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Abstract 

 

In this study, based on a geometric approach, we obtained a new characteristic of general linear 

transformations, also known as similarities, by use of symmedian points of triangles in complex 

𝑧 −plane. 
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1. Introduction 
 

Many important transformations have been characterized in both Euclidean and non-Euclidean 

geometry with the help of functions that preserve triangles or some special points of triangles. 

For example, in [1], Li and Wang proved that if 𝑓: ℝ𝑛 → ℝ𝑛 (𝑛 > 1) is a bijection that 

preserves lines, then 𝑓 is an affine transformation. Moreover, the authors showed that a bijection 

𝑓: ℝ𝑛 → ℝ𝑛 (𝑛 > 1)  is an affine transformation if and only if 𝑓 is triangle preserving. In [2], 

J. Lester proved that if 𝑓: 𝑋 → 𝑋 preserves triangles with area 1, where 𝑋 is a finite dimensional 

real inner product space, then 𝑓 must be in the form 𝑓(𝑥) = 𝑤(𝑥) + 𝑡, where 𝑤(𝑥) is an 

orthogonal transformation and 𝑡 is a fixed element of 𝑋. Later, this result of Lester was 

examined by W.Benz [4] in non-finite dimensional real inner product spaces. In [2] and [3], J. 

Lester considered the transformations that preserve triangles of perimeter 1 and proved that 

these transformations are Euclidean motions. In [5], O. Demirel proved that if a mapping 

𝑓: ℝ𝑛 → ℝ𝑛 preserves the Fermat-Torricelli points of the triangles in ∆, where ∆ be the set of 

all triple points {𝐴, 𝐵, 𝐶} in ℝn such that the largest angle of the triangle 𝐴𝐵𝐶 is less than 2π/3, 
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then 𝑓 is an affine transformation. O. Demirel et al., in [6], gave a new characteristic of general 

linear transformations (similarities or affine transformations) in complex 𝑧 −plane by use of 

the Steinhaus’ Problem on partition of a triangle. In complex analysis and geometry, a Möbius 

transformation (fractional linear transformation) of the extended complex plane ℂ∞ = ℂ ∪ {∞} 

is a rational function of the form 

 

𝑓(𝑧) =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
 

 
of one complex variable 𝑧; here the coefficients 𝑎, 𝑏, 𝑐, 𝑑 are complex numbers satisfying  

𝑎𝑑 −  𝑏𝑐 ≠  0. Möbius transformations have a very important role in both complex analysis 

and hyperbolic geometry. The set of all Möbius transformations forms a group under 

composition and cross-ratios are invariant under Möbius transformations. That is, if a Möbius 

transformation maps four distinct points 𝑧1, 𝑧2, 𝑧3, 𝑧4 to four distinct points 𝑤1, 𝑤2, 𝑤3, 𝑤4 

respectively, then 

 
𝑧1 − 𝑧3

𝑧2 − 𝑧3

𝑧2 − 𝑧4

𝑧1 − 𝑧4
=

𝑤1 − 𝑤3

𝑤2 − 𝑤3

𝑤2 − 𝑤4

𝑤1 − 𝑤4
 

 

Möbius transformations preserve angles, map every straight line to a line or circle, and map 

every circle to a line or circle. Translations (𝑧 ⟼ 𝑧 + 𝑑), rotations about origin (𝑧 ⟼ 𝑒𝑖𝜃𝑧), 

stretch transformations (𝑧 ⟼ 𝑎𝑧, 𝑎 ∈ ℝ∗, 𝑎 ≠ 1) , inversions (𝑧 ⟼
1

𝑧
) and general linear 

transformation (𝑧 ⟼ 𝑎𝑧 + 𝑏 , 𝑎 ≠ 0) are the most basic examples of Möbius transformations. 

  

In this study, we discuss the transformations that preserve the symmedian points of triangles in 

the complex 𝑧 −plane. Symmedians are three particular lines associated with every triangle and 

they are constructed by taking a median of the triangle and reflecting the line over the 

corresponding angle bisector. More precisely,  for a triangle, say 𝐴𝐵𝐶, if 𝐴𝐴1 is the median of 

𝐵𝐶, then the symmetry of 𝐴𝐴1 with respect to the bisector of 𝐴  (the isogonal conjugate of 𝐴𝐴1) 

is a symmedian. Clearly the angle formed by the symmedian and the angle bisector has the 

same measure as the angle between the median and the angle bisector, but it is on the other side 

of the angle bisector. The isogonal conjugates of the medians in a triangle are called symmedian. 

Symmedians meet at a single point and this point is called the symmedian point of the triangle 

(Lemoine point or Grebe point). Many important results can be found in the literature with the 

help of this point. Some of these features are as follows, but they are not limited to this. 

 

If 𝐾 is the symmedian point of 𝐴𝐵𝐶, then 𝐾 is the isogonal conjugate of the centroid of 𝐴𝐵𝐶. 

The isogonal conjugate of a point 𝑃 with respect to 𝐴𝐵𝐶 is constructed by reflecting the lines 

𝑃𝐴, 𝑃𝐵, 𝑃𝐶 about the angle bisectors of 𝐴,𝐵, 𝐶 respectively. For the isogonal conjugate 𝐴𝑆𝑎 of 

the median 𝐴𝑀𝑎 in a triangle 𝐴𝐵𝐶 (where point 𝑆𝑎 is on side 𝐵𝐶), 𝑆𝑎 divides side 𝐵𝐶 in the 

ratio   

 

𝐵𝑆𝑎

𝑆𝑎𝐶
=

𝑐2

𝑏2
 

 

It follows from Steinter's Ratio Theorem that the only point 𝑋 on the side 𝐵𝐶 of 𝐴𝐵𝐶 that has 

the property 
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𝐵𝑋

𝐶𝑋
=

𝑐2

𝑏2
 

 

is the foot 𝑆𝑎 of the symmedian through vertex 𝐴. The distance from the symmedian point to 

the side lines of a triangle is proportional to the corresponding side lengths. This property 

uniquely determines the symmedian point. If 𝐴𝐵𝐷𝐸 and 𝐵𝐶𝐹𝐺 are constructed outside the 

triangle 𝐴𝐵𝐶 as in the Figure 1 below and 𝑂 is the center of the circle (𝐵𝐷𝐺), then the line 𝐵𝑂 

passes through the symmedian point 𝐾 of the triangle 𝐴𝐵𝐶. This feature will be very useful in 

the proof of our main theorem. 

 

 
 

Figure 1. A geometric way to obtain the symmedian point of 𝐴𝐵𝐶 by using squares whose 

sides are sides of ABC.   

 

  

For other properties related to symmedian points, we recommend [7] to the readers.  

 

2. Main results 
 

This work was inspired by the excellent work [8] where H. Haruki and T.M. Rassias obtained 

a new characterization of Möbius transformations by using Apollonius points of triangles in 

complex 𝑧 −plane. 

  

Throughout the paper we denote by 𝐴′ the image of 𝐴 under 𝑓, by 𝐴𝐵 the geodesic segment 

between points 𝐴 and 𝐵, by |𝐴𝐵| the distance between points 𝐴 and 𝐵, by 𝐴𝐵𝐶 the triangle 

with three ordered vertices 𝐴, 𝐵 and 𝐶, and by ∠𝐵𝐴𝐶 the angle between 𝐴𝐵 and 𝐴𝐶. Unless 

otherwise stated, we consider 𝑤 =  𝑓(𝑧)  as a nonconstant meromorphic function of a complex 

variable 𝑧 in the plane |𝑧| < ∞. 
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Property Sym:  Let 𝑤 = 𝑓(𝑧) be an analytic and univalent function in a non-empty region 𝑅 in 

the complex plane, and let 𝐴𝐵𝐶 be an arbitrary triangle in 𝑅. If 𝐿 is the symmedian point of 

𝐴𝐵𝐶, then 𝐿′ is the symmedian point of 𝐴′𝐵′𝐶′. 
 

Lemma 2.1: ([9]) If 𝑤 = 𝑓(𝑧) is an analytic and univalent function in a non-empty region 𝑅 

in the complex plane , then 𝑓′ (𝑧) ≠ 0.  

 

Theorem 2.2: 𝑤 =  𝑓(𝑧) has Property Sym if and only if 𝑤 =  𝑓(𝑧) is a general linear 

transformations. 

 

Proof: Let 𝑤 =  𝑓(𝑧) be a similarity defined by 𝑓(𝑧)  =  𝑎𝑧 +  𝑏 satisfying 𝑎, 𝑏 ∈ ℂ with 𝑎 ≠
0 and 𝐿 be the symmedian point of an arbitrary triangle 𝐴𝐵𝐶. Clearly,  

 

𝑓 (
𝑥 + 𝑦

2
) = 𝑎 (

𝑥 + 𝑦

2
) + 𝑏 =

𝑎𝑥 + 𝑏

2
+

𝑎𝑦 + 𝑏

2
=

𝑓(𝑥) + 𝑓(𝑦)

2
 

 

holds for all 𝑥, 𝑦 ∈ ℂ with 𝑥 ≠ 𝑦. Hence 𝑓 preserves the midpoints of the line segments. Since 

𝑓 preserves the angles one can clearly get that 𝐿′ is the symmedian point of triangle 𝐴′𝐵′𝐶′. 
Here, f preserves angles, which means that for every point 𝑧0 of the complex 𝑧 −plane, 

angle(𝑟1, 𝑟2) = angle(𝑓(𝑟1), 𝑓(𝑟2)) holds for every smooth curves 𝑟1 and 𝑟2 meeting at 𝑧0.  

 

Now assume that 𝑤 = 𝑓(𝑧) has Property Sym. Since 𝑤 =  𝑓(𝑧) is analytic and univalent in the 

domain 𝑅, by 𝐿𝑒𝑚𝑚𝑎 2.1 

 

𝑓′ (𝑧) ≠ 0 

 

holds for all 𝑧 in 𝑅.  Let 𝐿 be an arbitrary point in 𝑅 and denote it by 𝑥. Hence we get 𝑓′ (𝑥) ≠
0 by 𝐿𝑒𝑚𝑚𝑎 2.1.  Because of 𝐿 ∈  𝑅, there exists a positive real number 𝛿 such that 𝑉(𝐿, 𝛿) 

is contained in 𝑅, where 𝑉(𝐿, 𝛿) is 𝛿-closed circular neighborhood of 𝐿. Throughout the proof 

let 𝐴𝐵𝐶 denote an arbitrary equilateral triangle which is contained in 𝑉(𝐿, 𝛿) and whose center 

is at 𝐿. Since 𝐴𝐵𝐶 is an equilateral triangle contained in 𝑉(𝐿, 𝛿), the points 𝐴, 𝐵, 𝐶 can be 

represented by  

 

𝐴 = 𝑥 + 𝑦, 𝐵 = 𝑥 + 𝑤𝑦, 𝐶 = 𝑥 + 𝑤2𝑦 

 

where 𝑤 =
−1+√3𝑖

2
 and |𝑦| ≤ 𝛿. Since 𝑤 = 𝑓(𝑧) is univalent in 𝑅, the points 𝐴′, 𝐵′, 𝐶′ are 

different from each other. Because of 𝐴, 𝐵, 𝐶 are not collinear points on the 𝑧 −plane and by 

the property of analytic functions [10], there exists some sufficiently small positive real number 

𝑠 satisfying 𝑠 ≤ 𝛿 such that 𝐴′, 𝐵′, 𝐶′ are not collinear on the 𝑤 −plane for all y satisfying 0 <
|𝑦| ≤ 𝑠. It is clear that 𝐿 is the symmedian point of 𝐴𝐵𝐶 and by the hypothesis, 𝐿′ is the 

symmedian point of 𝐴′𝐵′𝐶’. Now construct the squares 𝐴′𝐵′𝑆𝐷, 𝐴′𝐶′𝐺𝐸, 𝐵′𝐶′𝐽𝑇 with the help 

of the sides of 𝐴′𝐵′𝐶′, as shown in the Figure 2. Notice that 𝐴′𝐷 is obtained by rotating 𝐴′𝐵′ 
by 𝜋/2 radians in the negative direction (moved in a clockwise motion) around point 𝐴′. 
Similarly, 𝐴′𝐸 is obtained by rotating 𝐴′𝐶′ in a positive direction (moved in a counterclockwise 

motion) around point 𝐴′ and 𝐵′𝑇 is obtained by rotating 𝐵′𝐶′ in a negative direction around 

point 𝐵′ by 𝜋/2 radians.  
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Figure 2. A geometric way to obtain the symmedian point of 𝐴′𝐵′𝐶′ by using squares whose 

sides are sides of 𝐴′𝐵′𝐶′. 
 

 

Assume  

 

𝑊 =
𝐴′ + 𝐷

2
,                𝑉 =

𝐴′ + 𝐸

2
    

 

and 𝑀 be the center of the circle passing through 𝐴′, 𝐷, 𝐸. By the property of symmedian point, 

𝐿′ should lie on 𝑀𝐴′. The equations of the lines 𝑀𝑊 and 𝑀𝑉 are  

 

|𝑧 − 𝐷| = |𝑧 − 𝐴′|                                                                                                                                   (1) 
 

and  

 

|𝑧 − 𝐸| = |𝑧 − 𝐴′|                                                                                                                                   (2) 

 

respectively. Notice that in the last two equations above, 𝑧 represents the complex variable. 

Since 𝑀 is the common point of the lines 𝑀𝑊 and 𝑀𝑉 

 

|𝑀 − 𝐷 = |𝑀 − 𝐸|                                                                                                                              (3) 

 

holds. Clearly 

  

𝐴′ = 𝑓(𝑥 + 𝑦), 𝐵′ = 𝑓(𝑥 + 𝑤𝑦), 𝐶′ = 𝑓(𝑥 + 𝑤2𝑦) 

 

and 

 

𝐷 = (𝐵′ − 𝐴′)(−𝑖) + 𝐴′ = (𝑓(𝑥 + 𝑤𝑦) − 𝑓(𝑥 + 𝑦))(−𝑖) + 𝑓(𝑥 + 𝑦), 
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𝐸 = (𝐶′ − 𝐴′)𝑖 + 𝐴′ = (𝑓(𝑥 + 𝑤2𝑦) − 𝑓(𝑥 + 𝑦))𝑖 + 𝑓(𝑥 + 𝑦) 

 

holds. Now, we want to get the equation of the line passing through the points 𝑀 and 𝐴′.  Let 

𝑀1  be the point obtained by rotating 𝑀 around 𝐴′ by 𝜋/2 radians in the positive direction, and 

let 𝑀2 be the point obtained by rotating 𝑀 around 𝐴′ by 𝜋/2 radians in the negative direction.   

In this case, one can easily get  

 

𝑀1 = (𝑀 − 𝐴′)𝑒
𝑖𝜋
2 + 𝐴′ = (𝑀 − 𝐴′)𝑖 + 𝐴′ 

 

and 

 

𝑀2 = (𝑀 − 𝐴′)𝑒
−𝑖𝜋

2 + 𝐴′ = (𝑀 − 𝐴′)(−𝑖) + 𝐴′. 
 

The equation of the line 𝑀𝐴′ is  

 

|𝑧 − 𝑀1| = |𝑧 − 𝑀2| 
 

i.e. 

 
|𝑧 − 𝑀𝑖 + 𝐴′𝑖 − 𝐴′| = |𝑧 + 𝑀𝑖 − 𝐴′𝑖 − 𝐴′|.                                                                                     (4) 
 

Let 𝑁 be the center of the circle passing through the points 𝑆, 𝐵′, 𝑇. Obviously, 𝐿′ should lie on 

𝑁𝐵′ and the equation of 𝑁𝐵′ is  

 
|𝑧 − 𝑁𝑖 + 𝐵′𝑖 − 𝐵′| = |𝑧 + 𝑁𝑖 − 𝐵′𝑖 − 𝐵′|                                                                                      (5) 

 

similar to (4). From (3), we get 

 

|
𝑀 − 𝐷

𝑀 − 𝐸
| = 1 

 

and this implies there exist 𝜃 ∈ ℝ  with 𝜃 ≠ 2𝑘𝜋, (𝑘 ∈ ℤ) such that 

 

𝑀 − 𝐷 = (𝑀 − 𝐸)𝑒𝑖𝜃 

 

holds. Thus we have  

 

𝑀 =
𝐷 − 𝑒𝑖𝜃𝐸

1 − 𝑒𝑖𝜃
. 

 

Following the same way, one can easily see that there exist 𝛼 ∈ ℝ with 𝛼 ≠ 2𝑘𝜋, (𝑘 ∈ ℤ) such 

that  

 

𝑁 =
𝑇 − 𝑒𝑖𝛼𝑆

1 − 𝑒𝑖𝛼
. 

 

By (4) and (5), we get 
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|
𝑧 − 𝑀𝑖 + 𝐴′𝑖 − 𝐴′

𝑧 + 𝑀𝑖 − 𝐴′𝑖 − 𝐴′
∙

𝑧 + 𝑁𝑖 − 𝐵′𝑖 − 𝐵′

𝑧 − 𝑁𝑖 + 𝐵′𝑖 − 𝐵′
| = 1.                                                                                  (6) 

  

𝐿′ = 𝑓(𝑥) satisfies equation (6). Now define  

 

𝑔(𝑦) =    
𝑧 − 𝑀𝑖 + 𝐴′𝑖 − 𝐴′

𝑧 + 𝑀𝑖 − 𝐴′𝑖 − 𝐴′
∙

𝑧 + 𝑁𝑖 − 𝐵′𝑖 − 𝐵′

𝑧 − 𝑁𝑖 + 𝐵′𝑖 − 𝐵′
                                                                            (7) 

 

and it is clear from (6), |𝒈(𝒚)| = 𝟏 𝐢𝐧 (𝟎 < |𝒚| ≤ 𝒔).  
 

Since the numerator and the denominator of 𝑔(𝑦) in (7) are analytic functions for all 𝑦 

satisfying 0 < |𝑦| ≤ 𝑠 and since, by the fact that 𝑤 = 𝑓(𝑧) is univalent in 𝑅, the denominator 

of 𝑔(𝑦) in (7) never vanishes in 0 < |𝑦| ≤ 𝑠, 𝑔(𝑦) is analytic in 0 < |𝑦| ≤ 𝑠. Now we prove 

that 𝑔(𝑦) is analytic at 𝑦 = 0. As 𝑦 → 0, by L'Hôpital's rule, we see that 

 

  
𝑓(𝑥) −

(𝐷 − 𝑒𝑖𝜃𝐸)𝑖

1 − 𝑒𝑖𝜃 + 𝑓(𝑥 + 𝑦)𝑖 − 𝑓(𝑥 + 𝑦)

𝑓(𝑥) +
(𝐷 − 𝑒𝑖𝜃𝐸)𝑖

1 − 𝑒𝑖𝜃 − 𝑓(𝑥 + 𝑦)𝑖 − 𝑓(𝑥 + 𝑦)

⟶ −
𝑒𝑖𝜃𝑤2 + 𝑤 − 2𝑒𝑖𝜃

𝑒𝑖𝜃𝑤2 + 𝑤 − 2
                                (8) 

 

and  

 

 
𝑓(𝑥) +

(𝑇 − 𝑒𝑖𝛼𝑆)𝑖

1 − 𝑒𝑖𝛼 − 𝑓(𝑥 + 𝑦)𝑖 − 𝑓(𝑥 + 𝑤𝑦)

𝑓(𝑥) −
(𝑇 − 𝑒𝑖𝛼𝑆)𝑖

1 − 𝑒𝑖𝛼 + 𝑓(𝑥 + 𝑦)𝑖 − 𝑓(𝑥 + 𝑤𝑦)
⟶ −

𝑤2 − 2𝑤 + 𝑒𝑖𝛼

𝑤2 − 2𝑤𝑒𝑖𝛼 + 𝑒𝑖𝛼
                              (9) 

 

hold true since 

 

𝐷 = (𝐵′ − 𝐴′)(−𝑖) + 𝐴′ = (𝑓(𝑥 + 𝑤𝑦) − 𝑓(𝑥 + 𝑦))(−𝑖) + 𝑓(𝑥 + 𝑦), 

𝐸 = (𝐶′ − 𝐴′)𝑖 + 𝐴′ = (𝑓(𝑥 + 𝑤2𝑦) − 𝑓(𝑥 + 𝑦))𝑖 + 𝑓(𝑥 + 𝑦) 

𝑇 = (𝐶′ − 𝐵′)(−𝑖) + 𝐵′ = (𝑓(𝑥 + 𝑤2𝑦) − 𝑓(𝑥 + 𝑤𝑦))(−𝑖) + 𝑓(𝑥 + 𝑤𝑦), 

 𝑆 = (𝐴′ − 𝐵′)𝑖 + 𝐵′ = (𝑓(𝑥 + 𝑦) − 𝑓(𝑥 + 𝑤𝑦))𝑖 + 𝑓(𝑥 + 𝑤𝑦). 

 

From (7), (8) and (9), as 𝑦 → 0, we get 

 

𝑔(𝑦) ⟶ −
𝑒𝑖𝜃𝑤2 + 𝑤 − 2𝑒𝑖𝜃

𝑒𝑖𝜃𝑤2 + 𝑤 − 2
∙ (−

𝑤2 − 2𝑤 + 𝑒𝑖𝛼

𝑤2 − 2𝑤𝑒𝑖𝛼 + 𝑒𝑖𝛼
) = 𝑞.                                                 (10) 

 

If we define 𝑔(0) = 𝑞, by (10) and by Riemann’s theorem on removable singularities, the 

function 𝑔(𝑦) is analytic at 𝑦 = 0. Moreover, from 𝑔(0) = 𝑞, the equailty |𝑔(𝑦)| = 1 is still 

satisfied at 𝑦 = 0. By the maximum module principle for analytic functions [10], we obtain 

𝑔(𝑦) = 𝐾 in |𝑦| ≤ 𝑠, where 𝐾 is a complex constant with modulus 1. If we set 𝑦 = 0 in 𝑔(𝑦) =
𝐾, we get 𝐾 = 𝑞. By the equations (7),  𝑔(𝑦) = 𝐾, and 𝐾 = 𝑞, we obtain 
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(𝑓(𝑥) −
(𝐷 − 𝑒𝑖𝜃𝐸)𝑖

1 − 𝑒𝑖𝜃
+ 𝑓(𝑥 + 𝑦)𝑖 − 𝑓(𝑥 + 𝑦)) (𝑓(𝑥) +

(𝑇 − 𝑒𝑖𝛼𝑆)𝑖

1 − 𝑒𝑖𝛼
− 𝑓(𝑥 + 𝑤𝑦)𝑖 − 𝑓(𝑥 + 𝑤𝑦))

− 𝑞 (𝑓(𝑥) +
(𝐷 − 𝑒𝑖𝜃𝐸)𝑖

1 − 𝑒𝑖𝜃
− 𝑓(𝑥 + 𝑦)𝑖 + 𝑓(𝑥 + 𝑦)) (𝑓(𝑥) −

(𝑇 − 𝑒𝑖𝛼𝑆)𝑖

1 − 𝑒𝑖𝛼
+ 𝑓(𝑥 + 𝑤𝑦)𝑖

− 𝑓(𝑥 + 𝑤𝑦)) = 0                                                                                                                                (11) 

 

for all 𝑦 satisfying |𝑦| ≤ 𝑠. 
 

Using Leibnitz’s rule for differentiation with computer aided calculations, differentiating both 

sides of (11) three times with respect to 𝑦, setting 𝑦 = 0, and simplifying the resulting equality 

yields 

 

𝑓′(𝑥) ∙ 𝑓′′(𝑥)

(𝑒𝑖𝜃 − 1)(𝑒𝑖𝛼 − 1)
(𝑝1 − 𝑝2𝑝3) = 0 

 

where  

 

𝑝1 = 𝑒𝑖𝛼 − 2𝑒𝑖𝜃 + 5𝑒𝑖𝜃𝑒𝑖𝛼 + 5, 
 

𝑝2 = −

7
2 √3𝑒𝑖𝜃 −

1
2

𝑒𝑖𝛼 −
7
2

𝑒𝑖𝜃 +
1
2

𝑖√3𝑒𝑖𝛼 −
5
2

𝑒𝑖𝜃𝑒𝑖𝛼 + 𝑖√3 −
√3
2

𝑖𝑒𝑖𝜃𝑒𝑖𝛼 + 2

1
2

𝑖√3𝑒𝑖𝜃 −
7
2

𝑒𝑖𝛼 −
1
2

𝑒𝑖𝜃 +
7
2

𝑖√3𝑒𝑖𝛼 −
5
2

𝑒𝑖𝜃𝑒𝑖𝛼 + 𝑖√3 −
√3
2

𝑖𝑒𝑖𝜃𝑒𝑖𝛼 + 2

 

 

and 

 

𝑝3 = 2𝑒𝑖𝜃 − 13𝑒𝑖𝛼 + 𝑒𝑖𝜃𝑒𝑖𝛼 + 1. 
 

By the identity theorem (see [11], p. 106) the above equality is valid in|𝑧| < ∞.  Therefore 

 

𝑓′(𝑧) ∙ 𝑓′′(𝑧)

(𝑒𝑖𝜃 − 1)(𝑒𝑖𝛼 − 1)
(𝑝1 − 𝑝2𝑝3) = 0 

 

holds true for all 𝑧 with 𝑓′(𝑧) ≠ 0.  Since 𝑝1 − 𝑝2𝑝3 ≠ 0, we can easily see that  𝑓′′(𝑧) = 0 

which implies 𝑓 must be a general linear transformation and is written in the form  

 

𝑓(𝑧) = 𝑎𝑧 + 𝑏. 

 

3. Conclusion 
 

As can be seen from the results above we consider an analytic and univalent function 𝑤 =
 𝑓(𝑧)  in a non-empty region 𝑅 in the complex plane and prove that the necessary and sufficient 

condition for the symmedian point of an arbitrary triangle to be transformed into the symmedian 

point of the image of the triangle is the transformation 𝑤 =  𝑓(𝑧) to be a general linear 

transformation. 
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