5 0.9680 0.9403 0.9493 0.9490 0.5551 0.5056 0.2321 0.2319 

 0.5,0.5 0.9743 0.9493 0.9517 0.9507 0.7967 0.7297 0.3105 0.3106 

50,100 0.1,0.1 0.9550 0.9500 0.9527 0.9526 0.5729 0.5492 0.3867 0.3871 

 0.1,0.3 0.9573 0.9481 0.9503 0.9489 0.4140 0.3965 0.2521 0.2523 

 0.1,0.5 0.9607 0.9440 0.9520 0.9531 0.3107 0.2961 0.1790 0.1788 

 0.3,0.3 0.9587 0.9437 0.9490 0.9520 0.6133 0.5812 0.2898 0.2894 

 0.3,0.5 0.9643 0.9480 0.9487 0.9500 0.4598 0.4340 0.2043 0.2043 

 0.5,0.5 0.9723 0.9543 0.9502 0.9490 0.6668 0.6318 0.2667 0.2669 

100,100 0.1,0.1 0.9603 0.9490 0.9472 0.9487 0.4711 0.4468 0.3091 0.3090 

 0.1,0.3 0.9587 0.9470 0.9530 0.9513 0.3447 0.3257 0.1921 0.1922 

 0.1,0.5 0.9617 0.9423 0.9527 0.9550 0.2591 0.2434 0.1345 0.1343 

 0.3,0.3 0.9600 0.9447 0.9493 0.9493 0.5029 0.4711 0.2290 0.2293 

 0.3,0.5 0.9659 0.9480 0.9450 0.9450 0.3783 0.3531 0.1574 0.1572 

 0.5,0.5 0.9686 0.9487 0.9450 0.9467 0.5454 0.5092 0.2063 0.2065 

  Note: Bold text indicates coverage probabilities greater than or equal to 0.95 and the most appropriate average widths. 

  

   
    

Figure 4. The graphs compare the efficiency of the sample sizes versus (A) coverage probabilities and  

(B) average widths for shape parameter = 0.5,0.5  
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Figure 5. The graphs compare the efficiency of the proportion of zero versus (C) coverage probabilities 

and (D) average widths for shape parameter = 0.5,0.5  
 

Table 2. The coverage probabilities and average widths for the 95% CIs for ;
1 2,  = 1.0,1.0 

1 2,m m  
1 2,   

Coverage probabilities Average widths 

MOVER BCI G.VST G.WS MOVER BCI G.VST G.WS 

30,30 0.1,0.1 0.9443 0.9397 0.9496 0.9483 0.7358 0.6946 0.6381 0.6383 

 0.1,0.3 0.9520 0.9425 0.9497 0.9503 0.6509 0.6021 0.5031 0.5038 

 0.1,0.5 0.9597 0.9396 0.9500 0.9510 0.5766 0.5149 0.4018 0.4015 

 0.3,0.3 0.9563 0.9403 0.9512 0.9527 0.8556 0.7961 0.6152 0.6152 

 0.3,0.5 0.9560 0.9439 0.9507 0.9500 0.7546 0.6782 0.4928 0.4927 

 0.5,0.5 0.9683 0.9427 0.9443 0.9433 1.0270 0.9374 0.6455 0.6459 

30,50 0.1,0.1 0.9478 0.9483 0.9567 0.9563 0.6284 0.6109 0.5650 0.5646 

 0.1,0.3 0.9483 0.9416 0.9438 0.9467 0.5451 0.5244 0.4518 0.4513 

 0.1,0.5 0.9587 0.9500 0.9493 0.9503 0.4683 0.4430 0.3587 0.3586 

 0.3,0.3 0.9500 0.9427 0.9462 0.9490 0.7292 0.7061 0.5498 0.5503 

 0.3,0.5 0.9573 0.9428 0.9440 0.9437 0.6219 0.5916 0.4359 0.4359 

 0.5,0.5 0.9627 0.9444 0.9507 0.9523 0.8602 0.8287 0.5744 0.5739 

30,100 0.1,0.1 0.9367 0.9403 0.9490 0.9490 0.5517 0.5461 0.5075 0.5080 

 0.1,0.3 0.9350 0.9357 0.9433 0.9450 0.4667 0.4601 0.4091 0.4088 

 0.1,0.5 0.9437 0.9453 0.9523 0.9533 0.3850 0.3775 0.3227 0.3226 

 0.3,0.3 0.9390 0.9420 0.9477 0.9487 0.6308 0.6250 0.4924 0.4924 

 0.3,0.5 0.9443 0.9393 0.9508 0.9513 0.5221 0.5137 0.3915 0.3911 

 0.5,0.5 0.9453 0.9387 0.9500 0.9493 0.7512 0.7472 0.5202 0.5206 

50,50 0.1,0.1 0.9514 0.9450 0.9513 0.9513 0.5495 0.5320 0.4834 0.4842 

 0.1,0.3 0.9483 0.9410 0.9392 0.9370 0.4836 0.4620 0.3841 0.3842 

 0.1,0.5 0.9558 0.9450 0.9483 0.9476 0.4246 0.3978 0.3062 0.3060 

 0.3,0.3 0.9603 0.9491 0.9540 0.9520 0.6358 0.6084 0.4658 0.4661 

 0.3,0.5 0.9600 0.9467 0.9520 0.9523 0.5539 0.5202 0.3729 0.3728 

 0.5,0.5 0.9633 0.9486 0.9503 0.9503 0.7547 0.7150 0.4839 0.4840 

50,100 0.1,0.1 0.9457 0.9433 0.9470 0.9460 0.4634 0.4575 0.4173 0.4173 

 0.1,0.3 0.9472 0.9450 0.9480 0.9467 0.3954 0.3885 0.3332 0.3336 

 0.1,0.5 0.9520 0.9450 0.9473 0.9470 0.3347 0.3266 0.2647 0.2647 

 0.3,0.3 0.9503 0.9470 0.9533 0.9563 0.5323 0.5246 0.4031 0.4028 

 0.3,0.5 0.9540 0.9477 0.9480 0.9486 0.4454 0.4353 0.3195 0.3193 

 0.5,0.5 0.9557 0.9483 0.9505 0.9463 0.6276 0.6171 0.4199 0.4200 

100,100 0.1,0.1 0.9470 0.9460 0.9520 0.9507 0.3809 0.3743 0.3373 0.3376 

 0.1,0.3 0.9524 0.9470 0.9520 0.9533 0.3328 0.3253 0.2678 0.2677 

 0.1,0.5 0.9530 0.9467 0.9492 0.9477 0.2904 0.2809 0.2139 0.2139 

 0.3,0.3 0.9593 0.9510 0.9530 0.9576 0.4380 0.4283 0.3257 0.3256 

 0.3,0.5 0.9593 0.9557 0.9508 0.9502 0.3775 0.3660 0.2597 0.2596 

 0.5,0.5 0.9579 0.9490 0.9473 0.9473 0.5126 0.4992 0.3353 0.3355 

Note: Bold text indicates coverage probabilities greater than or equal to 0.95 and the most appropriate average widths. 
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Figure 6. The graphs compare the efficiency of the sample sizes versus (E) coverage probabilities and  

(F) average widths for shape parameter = 1.0,1.0  

 

   
Figure 7. The graphs compare the efficiency of the proportion of zero versus (G) coverage probabilities 

and (H) average widths for shape parameter = 1.0,1.0 

 

   
Figure 8. The graphs compare the efficiency of the sample sizes versus (I) coverage probabilities and  

(J) average widths for shape parameter = 2.0,2.0  
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Table 3. The coverage probabilities and average widths for the 95% CIs for ;
1 2,  = 2.0,2.0 

1 2,m m  
1 2,   

Coverage probabilities Average widths 

MOVER BCI G.VST G.WS MOVER BCI G.VST G.WS 

30,30 0.1,0.1 0.9193 0.9393 0.9467 0.9470 0.4270 0.4582 0.3914 0.3918 

 0.1,0.3 0.9150 0.9493 0.9517 0.9507 0.4116 0.4542 0.3495 0.3496 

 0.1,0.5 0.8990 0.9410 0.9510 0.9513 0.3998 0.4405 0.3080 0.3078 

 0.3,0.3 0.8980 0.9400 0.9493 0.9493 0.5224 0.5984 0.4200 0.4204 

 0.3,0.5 0.8977 0.9450 0.9527 0.9520 0.4984 0.5658 0.3687 0.3689 

 0.5,0.5 0.8940 0.9440 0.9537 0.9543 0.6720 0.7831 0.4809 0.4809 

30,50 0.1,0.1 0.9220 0.9383 0.9517 0.9510 0.3685 0.4011 0.3423 0.3424 

 0.1,0.3 0.9043 0.9447 0.9467 0.9473 0.3398 0.3824 0.2989 0.2990 

 0.1,0.5 0.8873 0.9420 0.9483 0.9487 0.3149 0.3628 0.2579 0.2585 

 0.3,0.3 0.8920 0.9410 0.9523 0.9500 0.4448 0.5251 0.3647 0.3648 

 0.3,0.5 0.8883 0.9480 0.9507 0.9490 0.4075 0.4847 0.3162 0.3161 

 0.5,0.5 0.8903 0.9460 0.9573 0.9550 0.5631 0.6882 0.4153 0.4156 

30,100 0.1,0.1 0.9167 0.9387 0.9503 0.9490 0.3249 0.3569 0.3046 0.3048 

 0.1,0.3 0.9127 0.9430 0.9490 0.9493 0.2910 0.3280 0.2633 0.2635 

 0.1,0.5 0.9040 0.9500 0.9575 0.9570 0.2560 0.2959 0.2228 0.2225 

 0.3,0.3 0.8903 0.9473 0.9557 0.9553 0.3946 0.4735 0.3260 0.3259 

 0.3,0.5 0.8830 0.9403 0.9470 0.9460 0.3417 0.4136 0.2750 0.2750 

 0.5,0.5 0.8713 0.9417 0.9517 0.9517 0.4959 0.6186 0.3697 0.3696 

50,50 0.1,0.1 0.9240 0.9500 0.9500 0.9527 0.3187 0.3452 0.2943 0.2943 

 0.1,0.3 0.9130 0.9480 0.9523 0.9550 0.3021 0.3416 0.2592 0.2592 

 0.1,0.5 0.8893 0.9453 0.9513 0.9517 0.2884 0.3341 0.2283 0.2282 

 0.3,0.3 0.8960 0.9507 0.9537 0.9547 0.3841 0.4520 0.3128 0.3126 

 0.3,0.5 0.8930 0.9493 0.9463 0.9470 0.3629 0.4302 0.2767 0.2767 

 0.5,0.5 0.8810 0.9453 0.9500 0.9507 0.4846 0.5900 0.3546 0.3545 

50,100 0.1,0.1 0.9200 0.9403 0.9493 0.9523 0.2683 0.2934 0.2503 0.2497 

 0.1,0.3 0.9060 0.9437 0.9537 0.9513 0.2457 0.2792 0.2179 0.2179 

 0.1,0.5 0.8990 0.9423 0.9500 0.9503 0.2230 0.2612 0.1868 0.1867 

 0.3,0.3 0.8903 0.9410 0.9483 0.9470 0.3234 0.3865 0.2666 0.2670 

 0.3,0.5 0.8930 0.9487 0.9500 0.9477 0.2876 0.3502 0.2273 0.2271 

 0.5,0.5 0.8773 0.9437 0.9510 0.9463 0.4005 0.5019 0.2999 0.2997 

100,100 0.1,0.1 0.9207 0.9427 0.9477 0.9497 0.2200 0.2397 0.2037 0.2040 

 0.1,0.3 0.9060 0.9483 0.9447 0.9430 0.2069 0.2370 0.1792 0.1791 

 0.1,0.5 0.8903 0.9460 0.9510 0.9520 0.1943 0.2318 0.1565 0.1564 

 0.3,0.3 0.8950 0.9440 0.9487 0.9473 0.2638 0.3147 0.2165 0.2165 

 0.3,0.5 0.8790 0.9463 0.9503 0.9517 0.2430 0.2972 0.1881 0.1882 

 0.5,0.5 0.8820 0.9527 0.9517 0.9523 0.3247 0.4063 0.2415 0.2416 

Note: Bold text indicates coverage probabilities greater than or equal to 0.95 and the most appropriate average widths. 

 

   
 

Figure 9. The graphs compare the efficiency of the proportion of zero versus (K) coverage probabilities 

and (M) average widths for shape parameter = 2.0,2.0 
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4. APPLICATION 

 

Wind speed has various impacts on different aspects of life and the economy. There are many interesting 

benefits, such as Renewable Energy Production: Wind speed significantly influences the production of 

renewable energy. Wind turbines use the wind's rotation of blades to generate electricity, reducing the 

reliance on energy sources that emit pollutants and minimizing the use of essential natural resources. 
Aircraft Operations: Wind speed affects the takeoff and landing of aircraft. It can help reduce energy 

consumption on flights and enhance travel efficiency. Crop Production: Wind plays a role in dispersing 

plant seeds, aiding in the pollination of crops, and facilitating the dispersion of agricultural chemicals. 
Appropriate wind speeds can increase agricultural productivity. Enhancing Maritime Efficiency: In 

maritime activities, utilizing wind as an energy source helps reduce the use of fossil fuels and lowers ship 

emissions during travel. Weather Preparedness: Monitoring and predicting wind speed contributes to 

preparedness and disaster prevention. This is crucial for anticipating and managing the impacts of severe 
weather conditions. By harnessing the benefits of wind speed, we can reduce reliance on energy produced 

from environmentally polluting sources, mitigate natural resource depletion, and establish sustainable and 

balanced energy systems. Since wind speed affects many factors and is highly significant, we have 
considered wind speed data in our analysis. Therefore, we incorporate wind speed in the application of this 

research, using the wind speed for the hourly periods of October 2-3, 2022, and 2023 from the Khao Kheow 

Weather Observing Station, Thailand [44], as presented in Table 4. We plotted histograms of the wind speed 
data from the Khao Kheow Weather Observing Station to visualize the distribution, as shown in Figure 8. 

Additionally, we provided statistical information for the wind speed data in Table 5. Since the wind speed 

data includes zero values (no wind) and positive values, to assess the suitability of data distribution for 

positive values, we employed the Akaike Information Criterion (AIC) and Bayesian Information Criterion 

(BIC) criteria, calculated as ( )AIC 2ln 2L p= − +  and ( ) ( )BIC 2ln 2 lnL p o= − + , respectively, where p is the 

number of parameters estimated, o is the number of observations, and L is the likelihood function [45,46]. 

This was done to evaluate the appropriateness of data distribution by comparing it with different 

distributions, namely the Normal, Weibull, Exponential, Gamma, Birnbaum-Saunders, Cauchy, and 
Logistic distributions. It is apparent from Table 6 that the Birnbaum-Saunders distribution has the lowest 

AIC and BIC values in comparison to the other distributions. This indicates that the Birnbaum-Saunders 

distribution is most appropriate for the wind speed data that exhibits the positive value. Hence, the wind 
speed data, which comprises both zero and positive values, is consequently represented by the Delta- 

Birnbaum-Saunders distribution. This distribution has thus been utilized to compute confidence intervals 

for the ratios of the coefficients of variation of the wind speed data. From the presented data in Table 7, it 
is evident that the G.VST method is the most suitable approach for calculating confidence intervals for the 

ratios of the coefficients of variation of wind speed data at the Khao Kheow Weather Observing Station. 

This is due to its shortest interval width compared to other methods. 
 

              
 

Figure 8. Histograms of wind speed data for (N) October 2–3, 2022, and (O) October 2–3, 2023 
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Table 4. Data on the wind speed (knot) from the Khao Kheow Weather Observing Station, Thailand 

October 2–3, 2022 October 2–3, 2023 

0.0 0.2 0.2 0.0 0.7 0.0 0.0 0.4 

0.0 0.0 1.4 0.0 0.5 0.1 0.0 0.2 

0.2 0.4 0.7 0.0 0.5 0.3 0.1 0.1 

0.0 0.5 1.1 0.2 0.0 0.1 0.4 0.0 

0.0 0.2 2.2 0.2 0.2 0.0 0.5 0.0 

0.0 0.0 2.4 0.2 0.3 0.1 0.7 0.3 

0.0 0.6 2.5 0.0 0.4 0.2 0.5 1.0 

0.5 0.4 1.2 0.0 0.3 0.1 0.0 1.5 

1.5 0.1 0.3 0.3 0.2 0.0 0.1 0.5 

2.3 0.6 0.0 0.3 0.0 0.1 0.4 1.7 

0.5 0.5 0.0 1.1 0.0 0.0 0.3 0.9 

0.1 0.1 0.0 0.7 0.0 0.1 0.0 1.1 

 

Table 5. Summary statistics for the wind speed data 

Data im  ( )0i
m  ( )1i

m  ˆ
i  ˆ

i  ˆ
i  ˆ

i  

In 2022 48 16 32 0.333 1.021 0.487 1.434 

In 2023 48 14 34 0.292 0.903 0.311 1.259 

 

Table 6. The AIC and BIC values of each distribution for the wind speed data 

Distributions Data 
Maximum likelihood estimates 

AIC BIC 
Shape parameter Scale parameter 

Normal 
In 2022 0.741 0.713 73.142 76.073 

In 2023 0.438 0.391 36.648 39.701 

Weibull 
In 2022 1.107 0.772 48.227 51.159 

In 2023 1.227 0.472 13.594 16.647 

Exponential 
In 2022 - 0.741 46.783 48.249 

In 2023 - 0.438 13.900 15.426 

Gamma 
In 2022 1.285 0.576 47.622 50.554 

In 2023 1.557 0.282 12.351 15.404 

Birnbaum-Saunders 
In 2022 1.021 0.487 44.015 48.413 

In 2023 0.903 0.311 9.414 13.993 

Cauchy 
In 2022 0.372 0.241 66.495 69.427 

In 2023 0.291 0.164 31.462 34.514 

Logistic 
In 2022 0.610 0.376 71.207 74.138 

In 2023 0.372 0.196 31.900 34.953 

 

Table 7. The 95% confidence intervals for the coefficients of variation of the wind speed data 

Point estimation Methods Interval [L, U] Width 

1

2

ˆ
1.1385

ˆ




=  

MOVER [0.8273, 1.5689] 0.7416 

BCI [0.8326, 1.5077] 0.6751 

G.VST [0.8991, 1.4441] 0.5450 

G.WS [0.8717, 1.4316]  0.5599 
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5. CONCLUSIONS 

 

In this conclusion, our research has presented four methods, namely MOVER, BCI, G.VST, and G.WS, for 

constructing confidence intervals for ratios of the coefficients of variation under the Delta-Birnbaum-

Saunders distributions. To assess the performance of all four methods, we use coverage probabilities along 

with average widths obtained from Monte Carlo simulations. The simulation results indicate that as the 

sample size increases, all the presented methods exhibit improved performance. Additionally, when 

considering each method individually, the MOVER method performs well when the shape parameter is 

small. However, this method provides average widths that are wider than those of other methods in almost 

every case studied. For the BCI method, although it generally provides shorter average widths compared to 

MOVER, except for large shape parameters, the BCI method still provides coverage probabilities below 

the specified criterion in almost every case, resulting in the lowest overall performance. The G.VST and 

G.WS methods provide similar values in terms of coverage probabilities and average widths. Importantly, 

the G.VST and G.WS offer the shortest average widths, resulting in better performance compared to other 

methods and demonstrating the highest overall performance. Moreover, the application of these methods to 

wind speed data aligns with simulation results. Consequently, this research recommends the use of the 

generalized confidence interval method for constructing confidence intervals for the ratios of coefficients 

of variation in the Delta-Birnbaum-Saunders distributions.  

 

As a final remark, our research findings demonstrate that the MOVER performs well for cases with small 

shape parameters. However, the variance estimator used in the MOVER may have some weaknesses 

affecting i , resulting in wider confidence intervals compared to other methods, even though it meets the 

specified coverage probability criteria. In contrast, the GCI provides the shortest confidence intervals, 

leading to the best overall performance. This is because the GPQ of i  influences the GPQ of i ,  allowing 

the GCI to perform well in almost all cases. These results are consistent with the research of Yosboonruang 

and Niwitpong [25]. In future research, we will investigate alternative methods for constructing confidence 

intervals, such as Bayesian estimation or Highest Posterior Density (HPD) intervals, which may lead to 

improved performance. Additionally, we plan to incorporate other real-world datasets beyond wind speed 

data to broaden the scope of analysis and applicability. 
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