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People can get pneumonia, a dangerous infectious disease, at any time in their lives. Severe cases of 

pneumonia can be fatal. A doctor would usually examine chest x-rays to diagnose pneumonia. In this 

work, a pneumonia diagnosis system was developed using publicly available chest x-ray images. Vision 

Transformer (ViT) and other deep learning models were used to extract features from these images. 

Vision Transformer (ViT) is an attention-based model used for image processing and understanding as 

an alternative to the convolutional neural networks traditionally used for this purpose. ViT consists of a 

series of attention layers, where each attention layer models the relationships between input pixels to 

represent an image. These relationships are determined by a set of attention heads and then fed into a 

classifier. ViT performs effectively in a variety of visual tasks, especially when trained on large datasets. 

The study shows that the ViT model's classification procedure has a high success rate of 95.67%. These 

results highlight how deep learning models can be used to quickly and accurately diagnose dangerous 

diseases such as pneumonia in its early stages. The study also shows that the ViT model outperforms 

current approaches in the biomedical field. 
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1. INTRODUCTION 

Recently, significant progress has been made in computer vision thanks to the introduction of deep learning 

(DL) algorithms. Convolutional Neural Networks (CNNs) have long dominated image processing tasks (Aslan 

& Özüpak, 2024). They have demonstrated outstanding performance in numerous applications, including 

photo classification, object identification, and segmentation. Nevertheless, the reliance on CNNs for visual 

tasks has led researchers to investigate alternative architectures that could provide improvements in 

effectiveness and efficiency. One viable option that has received much interest is the Vision Transformer (ViT) 

model. In ViT, spatial features are extracted from images using a transformer-based architecture first 

introduced for natural language processing tasks, as opposed to typical CNNs that use convolutions. This 

departure from CNNs represents a paradigm shift in image understanding, providing a novel approach to 

capture long-range dependencies and semantic relationships within visual data (Berliner et al., 2016). 

The basic idea of the ViT model is the self-attention mechanism, which allows the model to capture global 

contextual information while focusing on relevant areas of the input image. By decomposing the input image 

into patches and processing them through a sequence of transform blocks, ViT learns to extract hierarchical 

representations of visual content, effectively leveraging both local and global information for downstream 

tasks. To extract high-level information from the input image, ViT's architecture consists of multiple layers of 

self-attention blocks followed by feedforward neural networks. Most importantly, ViT eliminates the need for 
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manually constructed features, allowing the model to self-train on massive datasets and learn discriminative 

features directly from raw pixel values. Through this comprehensive review, we aim to provide researchers 

and practitioners with a comprehensive understanding of ViT's capabilities, potential areas for improvement, 

and future research directions in the evolving landscape of computer vision (Salehinejad et al., 2018). 

Vision Transformer (ViT) has significant potential in medical imaging and can be applied to critical health 

issues such as the diagnosis of pneumonia. Pneumonia is a disease resulting from infection in the lungs and 

can lead to serious complications. Traditionally, pneumonia is diagnosed by examining chest X-rays. Within 

these images, specific clues are searched for. However, deep learning models like ViT can be employed to 

extract information from such images and diagnose the disease. When trained on large datasets, ViT can 

perceive complex patterns in images and detect symptoms of specific illnesses like pneumonia. For the 

diagnosis of pneumonia, ViT can extract features from chest X-rays. Based on these features, it can classify 

the disease. This approach could support the diagnosis process of human doctors or contribute to the 

development of automated diagnostic systems. However, before implementing such a system, the accuracy 

and reliability of ViT need to be thoroughly validated. Additionally, strict compliance with regulations and 

standards for medical devices and applications is necessary. As a result, deep learning models like ViT could 

play an important role in the early diagnosis and treatment of pneumonia, but careful evaluation is essential 

(Pacal, 2023). 

Image processing refers to a technology that rapidly performs various tasks similar to those performed by the 

human eye within a computerized environment, using various interface software. A plethora of models have 

been developed within this domain, with accompanying scientific research contributing significantly. 

Recently, the predominant model emerging from the analytical results is deep learning, an integral component 

of machine learning. Deep learning has gained popularity due to its multi-layered design, which distinguishes 

it from typical machine learning techniques. Its inspiration comes from the complex functioning of the human 

brain (Koitka & Friedrich, 2016). The focus of deep learning models in the field of image processing includes 

biomedical applications, where their integration has heralded remarkable successes (Ravi et al., 2017). 

Throughout history, infectious diseases have emerged as a major threat to human well-being. Pneumonia, 

medically known as pneumonias, reigns supreme in the hierarchy of infectious diseases (Bakator & Radosav, 

2018). Characterized by inflammation of lung tissue due to microbial invasion, pneumonia takes a heavy toll, 

affecting approximately 7% of the global population annually and resulting in an estimated 4 million deaths 

(Akter et al., 2015). Timely diagnosis is paramount to mitigating the impact of such diseases. Recognizable 

symptoms include chest pain, dyspnea, and cough, among others, with diagnostic modalities including sputum 

cultures and chest radiographs (Berliner et al., 2016).  

Much research has attempted to apply various computer vision techniques to the interpretation of human chest 

X-rays to detect pneumonia. In 2017, Rajpurkar and colleagues presented a framework called "ChexNet" that 

demonstrated the ability to diagnose pneumonia from chest X-rays with a level of accuracy exceeding that of 

expert radiologists (Rajpurkar et al., 2017). With over 100,000 frontal view X-rays labeled with 14 diseases, 

the ChestXray14 dataset serves as the training set for ChexNet, a 121-layer CNN. This repository is currently 

the largest of its kind in the public domain. In another study, Tatiana Gabruseva and colleagues developed a 

computational method based on augmentation, multi-task learning, squeeze-and-excitation deep convolutional 

neural networks, single-shot detectors, and multi-task learning for pneumonia area detection (Gabruseva et al., 

2020). When the suggested method was assessed in the context of the Radiological Society of North America 

Pneumonia Detection Project, it produced good results within the project framework. 

For the purpose of analyzing abnormal and normal chest X-rays, Varshni et al. (2019) evaluated the 

effectiveness of pre-trained CNN models used as feature extractors followed by different classifiers. The best 

CNN model for this purpose was then analytically determined and the accuracy was 80.02% (Varshni et al., 

2019). To diagnose pneumonia more accurately than individual models, Chouhan et al. (2020) proposed an 

ensemble model that incorporates results from multiple pre-trained models. Their ensemble model achieved 

excellent recall of 99.62% and accuracy of 96.4% on unknown data from the Guangzhou Women and 

Children's Medical Center dataset. Salehinejad et al. (2018) used GAN-generated images to improve the 

original chest X-ray images in order to overcome the absence of medical data. The dataset was subsequently 

subjected to DCNN, which produced considerable improvements in classification performance (Salehinejad et 
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al., 2018). A text-image embedding network for feature extraction was proposed by Wang et al. (2017) 

Subsequently, an automatic annotation framework was created, which demonstrated an amazing accuracy of 

0.9 (Wang et al., 2017). Toğaçar et al. (2022) used CNN as a feature extractor along with a variety of 

convolutional neural network models such as VGG-16, VGG-19, and AlexNet. They also used a feature 

selection approach (mRMR) to reduce combined features (Toğaçar et al., 2020). Using VGG16 with Bi-

directional LSTM, Suganya G et al. extracted characteristics from chest X-ray pictures. This resulted in a 

notable accuracy of 97.76% in tuberculosis detection (Chowdary et al., 2021). With the help of cytological 

imaging, Guan et al. (2019) were able to discriminate between benign thyroid nodules and papillary thyroid 

cancer with a reasonable accuracy of 95% in their patient base. In the contemporary landscape of medical 

practice, reliance on manual interpretation of chest X-rays by clinicians presents a cumbersome process amidst 

the era of technological advancements. Leveraging extant technological resources and software applications 

to facilitate diagnosis represents a commendable stride in terms of efficiency and cost-effectiveness. By 

harnessing deep learning models, particularly in training with chest X-ray images sourced from pneumonia 

patients, superior diagnostic outcomes can be achieved compared to conventional methodologies. This study, 

employing publicly available chest X-ray imagery, has harnessed ViT, a prominent deep learning 

methodology, with ensuing results showcasing its efficacy and proficiency. 

2. MATERIAL AND METHOD 

A well-liked method in the deep learning family, transformers have shown remarkable results in natural 

language processing (NLP) applications. Transformers have been used in image processing activities recently, 

a significant development that was started by Dosovitskiy and associates. Demonstrating success in image 

processing, transformers have swiftly gained prominence across various domains. Characterized by a simple 

network architecture based on attention mechanisms, transformers enable focused processing of input 

elements. Similar to operations in natural language processing, inputs are divided into multiple patches, akin 

to words, and undergo a series of linear transformations (Dosovitskiy et al., 2021). 

In the realm of image processing, inputs are fragmented into multiple patches, resembling words, which are 

then utilized as input elements. The Vision Transformer (ViT) stands as the pioneering attempt to apply a pure 

transformer architecture to process images. While the original transformer model encompasses both encoder 

and decoder components, the ViT model solely incorporates an encoder. The operational principles of image 

transformers closely parallel those observed in NLP. In the ViT architecture, the input image I is represented 

as 𝑅𝐻𝑥𝑊𝑥𝐶 of dimensions. Subsequently, this image is partitioned into N patches of dimensions 𝑃𝑥𝑃𝑥𝐶. The 

value of N is mathematically expressed as shown in Equation 1. 

 𝑁 =
𝐻𝑊

𝑃2
 (1) 

Flattening and Embedding Process: In this context, H represents the height, P the patch size, W the width, 

and C the number of channels in the image. The fragmented image patches, divided into N parts, are flattened 

and subjected to a linear embedding process. Subsequently, a positional embedding process is applied to retain 

positional information of the patches. The functioning of vision transformers proceeds akin to natural language 

processing. Three layers typically make up the ViT architecture: the classifier, encoder, and embedding layers. 

This structure is illustrated in Figure 1. 

Embedding Layer: Each patch is handled separately in this layer, and a learnable linear projection is used to 

map the patches to the embedding dimensions E and D. The embedded projections are combined with a 

learnable class token 𝑈𝑐𝑙𝑎𝑠𝑠, which serves as a trainable token completing the classification process. Positional 

embedding, 𝐸𝑝𝑜𝑠, tracks the arrangement of each patch, ensuring their maintenance to facilitate the recognition 

of the actual image. The patch-encoded series, denoted as 𝑍0, is mathematically expressed as shown in 

Equation 2 below. 

 𝑍0 = [𝑈𝑐𝑙𝑎𝑠𝑠; 𝑋𝑝
1𝐸; 𝑋𝑝

2𝐸; … … 𝑋𝑝
𝑁𝐸] + 𝐸𝑝𝑜𝑠 (2) 
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Encoder Layer: The transformer encoder is employed to process the previously obtained series of embedded 

patches 𝑍0. In vision transformers, the encoder unit comprises L identical layers. Each identical layer consists 

of a multi-head self-attention (MSA) block and a fully connected feed-forward dense block (MLP) structure 

(Equations 3 and 4). In the transformer encoder, the MSA block serves as the fundamental component, 

incorporating self-attention and merging layers. These blocks consist of the GeLU activation function after 

two dense layers. Skip connections are used in the encoder, and layer normalization (LN) is used prior to the 

output layer. 

 𝑍1
′ = 𝑀𝑆𝐴(𝐿𝑁)(𝑍1 − 1) + (𝑍1 − 1), 1 = 1 … . 𝐿 (3) 

 𝑍1
′ = 𝑀𝐿𝑃(𝐿𝑁)(𝑍1

′ ) + 𝑍1
′ , 1 = 1 … . 𝐿 (4) 

Within the transformer encoder, the output of the multi-head self-attention (MSA) is obtained through the 

aggregation of several self-attention heads. Mathematically, self-attention is represented as shown in Equation 

5. 

 𝐻 = 𝐴𝑡𝑡𝑒𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝐷𝐾

) 𝑉 (6) 

In Equation 5, the query obtained after matrix multiplications is represented by Q, the key by K, and the value 

matrix by V. In vision transformers, the final output of the MSA is obtained by passing the concatenation of 

all self-attention heads through a linear layer. This linear layer is mathematically expressed in Equation 6. 

 𝑀𝑆𝐴(𝑄, 𝐾, 𝑉) = [𝐻1, 𝐻2, … … . . 𝐻ℎ]𝑊0 (7) 

Where, 𝑊0 represents the learnable output transformation matrix, while H denotes the number of self-attention 

heads.  

2.1. Vision Transformer Approach 

The Vision Transformer (ViT) technique is now a helpful tool for work involving NLP. In the area of computer 

vision, ViT offers a pure transformer model devoid of any convolutional blocks (Vaswani et al., 2017). 

Convolutional Neural Networks (CNN) have historically dominated image recognition efforts. Nevertheless, 

CNNs have several drawbacks. Most notably, because of processes like max pooling, they process information 

more slowly, and large datasets are required for efficient processing and neural network training (Zhou et al., 

2021). The suggested model uses a dataset of chest X-rays to classify pneumonia using the Vision Transformer 

(ViT) approach. Notably, when it comes to managing massive computer vision datasets, the Vision 

Transformer has lately gained favor over CNNs. Data integration across the full image is made possible by 

ViT's usage of a transformer architecture with self-attention. The operating principle of ViT is visualized in 

Figure 1. 

As required by the algorithm, the image is split up into tokens, or patches, of similar size. These patches go 

through a 2D flattening process to become a vector format. The patch embedding is then combined with a 

position embedding to preserve positional information. Layers for self-attention and multi-head attention make 

up the transformer encoder. The multi-layer perceptron blocks are connected to a second layer normalization, 

and the embedded patches are connected to layer normalization within the multi-head arrangement. Each X-

ray image was resized to a consistent pixel dimension of 250 by 250. Subsequently, each image was partitioned 

into 25 identical patches, each with dimensions of 50 by 50 pixels. These patches were vectorized and flattened 

in order to be input into the transformer encoder network, where positional encoding was applied to the picture 

vectors. Among the six transformer blocks, the multi-head attention layer utilized eight heads. 
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Figure 1. Overview of the design of the vision transformer 

2.2. Classification layer 

Within this unit dedicated to the classification process, the entity 𝑍𝑙
0 is initially retrieved and subsequently 

input into an external auxiliary head classifier to forecast the ultimate layer of the encoder for classification. 

This procedure is formally delineated in Equation 7, wherein y symbolizes the model's output and 𝑍𝑙
0 denotes 

the initial element utilized for decision-making (Pacal, 2023). 

 𝑦 = 𝑙𝑎𝑦𝑒𝑟_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝑍𝑙
0) (8) 

In this study, three different transformer-based models were applied for pneumonia diagnosis from chest X-

ray images. Table 1 displays each vision transformer model's specifics. The ViT-B model consists of two 

different models, ViT-B16 and ViT-B32. Actually, the ViT-B model, or the base model, is obtained by 

changing the patch sizes to 16x16 or 32x32, resulting in two models, but there is no change in the number of 

layers, which remains at 12. Similarly, in the ViT-L, or large model, ViT-L16 and ViT-L32 models are 

obtained by changing the number of patches. However, the ViT-H model, or the larger model, was not used in 

the study due to its unavailability on the RTX-2080-TI graphics card. Despite selecting the lowest batch size 

of 1, the GPU proved inadequate for operation. As seen in Table 1, the MLP size increased from 3072 in the 

base model to 5120 in the high model. It is well known that larger models provide more effective results, 

especially with large-scale data. 

2.3. Dataset 

The dataset is divided into three subdirectories, one for each of the three photo categories 

(Pneumonia/Normal): train, test, and validation. It includes 5,863 X-ray images (JPEG) in total, divided into 

two categories: pneumonia and normal. Anterior-posterior chest X-ray pictures were selected from a 

retrospective cohort of pediatric patients (aged one to five) from Guangzhou Women and Children's Medical 

Center in Guangzhou. The patients' regular clinical care included the acquisition of these chest X-rays. Prior 

to commencing the analysis of chest X-ray images, all radiographs underwent meticulous quality control, 

wherein any scans deemed of subpar quality or unreadable were eliminated. Subsequently, two board-certified 

medical experts evaluated the images prior to training the AI system for diagnosis. A third specialist validated 

the assessment set to ensure absence of grading discrepancies. The dataset's specifics are depicted in Figure 2. 
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Figure 2. Representation of values in the dataset 

In the pneumonia dataset, the training and evaluation images of the deep learning approaches come pre-

separated. The main advantage of such a situation is that the study is easily comparable to other studies and 

the actual performance of the model can be measured. The dataset is an extended publicly available dataset 

consisting of images from different datasets. Train, Test, and Validation are the three primary folders into 

which the dataset is arranged. Pneumonia and Normal are two subfolders that correspond to different image 

categories in each of these directories. There are 5,863 JPEG-formatted X-ray images in total, divided into two 

groups: normal and pneumonia. Here, the class distributions in the training, validation and test data are well-

adjusted and there is no data imbalance. Thus, the model will try to learn each class in the dataset in a better 

way, and the bias towards any one class will be reduced. Some random sample images from the pneumonia 

dataset are shown in Figure 3. 

 

Figure 3. Random sample images from the pneumonia dataset. 

2.4. Proposed Method 

There are essentially three parts to the suggested technique for automatically detecting pneumonia. Figure 4 

displays the primary parts of the suggested system. By using the achievements of deep learning techniques in 

medical image processing to chest X-ray pictures, a more efficient system is suggested. The first part of this 

deep learning based system, which consists of three parts, is the data set unit. The next unit after the dataset is 

the unit where data pre-processing and data augmentation techniques are combined. This unit's primary goal 

is to use some fundamental data augmentation techniques and shrink all of the dataset's photos to the same 

size. The most fundamental data augmentation methods, including translation, rotation, and panning, were 

used during training as there are enough images in the dataset. For large-scale datasets, data augmentation is 

not very effective, but it contributes to the performance, while for small-scale and less diverse datasets, data 

augmentation is very effective. The last unit of the proposed method is the unit where deep learning approaches 

are used. This unit includes learning transfer and a vision transformer for classification. The technique of 

moving the weights of a model trained in one domain to another is known as transfer learning or learning 
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transfer. For the pneumonia dataset in this study, the weights of the vision transformers trained on the ImageNet 

dataset were utilized. Significant performance is obtained by learning transfer, particularly with small-scale 

datasets. In this dataset, it resulted in both better performance and faster convergence than training from 

scratch. After learning transfer, we used vision transformers for classification. This architecture is described 

in detail in the materials and methods section.  

2.5. Evaluation Metrics 

Important measures including accuracy, F1 score, precision, and recall are used to evaluate the suggested 

model. Four parameters are used in the calculation of these metrics: true positive (TP), false negative (FN), 

false positive (FP), and true negative (TN). The following definitions apply to the parameters in these 

equations: Examples of data that the model correctly categorized as positive are called True Positives (TP). 

Examples of negative outcomes that the model correctly detects are called True Negatives (TN). False positives 

(FP) are instances in which something was mistakenly categorized as positive by the model. Examples of 

negative numbers that the model misinterpreted are called False Negatives (FN) (Özüpak, 2024). 

These indicators provide a comprehensive evaluation of the model's efficacy, accounting for both positive and 

negative classifications. The F1-score finds a compromise between precision and recall, even though both 

indicate details about the model's capacity to accurately identify positive and negative samples, respectively. 

The accuracy measure gives an overall evaluation of the model's prediction accuracy. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (9) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (10) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (11) 

 𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (12) 

3. RESULTS AND DISCUSSION 

The model's initial values were used for training and evaluation in the experimental investigation. Figure 4 

shows the confusion matrix for the study's model. The expected class is shown on the x-axis of the confusion 

matrix, and the actual class is shown on the y-axis. The confusion matrix allows us to see both true and false 

positives and negatives for each class, which improves our ability to observe. The model's experimental 

findings are shown in Table 1. 

In the Figure 4, the confusion matrix shows that the model correctly classified 208 patients as normal (TP) and 

389 patients as pneumonia (TN). The model misclassified 26 patients as pneumonia (FP) and 1 patient as not 

pneumonia (FN). The overall test accuracy of the model was 95.67%. 

Table 1. Metrics showing the performance of the trained model on the test data 

Model 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝑹𝒆𝒄𝒂𝒍𝒍 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 

Proposed Model 0.9567 0.9952 0.8888 0.9390 

This table shows that the accuracy rate of the suggested model is 95.67%. This indicates that the model makes 

accurate predictions in general. The recall rate is quite high at 99.52%, indicating that the model can effectively 

recognize positive class instances. However, the Precision rate is 88.88%, which indicates how many of the 

cases that the model predicts as positive are actually positive. If the precision is lower than the true positive 

rate, it may indicate that the model is making false positive predictions and classifying some negative samples 

as positive. The F1 score was calculated as 0.9390. In this instance, the model's success is gauged by the F1 
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score, which illustrates the trade-off between precision and the capture rate of true positives. These results 

show that the model performs well overall but could be improved in specific cases. A comparison of the 

suggested model with a few findings from the literature is presented in Table 2. 

 

Figure 4. Confusion matrix for the suggested architecture 
 

Table 2. Metrics showing the performance of the trained model on the test data 

Model 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 

(Hassan, 2018) 0.9214 0.9234 

(Dey et al., 2021) 0.9012 0.8999 

(Singh & Tripathi, 2022) 0.9375 0.9405 

(Singh & Tripathi, 2022) 0.8814 0.8812 

Proposed Model 0.9567 0.9390 

According to Table 2, we analyzed the performance of five different models and obtained accuracy and F1 

score values for each of them, including the proposed model. In this work, we assessed how well several 

machine learning models performed in diagnosing pneumonia. First, we analyzed the results obtained for 

Model (Hassan, 2018), where we obtained an accuracy of 92.14% and an F1 score of 92.34%. Although this 

model performed well overall, we observed that it had a lower F1 score compared to the other models. Model 

(Dey et al., 2021) performed slightly lower than Model (Hassan, 2018) with an accuracy of 90.12% and an F1 

score of 89.99%. We observed that this model was less accurate in diagnosing pneumonia and tended to make 

more false positive and negative classifications. However, Model (Singh & Tripathi, 2022) did rather well, 

scoring an F1 score of 94.05% and an accuracy of 93.75%. It is noteworthy that this model is quite effective 

in diagnosing pneumonia, despite its high accuracy rate and F1 score. When we examined the results obtained 
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for model (Singh et al., 2022), we obtained an accuracy rate of 88.14% and an F1 score of 88.12%. We 

observed that this model performs poorly compared to the other models and is less reliable in pneumonia 

diagnosis. Finally, our proposed model performed the best with an accuracy rate of 95.67% and an F1 score of 

93.90%. This model provided more reliable results for pneumonia diagnosis with a higher accuracy rate and a 

balanced F1 score compared to the other models. These findings demonstrate how well the suggested model 

diagnoses pneumonia in comparison to the other models. Therefore, we suggest that the proposed model may 

be a more effective tool for pneumonia diagnosis in clinical applications. While this analysis evaluates the 

performance of each model separately, it highlights that the proposed model achieves a higher accuracy and 

F1 score than the others. This indicates that the proposed model is a more reliable option for diagnosing 

pneumonia.  

Figure 5 displays the model's accuracy following testing and training. Figure 6 provides several instances 

comparing the values predicted by the model with the actual values in the dataset. 

 

Figure 5. Training and validation accuracy results 
 

 

Figure 6. Some examples showing actual and predicted values 
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4. CONCLUSION 

In this work, we evaluate the pneumonia diagnosis performance of a DL model. The tremendous potential of 

transfer learning in the field of medical imaging is demonstrated by the use of the ViT for the classification of 

chest X-rays. ViT, which has its origins in NLP, has successfully transferred to computer vision through self-

supervised learning, offering a workable method for determining the presence of pneumonia from X-rays. The 

versatility of the Vision Transformer is shown by its distinct method of segmenting images for processing. Its 

fundamental design, which was first created for NLP tasks, has been skillfully modified for challenging 

computer vision tasks. A steady reduction in training loss is seen during the training period. This demonstrates 

how well the model learns from the data and adjusts its parameters to minimize errors. Not only could the 

model learn, but it also showed excellent generalization abilities. The 95.67% test accuracy indicates that the 

model performs well. A detailed examination of the confusion matrix demonstrated the model's excellent 

ability to distinguish between chest X-rays labeled as "Pneumonıa" and "Normal." The low rate of 

misclassifications strengthened trust in the model's predictions. Its excellent accuracy, versatility, and capacity 

for self-supervised learning bode well for its further applications in medical imaging. 
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