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Abstract  Mathematical models provide a common language for communicating ideas, 

theories, and findings across disciplines. They allow researchers to represent complex concepts in 

a concise and precise manner, facilitating collaboration and interdisciplinary research. 

Additionally, visual representations of models help in conveying insights and understanding 

complex relationships. Mathematical modeling finds applications in various areas across science, 

engineering, economics, and other fields. Recently disease models have helped us understand how 

infectious diseases spread within populations. By studying the interactions between susceptible, 

infected, and recovered individuals, we can identify key factors influencing transmission, such as 

contact patterns, population density, and intervention strategies. The incorporation of fractional 

order modeling in studying disease models such as COVID-19 dynamics holds significant 

importance, offering a more accurate and efficient portrayal of system behavior compared to 

conventional integer-order derivatives. So in this study, we adopt a fractional operator-based 

approach to model COVID-19 dynamics. The existence and uniqueness of solutions are crucial 

properties of mathematical models that ensure their reliability, stability, and relevance for real-

world applications. These properties underpin the validity of predictions, the interpretability of 

results, and the effectiveness of models in informing decision-making processes. Our investigation 

focuses on positivity of solutions, the existence and uniqueness of solutions within the model 

equation system, thereby contributing to a deeper understanding of the pandemic's dynamics. 

Finally, we present a numerical scheme for our model.   

 

1. Introduction 

There are various approaches to modeling the spread of infectious diseases, including compartmental models like 

the SIR (Susceptible-Infectious-Recovered) model, SEIR (Susceptible-Exposed-Infectious-Recovered) model, 

and their variations (Alkahtani and Koca, 2021), (Anderson and May, 1991), (Kermack and McKendrick, 1927). 

One of the simplest and most widely used models is the SIR model. It divides the population into three 

compartments: susceptible, infectious, and recovered. Strengths include simplicity, ease of interpretation, and 

applicability to large populations. However, it assumes homogeneous mixing, constant parameters and does not 

consider demographic or spatial heterogeneity. Extending the SIR model by adding an exposed compartment to 

account for the latent period between infection and becoming infectious, SEIR model better captures the 

incubation period of the disease. 

In contemporary mathematical modeling, there has been a noticeable shift from employing classical derivatives 

to embracing fractional derivatives. This transition is reflected in recent research, where mathematicians have 

increasingly incorporated fractional differential operators into their models. These operators, encompassing 

exponential, Mittag-Leffler kernels, and power-law distributions, offer alternative frameworks for describing 

diverse phenomena (Atangana and Baleanu, 2016), (Caputo and Fabrizio, 2016), (Podlubny, 1999). Fractional 

order models are particularly useful for describing systems with long-range interactions or non-local effects. By 

considering fractional derivatives, these models can more accurately represent the underlying physics or biology 

(Koca and Ozalp, 2013), (Koca, 2018). 



Ilknur Koca 

Fractional Order Mathematical Modeling of COVID-19 Dynamics with Mutant and Quarantined Strategy 

20 

 

Modeling the spread of COVID-19 has been a critical area of research since the pandemic began. Since the 

beginning of the COVID-19 pandemic, there has been a significant surge in research and publications related to 

various aspects of the disease (Dokuyucu and Celik, 2021). Researchers from diverse fields including 

epidemiology, virology, public health, medicine, mathematics, computer science, and social sciences have 

contributed to the growing body of knowledge on COVID-19. 

In a recent publication (Yu et al., 2024), researchers introduce a novel nonlinear dynamics model called 

SEIMQR (Susceptible-Exposed-Infected-Mutant-Quarantined-Recovered), designed specifically to delve into 

the intricacies of COVID-19 transmission dynamics and to forecast its future trends with greater precision. In 

this paper, different from publication (Yu et al., 2024), we consider their model as fractional order to describe 

system behavior with greater accuracy and efficiency compared to traditional integer-order derivatives. 

2. Preliminaries 

Our focus in this section is to provide clear and concise definitions of non-integer fractional derivatives and 

integrals (Kilbas et al., 2006). 

Definition 1 Riemann-Liouville definition of fractional order derivative:  

   
    

  ( )  
 

 (   )

  

   ∫  
 

 

(   )      ( )    (1) 

where 

             (2) 

and     is a fractional order of the differ-integral of the function  ( ). 

Definition 2 Caputo's definition of fractional order derivative:  

   
   

  ( )  
 

 (   )
∫  
 

 

(   )       ( )    (3) 

Here,             ,     is a fractional order of the derivative of the function  ( ). 

Definition 3 According to Riemann-Liouville's perspective, the Riemann-Liouville fractional integral of order 

    for a function   (   )    is defined as the antiderivative of   with respect to a fractional exponent :  
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3. Model Derivation 

Herein, we undertake the examination of a Covid-19 model, incorporating a standard incidence specified as 

follows:  
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where           and             is the number of total population individuals.  
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The entire population within the SEIMQ (Susceptible-Exposed-Infected-Mutant-Quarantined) model can be 

classified into six distinct groups, each with its respective characteristics outlined as susceptible ( ) denotes 

individuals who have not contracted the virus but are at risk of infection when in contact with carriers, exposed 

( ) refers to individuals who have been infected with the virus but have yet to display symptoms, infected ( ) 

represents those who have contracted the virus and are exhibiting symptoms, mutant ( ) is attributed to 

individuals infected with a variant strain of the virus and quarantined ( ) is designated for individuals isolated to 

prevent viral transmission to the broader community. The parameters within the system (5) are characterized by 

positive constants. 

The field of calculus, encompassing fractional derivatives and integrals, has garnered growing attention from 

researchers. Fractional operators have been recognized for their superior ability to depict system behavior 

compared to integer-order derivatives. Given the significant advantage in memory properties, we propose 

enhancing the aforementioned system by substituting the integer-order time derivative with the Caputo fractional 

derivative as presented below: 
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with the initial conditions 
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3.1. The positivity and boundedness of solutions 

The aim of this section is to illustrate the positivity of the solutions of the system concerning with     , we 

define the norm 
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| ( )|  (8) 

We begin by defining the system and then proceed to address the first equation: 
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Then this provides that 
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Secondly for the function  ( ), we obtain 
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So this dictates that 

  ( )     
 (        )        (11) 

Here we assume that  ( ) and  ( ) are nonnegative solutions. For equation  ( ), we obtain 
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This dictates that 
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Now let us check for the fourth equation is given by 
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For final equation of model we get  
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So we have  
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           (17) 

4. Existence and Uniqueness 

Existence and uniqueness conditions are fundamental for establishing the mathematical validity, predictability, 

and stability of solutions to ordinary differential equations, thereby enabling their application in various 

scientific and engineering domains. The importance of existence and uniqueness for ordinary differential 

equations lies in their fundamental role in ensuring the well-posedness of mathematical models and the 

predictability of solutions. In this section, we provide an in-depth examination of the existence and uniqueness of 

the equation system. To accomplish this objective, we verify the following theorem (Atangana, 2021). 

Theorem 1 With the presence of positive constants    and  
 
 satisfying the following: 
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Then the system of equations has a unique system of solutions. Let us revisit our model with taking right side of 

model as follows:  
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Proceeding further with the function   (   ), we obtain  
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Similary we get, 
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Finally we get, 
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Now that we have checked the first condition for all functions, we move on to verifying the second condition for 

our model. 

 |  (   )|
  |      ( )( ( )   ( ))     ( ) ( )     ( )|

   (33) 

  |   (  ( ( )   ( ))     ( )    ) ( )|
   

     
   (  

 (| ( )|  | ( )| )    
 | ( )|    

 )| ( )|   

     
   (

  
 (    

  ,   -
| ( )|     

  ,   -
| ( )| )

   
    
  ,   -

| ( )|    
 

) | ( )|   

     
   (  

 (‖ ‖ 
  ‖ ‖ 

 )    
 ‖ ‖ 

    
 )| ( )|  

     
 .  

 (  
 (‖ ‖ 

  ‖ ‖ 
 )   

 ‖ ‖ 
    

 )

   
 | ( )| / 

   
 
(  | ( )| ) 

under the condition  

 
  

 (‖ ‖ 
  ‖ ‖ 

 )   
 ‖ ‖ 

    
 

  
     (34) 

 |  (   )|
  |

   ( ) ( )     ( ) ( )

 (   ( )  (        )) ( )
|
 

  (35) 

     
 | ( )| | ( )|     

 | ( )| | ( )|  

   (  
 | ( )|  (        )

 ) ( )  

     
    
  ,   -

| ( )|    
  ,   -

| ( )|     
    
  ,   -

| ( )|    
  ,   -

| ( )|  

   (  
    
  ,   -

| ( )|  (        )
 )  ( ) 

     
 ‖ ‖ 

 ‖ ‖ 
     

 ‖ ‖ 
 ‖ ‖ 

  

   (  
 ‖ ‖ 

  (        )
 ) ( ) 

  (   
 ‖ ‖ 

 ‖ ‖ 
     

 ‖ ‖ 
 ‖ ‖ 

 ) .  
 (  

 ‖ ‖ 
  (        ) )

   
 ‖ ‖ 

 ‖ ‖ 
     

 ‖ ‖ 
 ‖ ‖ 

  ( )/  

   
 
(  | ( )| ) 

under the condition  



 

NASE / Natural Sciences and Engineering Bulletin, 2024, 1(1) 

25 

 

 
  

 ‖ ‖ 
  (        ) 

  
 ‖ ‖ 

 ‖ ‖ 
    

 ‖ ‖ 
 ‖ ‖ 

     (36) 

 |  (   )|
  |

 

 
   ( )  (           ) ( )|

 

  (37) 

  
 

 
  

 | ( )|   (           )
 | ( )|   

  
 

 
  

    
  ,   -

| ( )|   (           )
 | ( )|   

  
 

 
  

 ‖ ‖ 
   (           )

 | ( )|   

  .
 

 
  

 ‖ ‖ 
 / (  

 (           ) 

 

 
  

 ‖ ‖ 
 

| ( )| )  

   
 
(  | ( )| ) 

under the condition  

 
 (           ) 

  
 ‖ ‖ 

     (38) 

 |  (   )|  |
 

 
   ( )     ( )  (        ) ( )|

 

  (39) 

  
 

 
  

 | ( )|     
 | ( )|   (           )

 | ( )|   

  
 

 
  

    
  ,   -

| ( )|     
    
  ,   -

| ( )|  

   (           )
 | ( )|   

  
 

 
  

 ‖ ‖ 
     

 ‖ ‖ 
   (           )

 | ( )|   

  .
 

 
  

 ‖ ‖ 
     

 ‖ ‖ 
 / (  

 (           ) 

 

 
  

 ‖ ‖ 
     

 ‖ ‖ 
 

| ( )| ) 

   
 
(  | ( )| ) 

under the condition  

 
 (           ) 

  
 ‖ ‖ 

     
 ‖ ‖ 

     (40) 

 |  (   )|  |  ( ( )   ( )   ( ))     ( )|   (41) 

     
 (| ( )|  | ( )|  | ( )| )     

 | ( )|   

     
 (    

  ,   -
| ( )|     

  ,   -
| ( )|     

  ,   -
| ( )| )     

 | ( )|   

     
 (‖ ‖ 

  ‖ ‖ 
  ‖ ‖ 

 )     
 | ( )|  

     
 (‖ ‖ 

  ‖ ‖ 
  ‖ ‖ 

 ) (  
   

 

   
 (‖ ‖ 

  ‖ ‖ 
  ‖ ‖ 

 )
| ( )| * 

   
 
(  | ( )| ) 

under the condition  

 
  

 

  
 (‖ ‖ 

  ‖ ‖ 
  ‖ ‖ 

 )
    (42) 

Provided that the condition for linear growth is satisfied, such that  
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there exists only one solution set for the system of equations. 

5. Numerical Scheme For Model With Riemann-Liouville Derivative 

In the forthcoming section, we offer an analysis of the model under consideration within the realm of fractional 

calculus employing the Riemann-Liouville derivative. When implementing the numerical scheme, we employ 

the Atangana-Toufik numerical rules (Toufik and Atangana, 2017). Let us now express the model utilizing the 

Riemann-Liouville derivative as follows:  
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We transform the aforementioned system into its numerical counterpart using Lagrange polynomial interpolation. 
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4. Conclusion 

In this study, we explore a COVID-19 model alongside its fractional order counterpart. We examine the model under 

linear growth and Lipschitz rules, deriving conditions for the existence and uniqueness of system solutions. 

Ultimately, we provide numerical approximations to demonstrate the effectiveness of our method. 
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