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Abstract

In this study, two new spinor sequences using spinor representations of Jacobsthal and
Jacobsthal-Lucas quaternions are defined. Moreover, some formulas such that Binet, Cassini,
summation formulas and generating functions of these spinor sequences, which are called as
Jacobsthal and Jacobsthal-Lucas spinor sequences, are expressed. Then, some relationships
between Jacobsthal and Jacobsthal-Lucas spinors are obtained. Therefore, an easier and more
interesting representation of Jacobsthal and Jacobsthal-Lucas quaternions, which are
generalization of Jacobsthal and Jacobsthal-Lucas number sequences, are obtained. We believe
that these new spinor sequences will be useful and advantageable in many branches of science,

such as geometry, algebra and physics.
Keywords: Jacobsthal numbers; Jacobsthal-Lucas numbers; Quaternions; Spinors.
Jacobsthal ve Jacobsthal-Lucas Kuaterniyonlarinin Yeni Spinor Dizileri Uzerine
Oz
Bu calismada Jacobsthal ve Jacobsthal-Lucas kuaterniyonlarinin spindr gosterimleri
kullanilarak iki yeni spinor dizisi tanimlanmistir. Ayrica, Jacobsthal ve Jacobsthal-Lucas spinor
dizileri olarak adlandirilan bu spinor dizilerinin Binet, Cassini, toplam formiilleri ve iireteg

fonksiyonlar gibi bazi formiiller ifade edilmistir. Daha sonra Jacobsthal ve Jacobsthal-Lucas

spinorlar1 arasindaki bazi iliskiler elde edilmistir. Boylece Jacobsthal ve Jacobsthal-Lucas say1
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dizilerinin genellemesi olan Jacobsthal ve Jacobsthal-Lucas kuaterniyonlarinin daha kolay ve
ilging bir temsili elde edilmis olur. Bu yeni spinor dizilerinin geometri, cebir ve fizik gibi bircok

bilim dalinda faydali ve avantajli olacagina inanmaktay1z.

Anahtar Kelimeler: Jacobsthal sayilari; Jacobsthal-Lucas sayilari; Kuaterniyonlar;

Spinorlar.

1. Introduction

The first known number sequence is the Fibonacci number sequence expressed by
Fibonacci (1170-1250), which is frequently encountered in nature [1-3]. The Lucas number
sequence is another example of a number sequence. In addition, there are many number
sequences in the literature. Moreover, considering different characteristic equations and initial
values, different number sequences can be obtained in [4-6]. Other studies of this subject are [7-
11] Horadam discussed Pell numbers and their properties [5]. On the other hand, Horadam gave
Jacobsthal and Jacobsthal-Lucas number sequences [4]. Dasdemir studied on the Jacobsthal
numbers in [12]. In [13] the Jacobsthal quaternions were expressed. Then, a new approach to
Jacobsthal quaternions were obtained in [14]. Halict expressed bicomplex Jacobsthal-Lucas
numbers [15]. Moreover, in the other study [16], the new recurrences were obtained. Arslan
obtained the complex gaussian Jacobsthal quaternions [17]. Ozkan end Uysal expressed the
higher order Jacobsthal quaternions [18]. Moreover, the J(r, n)-Jacobsthal quaternions were

obtained in [19]. Other studies can be given in [20,21].

Spinor whose transformation is associated to spins in physics can be defined as vectors of
a geometric space basically. Geometrically, Cartan introduced spinors [22]. Cartan's study [22]
is an admirable study in spinor geometry because in that study, the spinor representations of
some geometric expressions were expressed in an easy and understandable way. Another
inspiring study on the spinors in geometry was done by Vivarelli [23]. In [23], the relationship
between quaternions and spinor representations of rotations with three dimensional were
obtained. In the study [24], the spinor representations of the Frenet frame and curvatures of any
curve in E3 were given. Darboux spinor equations in E3 were obtained [25]. Moreover, in [26],
the spinor Bishop frame in E3 was expressed. The spinor equations for some special curves
such as Bertrand, involute-evolute, successor, Mannheim curves, Sabban frames, and Lie
groups were obtained in [27-32]. Then, for any Minkowski space, the hyperbolic spinor
equations were given [33-36]. In addition to that, Fibonacci and Lucas spinors were expressed

in [37].
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2. Materials and Methods

Now, the spinors, real quaternions, relationships between them spinors, and Jacobsthal,

Jacobsthal-Lucas quaternions are given.

Suppose that any isotropic vector is v = (vl,vz,v3 ) €C’ where V12 +v22 +v32 =0 and the
complex vector 3-space is C °. We can express the set of isotropic vectors in C ° with the aid

of a two-dimensional surface in C . Suppose that this surface has coordinates @, and @, . So,

. 2 2 ) 2 v, —1iv.
we can writt Vv, =@, -@,, V,=i@ +@,), V,=—200, and g =+ |1 2,
1 1 2 2 1 2 3 172 1 2

-V, — iv . . . . .
@, =+, |[——2. This two-dimensional complex vector is called as spinor
V 2

@,
o=(o,m,)=
(2:) LUJ
[22].
Suppose that any real quaternion is Fr=r1, +ir,+ jr, +kr, where 1,1,5,1 €R .
{Li, ]k} is called the quaternion basis such that

i2:j2:k2:—1’ ii:—jl.:k, jk:—]{j:i, ki:_ik:j

[38]. We can write =8 +V, where 1, =S, and V, =ir, + jr, + kr; is called scalar and vector
parts of 7", respectively [38]. Assume that two any real quaternions p=S,+V,, r=§+V,.

So, the quaternion product is also
rxp=8,8,-(V,,V,)+SV,+S,V,+V, AV,

[38]. We know that this operation is non-commutative. In addition to that, the quaternion

: . 2, 2,2 2
conjugate and the norm of 7' are expressed as r" =S, —V, and N (I”)=\/r1 +r 4+

The norm of 7 be N(r)=1 then, 7 is called as unit quaternion [38].

Vivarelli expressed a relation between spinors and quaternions with following

transformation

19



Erisir, Glingdr (2024) ADYU J SCI, 10(1), 17-38

f:H—>S

r— f(r,+in +jr2+kr3)z{

r3+iro}5w (1)

K

i 1

where 7 =7, +1ir, + jr, + kr, is any real quaternion [18]. The spinor representation of »x p such

that
rxp——iagp )

where the spinor p corresponds to the p considering f in the equation (1) and the complex,

unitary, square matrix & can be written as

r+ir, o —ir
Zﬁ'=|:3 0 1 2 :| (3)

nhtin, -+

[23]. In addition, the spinor matrix @, = —i@ , namely

7, —ir, -r, —ir
m{" o } “

=i 1 i
was called the fundamental spinor matrix or the left Hamilton spinor matrix of 7 [23, 39].

Now, some equalities about the Jacobsthal and Jacobsthal-Lucas quaternions given in
[13, 14] can be expressed. For n>2the nth Jacobsthal and Jacobsthal-Lucas quaternions are
defined that
JO =J +iJ +j) ., +kJ

7 n+2 n+3

and

JLO, =JL, +iJL,, + L

n+2

+kJL,,,

where the wnrh Jacobsthal number and Jacobsthal-Lucas number Jn =J -|-2Jn_2

n-1

(J,=0, J,=1) and JL,=JL ,+2JL, , (JL,=2, JL, =1) [13, 14]. Therefore, the recurrence

n-1

relations of the Jacobsthal and Jacobsthal-Lucas quaternions for »>2 are

‘]Qn = JQWI + 2‘]an2
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with initial conditions JQ, =i+ j+3k, JO, =1+i+3j+5k and
JLO =JLQ, +2JLQ ,
with initial conditions JLO, =2+i+5j+7k, JLO, =1+5i+7j+17k [13, 14].

Now, we write some relationships between the Jacobsthal and Jacobsthal-Lucas
quaternions with the aid of [13, 14]. Therefore, the Binet formulas for the Jacobsthal and

Jacobsthal-Lucas quaternions are given that

and
JLO, =a"a+ BB

where the quaternions « and f are a=l+ai+a’j+a’k=1+2i+4j+8k and

B=1+Bi+pj+k=1-i+j—k, a=2, ﬂ=—1 are roots of the characteristic equation

x’ =x-2=0. On the other hand, we give Cassini formulas for the Jacobsthal and Jacobsthal-

Lucas quaternions can be given that
JO, JO,. —(JO,) =(-1)"2"" (7 +5i+7j+ Sk)
and
JLO, JLO,., —(JLO,)* =(-2)""'3*(7+5i+7j+5k),
respectively [13,14].

3. Results and Discussion

In this section, we define relationships between Jacobsthal, Jacobsthal-Lucas quaternions
and spinors and, express the spinors corresponding to Jacobsthal and Jacobsthal-Lucas
quaternions. Therefore, we call as Jacobsthal spinor and Jacobsthal-Lucas spinor associated
with Jacobsthal and Jacobsthal-Lucas quaternions. Then, we give some relationships between
Jacobsthal spinor and Jacobsthal-Lucas spinor. We obtain some formulas such that Binet,

Cassini, summation formulas and generating functions for these spinors and some theorems.
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Definition 1. Let JO, =J +iJ , +jJ

., ThJ .5 be nth Jacobsthal quaternion where J, s

nth Jacobsthal number and the set of Jacobsthal quaternions be H ;. Then, the following linear

transformation
f,H,>S
JQ —)f(JQ)NSJ _ Jn+3+i‘]n (5)
! g e ! Jn+1 + i‘]n+2
can be obtain where 1, j,k coincide with basis vectors in ~* and i* = —1. So, a new spinor

sequence corresponding Jacobsthal quaternions is called as "Jacobsthal Spinor Sequence” such

as
(S 1" _{ 3 S5+1 || 11+i ]| 21+3i }
e 13| 345 S+
Jn+3 +iJn . .
where SJ, = J o4 is nth Jacobsthal spinor and J,is nth Jacobsthal number.
n+l n+2

Similarly, we can give the following definition of Jacobsthal-Lucas spinor sequence.

Definition 2. Assume that JLQ =JL +iJL , + jJL

n+2

+kJL,., is nth Jacobsthal-Lucas

quaternion where JL, is nth Jacobsthal-Lucas number. The nth Jacobsthal-Lucas quaternion

JL, . +iJL,

JL tches th i JLO — SJIL, =
O, matches the spinor JLQO, . { JL, +ilL, ,

} . Then, a new spinor sequence

corresponding Jacobsthal-Lucas quaternions is defined as "Jacobsthal-Lucas Spinor Sequence”

(SUL v { T+2i| |17+ | |31+5i || 65+7i } o S JL,,+VL, |
= ) 9 9 9o = h
ey TN s Pl 571N 74170 ] 17431 where SRSV s | B

n+1 n+2

Jacobsthal-Lucas spinor and JL, is nth Jacobsthal-Lucas number.

Definition 3. The conjugate of Jacobsthal quaternion JQ, is JQ:, and Jacobsthal spinor

corresponding to this conjugate is defined as

* _‘]n+3 + i‘]n
SJ' = |
-J . —iJ

n+l n+2
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Similarly, the Jacobsthal-Lucas spinor corresponding to the conjugate of Jacobsthal-

Lucas quaternion JLQ, is defined as

* - Ln+3 + i‘]Ln
SIL, = . .
_JLrH—l _]‘]Ln+2

Definition 4. The Jacobsthal spinor representation of the norm of Jacobsthal quaternion JQ, is
E’SJH, Similarly, the Jacobsthal-Lucas spinor representation of the norm of Jacobsthal-Lucas

quaternion JLQ, is SJL ‘SJL .

Now, the recurrence relations of Jacobsthal and Jacobsthal-Lucas spinor sequences with

the following equations should be stated.
Theorem 5. The recurrence relation of Jacobsthal spinors is

S]n+2 :S‘]

n+l

+28J,

and SJ

where nth, (n+1)th and (n+ 2)th Jacobsthal spinors are SJ , SJ 142, Tespectively.

n’ n+l»

The recurrence relation for Jacobsthal-Lucas spinor is

SIL ., =SJL

n+1

+28JL,

and SJL

n+2>

where nth, (n+1)th and (n+2)th Jacobsthal-Lucas spinors are SJL , SJL

n+l>

respectively.

Proof: We show the recurrence relation for Jacobsthal spinors in first. Therefore, if we calculate

SJ

n+l

+28J,, then we obtain

SJ

Jn+4 + iJnH Jn+3 + i‘]n n+4 + 2Jn+3 + i(‘]n+1 + 2Jn)
n+l + 25"]n = . + 2 . = . .
+iJ, J o+, +2J ., +i(J +2J )

n+2 n+3 n+l n+2 n+l n+3 n

=8

n+l

Since the recurrence relation for Jacobsthal number sequence is S/, ,,

+28J in [4], we

have
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Similarly, we can easily obtain for Jacobsthal-Lucas spinor sequence such that

JL/1+4 + 2JLn+3 + i(JLnH + 2JLn) L/HS + i‘]Ln+2
SIL, ., +2SJL, = . _ . I,
JL,+2JL, +i(JL  +2JL ) || JL, 4L,

where we use the recurrence relation of the Jacobsthal Lucas number sequence

SIL, ., =SJL, +2SJL, in[4].

n+2 n+1
Now, we can give the some equations about Jacobsthal and Jacobsthal-Lucas spinors.

Theorem 6. Suppose that nth, (n +1)th, (n +7)th, and (n—r)th Jacobsthal spinors are S/, ,
ST ., 8

n+l» n+r>

and SJ

n-r>

respectively. In this case, for n>1, r>1 there are the following

relations;

l) SJnJrl

+8J =2"S,,

) 1., \
ity ST —SJ. :5[2 S, +2(-1) Sﬂ],

iii) SJ,, +SJ, = %[2 (2% +1)s, —2(-1)"" Sﬂ},

iv)ySJ . —SJ = %2 (27 -1)s

a

i 8+i
where  the  spinors S, and §, are S, z{ @t }:{ } and

a+ia’ | |2+4i
34 —1+i 1
Sﬁ:{; :;2}:{ X T}:(—1+i)L}respectively.
+i —l+1

Proof:

i)Assume that nth and (n+1)th Jacobsthal spinors are SJ, and SJ

41> Tespectively.

Then, we can write the equation

Jn+4 + i’]n+1 ']n+3 + i‘]n n+4 + ‘]n+3 + i(']rH—l + Jn)
S"]n+1 + S"]n = . + . = . .
Joo+ti | |t | | td,, i+ )

n+2 n+l n+2 n+l n+3 n

On the other hand, we know that J ,, +J =2" in [4]. Therefore, we obtain

2n+3 + -2n 8 +i
ST 48T, = 2T g T oy,
211+ + i2n+2 2 + 41

24
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P4 8+i
where S, = IR |-
a+ia’ | |2+4i
ii) We suppose that nth and (n+1)th Jacobsthal spinors are SJ, and SJ,,,,

respectively. We can write

n+l n

Jn+4 + iJn+1 Jn+3 + iJn _ Jn+4 - Jn+3 + i(Jn+l - Jn)
J + i‘]n+3 J + i'] - Jn+2 - Jn+| + i(Jn+3 - Jn+2) .

n+2 n+l n+2

S =S :{

1 nt
If we use the equation J,,, —J, = —(2" - 2(—1) 1) for Jacobsthal numbers in [4] then, we get

1(2“3 —2(-1)" )+ i%(zn ~2(-1)")

SJV!+1+SJ71: 1 1
n+l n+2 . n+2 n+3
5(2 ~2(-1) )+1§(2 ~2(-1)")
1 &+i wet | —1 41 1 n
——|pn -2(-1 =—(2" 2(-1
3( L+4J (=1 {—HiD 3( S+ )S’*)

3, .
+ 8+i
where  the  spinors S, and S, are S, = AR ) and
a+ia’| |2+4i

— ﬂ3+i _ _1+i (. . 1 ) 1
Sﬂ_|:ﬂ+iﬁ2}_|:_l+ij|_( 1+l)[1}, espectively.

ii)Let (n+r)th and (n—r)th Jacobsthal spinors be SJ,, and S8/, ., respectively.

Moreover, we know that there is the equation J,, +J, :5(2"" (22" +1)_2(_1)”") for

Jacobsthal numbers in [4]. Therefore, we obtain that

"]n+r+3 + Jn—r+3 + i(JrH—r + Jn—r)
Jn+r+l + J + i(']n+i'+2 - Jn7r+2)

e afa e L) s s

2+4i —1+i

SJn+r + SJn—r = |:

n—r+1

here th S, and S, are S S d S, =(-1+i) :
t 1 = =(—14+1 .
whiere the Spimors o, an 8 arc o, 2 + 4i an B 1

iv) Similarly, we can easily obtain the equation

25
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| 8+i L
S, =S, =32 (22 —1){2%}_32 (27 -1)s,

where we have J,, —J, = %2”’ (22’ - 1) in [4].

n+r

Similar to Theorem 6, we can easily give the following demonstrable theorem.

Theorem 7. Let nth, (n+1)th, (n+r)th, and (n—r)th Jacobsthal-Lucas spinors are SJL ,

SJL, .., SJL,,,and SJL, , respectively. In this case, for n>1, r>1 there are the following
relations;

i) SJIL,, +SJL, =32"S,_,

ii) SJL,,, —SJL,=2"S,-2(-1)"S,,

i) SJL,,, +SJL, , =2"" (2" +1)S, +2(-1)"" 5,

iv) SJL

n+r

~SJL, , =2"" (2" -1)S,

i 8+i
where  the  spinors  § and §, are S, ={ “ T and

a+ia’
P+ —1+i 1
Sy = pori = . =(—1+i) , respectively.
B+ip’ —1+i 1

Theorem 8. Let nth Jacobsthal and Jacobsthal-Lucas spinors be SJ, and SJL,, respectively.

So, the relationships between Jacobsthal and Jacobsthal-Lucas spinors are

i) SJ +SJL, =25J

n+l?

iiy SJ,,,+28J, , =SJL,,
iii) 38 +SJL, =2""'S,

hore S = 8+1
where a_2—|—4i'

Proof: Assume that nth Jacobsthal and Jacobsthal-Lucas spinors are S/, and SJL ,

respectively. Now, we can give proofs.
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i) We demonstrate the summation of Jacobsthal and Jacobsthal-Lucas spinors

SJ, +S8JL,.In this case, we obtain

J, s +id, JL, , +iJL, Jyy+JL,,+i(J, +JL,)
SJ +SIL, = . + . = . .
n+l1 + ]Jn+2 JLn+l + ]JLn+2 Jn+1 + JLn+1 + l(‘]n+2 + JLn+2 )

On the other hand, we know that J, +JL, =2J ,, for Jacobsthal and Jacobsthal-Lucas numbers

n+l

from [4]. Consequently, we get

2"]n+4 + i2Jn+l
SJ +SJL, = =287 ..
2J ., +i2J

n+2 n+3

This completes the proof.

i) (n—1)th, (n+1)th Jacobsthal spinors are SJ,, 8/, and nth Jacobsthal-Lucas

spinor is SJL, . Therefore, we have

SJ

n+l

+ 2SJ _ Jn+4 + 2"]n+2 + i("]n+l + 2Jn—l )
T T 20, (4 2,)

n+2

JLn+3 + i']Ln
JL . +iJL .,

n+l

s,

where we use the equation J ,, +2J , =JL in[4].

iii) Similarly, we can easily obtain that

3J L +JL +i(3Jn+JLn)}:[2”*4+i2”“}:2n+{8+2i}=2n+lsa'

38J, +SJL, = s )
3J 0+ L, +i(3J,, +JL,,,) | |27 +i2" 2+4i

n+l n+l1 n+2

We have the equation 3J +JL = 2" from [4] in here. The proof is completed.

Theroem 9. Assume that nth Jacobsthal and Jacobsthal-Lucas spinors are SJ, and SJL ,

respectively. Therefore, Binet Formulas for these spinors are the following equations.

i) Binet formula for Jacobsthal spinors is

S, =5(28.-(-1)'s,), (©)

ii) Binet formula for Jacobsthal-Lucas spinors is

SIL,=2'S,+(-1)'S, @)
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. . 2
where a=2, ,3 =—1 are the roots of characteristic equation x —x—2=0 and

5 { o +i2}{ 8+il and S, { B +i2}:[—1+1:(_1+i)[1}
a+ia 2+4i pB+ip —1+i 1

Proof:

i) We know that Binet formula for the Jacobsthal number sequence is J, =———— in

[4]. Therefore, if we write the last equation in the n#kz Jacobsthal spinor we obtain
2n+3 _(_1)n+3 . 2n _(_l)n

SJ { Tus TV, }_ T | [2””“2” }_[ (=) +i(-1) }
3

n J + iz]n+2 2n+1 _(_1)n+l . 2n+2 _ (_1)n+2 2n+1 + i2n+2 (_1)n+1 n i(_l)n+2
3

i 3 +1
B %(2 {28: ji} -1 (=1 I)BD
1

SJ, =§(2”Sa -(-1)"s,)

here S Bt Sy =( 1+')1
= =|— 1
where 9, 54 di and 9, 1l

ii) Now, we give the Binet formula for Jacobsthal-Lucas spinors. We know that the Binet

formula for Jacobsthal-Lucas number sequence is JI =2" +(_1)” in [4]. In this case, we can

obtain
. _|: JLn+3 +iJLn :| ) 2n+3 +(_1)n+3 +i(2'1 -1-(—1)") _|: 2,”.3 +i2" :|+ (_I)n+3 +i(—1)n
"L, +iJL,,, onHl (_1)n+1 + i(2n+2 N (_1)n+2) g 4 jon+? (_1)n+1 + i(_l)n+2

=2" {28:;} +(=1)" (-1+ i)m.

or

SIL,=2"S,+(-1)'S

B
8+i N
where S, = 54 4 and Sﬂz(—lﬂ) nt
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Theorem 10. Let nth Jacobsthal, Jacobsthal-Lucas spinors be SJ,, SJL, and fundamental

Jacobsthal, Jacobsthal-Lucas spinor matrices (left Hamilton Jacobsthal, Jacobsthal-Lucas spinor

matrices) be (SJ, )L, (SJL, )L, respectively. Therefore, for fundamental Jacobsthal and

Jacobsthal-Lucas spinor matrices there are the following equations;

) (87,), =5(2'(8.), =1/ (5,),): ®

and
if) (S‘]Ln )L =2’ (Sa )L +(_l)n (Sﬂ)L ©)

1-8i —4-2i

. 8. ﬂ [ . matrices

Where (S“)L:{ I+i 1-i

(fundamental spinor matrices) corresponding to the spinors S, and S 5> Tespectively.

Proof:

i) We assume nth Jacobsthal spinor SJ, . If we use the equation (4), then we get

Jn - i‘]n+3 _Jn+2 - i‘]n+1
(S"]n )L = . . .
Jn+2 - ]‘]17+1 Jn + ]‘]n+3
(1)
Now, we use Binet formula for Jacobsthal numbers J, = T in [4]. Therefore, we have

:l " _(_1)n —i(2"+3 _(_1)n+3) _(2n+2 _(_1)n+2)_i(2n+1 _(_1)n+l)
32— () (2 = (<)) 2= () i (2 (1))

1 1-8i —4-2i L1+ —1+1
_1 o ~(-1) .
3 4-2i 1+8i I+i 1-i

If we use again the equation (4), then we obtain

(87,),

1

(57,), =3(2 (5., =V (5,),)
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here (S, ) = 1-8i —4-2i d(S) 1+ -1
B o R B B R  FY TR B
ii) Let nth Jacobsthal-Lucas spinor SJL . If we use the equation (4) for Jacobsthal-
JLn _i‘]Ln+3 _JLn+2 _i‘]Ln+l
JL., —iL. ~JL +iL

n+l1 n+3

Lucas spinor, then we obtain (SJLn ) ; z{ } On the other hand, we

use Binet formula for Jacobsthal-Lucas numbers JI, =2" +(-1)" in [4]. So, we have

2" +(-1Y" —i(z"+3 +(—1)’”3) —(2"+2 +(—1)’”2)—i(2"+1 +(—1)"“)

2 (1) =i (2 (1)) 2 (1) i (2 (1))
{1—8i —4—21 ,{Hi —1+i}

=2" ) |+ (1) . e
4-2i 1+8i 1+i 1-i

1-8i —4-2i I+i -1+i
If we use the equation (4), then we get (Sa)L =42 (e and (Sﬂ)L “Nai 1-i

(SJL,), =

L

which are left Hamilton spinor matrices corresponding to the spinors S, and S,, respectively.

Consequently, we find

Now, we express the Cassini Formula for Jacobsthal and Jacobsthal-Lucas spinors.

Theorem 11. Assume that (n—1)th, nth and (n+1)th Jacobsthal spinors are SJ, |, $J, and

SJ

.+1- In this case, Cassini formula for Jacobsthal spinors is

(8,187, =(87,),8,=~(-2)"" (5+7i)m

and considering (n—1)th, nth and (n+1)th Jacobsthal-Lucas spinors are SJL, |, SJL, and

SJL

.+1 for Jacobsthal-Lucas spinors the similar formula is

(SJL ), SJL

n+l

—(SJL,), SIL, =9(-2)" (5+ 7i)m

for n>1.
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Proof: Firstly, we give Cassini formula for Jacobsthal spinors. Jacobsthal spinor product

corresponding to the product of Jacobsthal quaternions JQ _JO ., —(JQ) s

1 n
(SJ, ), 8, —(8J,), 8], In this case, if we use the Binet formula SJ, =§(2” S, —(-1) Sﬂ)

in the equation (6) and the equation (8) for Jacobsthal spinors, then we get

(2 ()" s 2 (1) )(5.), 8,

(SJ,_),8J,., —(8J),SJ, =$ 1 . (10)
n+l n- n n
(=2 (-1 2 (1) )(s,), S,
If we make necessary arrangements in the last equation, then we have
1 n-1
(87,1),87,~(8,),80,=~3(-2) ((S.), 8, +2(5,),5.):
Now, we calculate the spinor product (Sa ) . S st 2(S ; )L S, . Therefore, we obtain
1-8i —4-2i|-1+i I+i —1+i|] 8+i
(S,),85+2(S,) S, = , _ 2l , .
L L 4-2i 1+48i ||-1+i I+i 1-i ||[2+4i
11
13+7i 5 1+7i 15+21i (h
= + = .
—11-i 13+11i 15+21i
Considering the equations (10) and (11) consequently, we obtain
n-1 . 1
(SJ,.),87,. —(ST), ST, ==(-2)" (5+7i) i
Similarly, for Jacobsthal-Lucas spinors considering Binet formula

(SJLn )L =2" (Sa )L +(—l)n (Sﬂ)L in the equation (7) and (SJLn )L =2”(Sa )L +(—1)n (Sﬁ )L in
the equation (9), we have

(27 (8,0, + (=17 (85), ) (278, +(-1)™"s,)
(25, + (1 (8y), )25+ (-1,

(SJLH )L SJLn+1 - (SJLn )L SJLn = (
= 3(_2)n—1 ((Sa) Sﬁ +2(S5)L Sa).

If we use the equation (11) in the last equation, consequently we have
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n-1 1
(SJIL, ), SIL,,., —(SIL,),SIL, = 9(—2) (5 + 7i)L}.

Theorem 12. The generating function for Jacobsthal spinors is

G ()= 1 3+2t+it
ST =22 141+ 20)

and the generating function for Jacobsthal-Lucas spinors is

1 T+10t+i(2—¢
GS]L(t): 2 . ( ) .
1—t=2t" | 1+4t+i(5+2¢)

Proof: We take nth Jacobsthal spinor as SJ,. Therefore, for nth Jacobsthal spinor the
generating function is calculated with the aid of the equation G, (¢) = ZSJnt”. In this case,
n=0

using Gy, (t) , 1Gg, (t) and 2t2GS, (t) we obtain that

Gy, (t) =8, +SJt+SI,t> +SIt* + STt +SI L +...
~tG, () ==SJt = SJ,t* = SI,t* =SJt* —SJ,t° —SJ " +...
26°G, (t)=-2SJ ¢ —28J,t* —28J,t* —28J,° —28J,t° = 28Jt" +...

and

1

G”(t):(l—t—ztz)(

STy +(87,—SJ,)t)
where

SJ +(SJ,~ 257 ) 3 S5+i 3 3+2t+it
+ — t= + - t= .
o =2 G i) e 1+i(1+2¢)

Consequently, we get

G- ()= 1 342t +it
ST =22 14+ 20) |

Now, we calculate the generating function for Jacobsthal-Lucas spinors. Therefore, if
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we consider the function G, (r)=>)_SJL ", we have
n=0

1
Gy, (1) = m(SJL0 +(SJL, — SJLy)t)

considering G, (t), tGg, (t) and 2t2GS,L (t) Finally, we obtain

1 T+10t+i(2—1
Gy ()=——75 . ( ) .
1—t-2t" | 1+4t+i(5+2¢)

This completes the proof.

Theorem 13. Assume that (—n)th Jacobsthal and Jacobsthal-Lucas spinors are SJ_, and

SJL_, .In this case these spinors are calculated as follows;

for Jacobsthal spinors

Y[ 84,5,
SJ = —— . ,
2)12J, ,-i4J ,

for Jacobsthal-Lucas spinors
1Y'| 8JL, ,—-iJL,
SIL  =—|——= . .
2)|2JL, ,—i4JL

Jn+3 + n
J

Proof: We know that the Jacobsthal spinor SJ, =[ i
n+l + n+2

} with the aid of the equation (5).

In this case, for (—n)zh the Jacobsthal spinor we can write

S] _ J—n+3 + i‘]—n
T, |

—n+l —n+2

On the other hand, the equation for negative subscript (—n)th Jacobsthal number is known as

n+l
, G
ok

J,. Therefore, we obtain
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n-2 n+l
() S )

T2y 1y C2r | 2J, +idd,
@JHH( 1?2 J 1 ’
2" 2"

and consequently
"8 —-iJ
SJ_n — _l n-3 ) n )
2)12J,,-i4J

Now, we calculate the Jacobsthal-Lucas spinor SJL_, for negative subscript (—n)th. We

. JLn+3 + i‘]Ln .
know that the Jacobsthal-Lucas spinor SJL, = . from the equation (5). So, for
JLnH + ]‘]Ln+2

(—n)th the Jacobsthal-Lucas spinor we can write

SIL =

n

JL, +iJL
JL,, +VL, ., |

—n+1

On the other hand, the equation for negative subscript (—n)th Jacobsthal-Lucas number is

-1\
knownas JL = %JLW Consequently, we get

n-3 n
0

S - o3 2 " __[_lj” 8JL, , —iJL,
o (1) _(_1)"*2J S 2) 2, —iddL |

Theorem 14. Let nth Jacobsthal spinor be SJ,. The summation formulas for Jacobsthal

spinors are the following options;

i) iSJS = %[SJM -sJ,],
s=1

”) iS‘]nﬂ‘ = %[S‘prﬂ - SJn+1] *
s=0

Proof:

i) We know that for Jacobsthal spinors the Binet formula is
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S s (560

n+l

On the other hand, we know that there is the equation Z x' = r-

1 for geometric sequences.
s=1 - X

Then we have

o= (5 (T Jo b))

s=1

Now, we make necessary arrangements and use Binet formula for Jacobsthal spinors in the

equation (6). Therefore we get
ZSJ (—45 +2"28 18, +(-1)" 5)=%[—%(223a —Sﬁ)+%(2”+2Sa —(-1)"? Sﬁ)j
and consequently

n+2

D.SJ, =1(SJ ~8J,)-
s=1 2

ii) Now, we find the summation formulas for Jacobsthal spinors with subscript (n + s)th.
With the aid of the equation (6) is

S5l )5

s=0 s=1

=

. . n xn _ xn+p+l
Moreover, there is the equation » x"** =

s=0

for geometric sequences. Therefore, we

have

ﬁ:SJn+S — %{[2’1%2;[)“}&1 _((_1)1 :5:3 JSﬁ\J _ é((_2n+1 L2 )Sa _ ((_l)n _(_1)n+17+1 )Sﬁ).

If we make necessary arrangements and use Binet formula for Jacobsthal spinors in the equation

(6), then we get

i:SJ"H :%(_g(zm S, _(_1)n+1 S/])_'_%(zn-#p*-ZSa _(_1)n+p+2 Sﬂ ))
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and consequently

i S‘]n+s = %[SJBH;HZ - SJn+1] *
5=0

Similar to Theorem 13, we can express the following demonstrable theorem.

Theorem 14. Assume that nth Jacobsthal-Lucas spinor be SJL,. The summation formulas for

Jacobsthal-Lucas spinors are the following equations;

i) Zn:SJLS - %[SJLM ~SJL, |,
s=1

~SIL,, ]

n+p+2

2 1
ii) Y SJL,,, = E[SJL
s=0
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