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Abstract: LIM domain kinases (LIMKs), which include LIMK1 and LIMK2, are key proteins in actin dynamics. 
On this basis, the inhibition of LIMK1 enhances dendritic spine density and size in dementia, reducing 
Alzheimer's disease (AD) effects. Therefore, several small molecules were discovered as potential therapeutic 
targets for AD. Herein, a pharmacophore-based virtual screening was employed to identify novel potential 
LIMK1 inhibitors. The pharmacophore model derived from the co-crystallized receptor structure of PubChem-
329823760: LIMK1 (PDB ID: 5NXC) was then used for virtual screening. After applying Lipinski's rules and 

pharmacophore filters, 29 potential hits were identified. Molecular docking simulations were performed to 
determine the binding affinities of these candidates against LIMK1, with results ranging from -5.20 to -10.60 
kcal/mol. Notably, PubChem-136621040 showed the highest binding affinity against the target protein, with 
a docking score of -10.60 kcal/mol, slightly surpassing the native ligand, PubChem-329823760, possessing 
a lower docking score of -9.80 kcal/mol. The drug-likeness and toxicity properties of target compounds were 
assessed through ADMET evaluations. A series of 75 nanosecond molecular dynamics (MD) simulations were 
conducted on the complexes generated by the best-docked molecule and the native ligand. RMSD, RMSF, 

SASA, and Rg calculations of their trajectories were also calculated. PubChem-136621040 possessed an 
average RMSD value of 0.23 nm, lower than the native ligand's 0.31 nm, indicating a greater binding stability. 
The RMSF results also revealed that the best-docked compound had a lower value (0.10 nm), while the native 

ligand possessed a value of 0.12 nm. The SASA values for both the native ligand and the best-docked 
compound were nearly identical, at 150.20 nm2 and 150.80 nm2, respectively. The Rg results demonstrated 
that both complexes maintained their rigidity throughout the simulation, with similar average values of 2.04 

nm for the native ligand and 2.06 nm for the best-docked compound. 
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1. INTRODUCTION 
 
Alzheimer's disease (AD) is a neurodegenerative 

disorder that progressively decreases cognitive 
abilities, ultimately resulting in the death of the 
affected individuals. Recent studies have indicated 
that AD is the leading cause of dementia among older 
people (1,2). Remarkably, between 60 and 70% of 
cases in which the older population has increasing 
levels of cognitive impairment can be linked to 

Alzheimer's disease (3). 
 

The emergence of abnormally expanded neuronal 
processes known as dystrophic neurites is one of the 
primary features of AD patients (4,5). Tau protein, a 

key indicator of AD pathology, accumulates in these 
neurites, and when this protein is 
hyperphosphorylated, it separates from microtubules 
and subsequently clumps together to form 
neurofibrillary tangles (6,7). LIM domain kinase 
proteins (LIMKs), which are essential regulators of 
the actin cytoskeleton and cellular motility, 

contribute to the pathophysiology of AD by causing 
tau to become hyperphosphorylated, which in turn 
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causes dystrophic neurites to develop and intensify 
the neurodegenerative cascade in AD (8–11). 
 

The LIM kinase family is typically composed of two 
types of proteins, specifically LIM domain kinase 1 
(LIMK1) and LIM domain kinase 2 (LIMK2). Despite 
sharing numerous structural similarities, these two 

macromolecules exhibit distinct expression and 
subcellular localization patterns, in addition to 
functional differences (12,13). LIMK1 protein is 
composed of 633 amino acids that encompass a 

variety of functional domains. These domains include 
the LIM1 and LIM2 domains, the PDZ binding motif, 
and the serine/proline (Ser/Pro)-rich region (14). In 

addition, it also includes the kinase domain, which 
contains the S fragment and the nuclear localization 
signal (NLS) subdomain. It has also been 
demonstrated that the regulation of kinase activity is 

significantly influenced by the LIM and PDZ domains 
(15). The representation of these domains is 
depicted in Figure 1. 

 

 
Figure 1: Domain architecture of LIMK1. 

 
These proteins are essential for several physiological 
functions, including motility, cell cycle control, and 

brain development. It has been shown that these 

proteins control the phosphorylation activity of 
LIMK1 and LIMK2, which influences their capacity to 
phosphorylate and deactivate cofilin, an essential 
substrate. It is important to highlight that while 
LIMK2 is broadly expressed, LIMK1 is primarily 
present in neural tissues (16). Consequently, among 

these two proteins, inhibiting LIMK1 could have a 
more substantial impact on reducing the severity of 
AD by enhancing the size and density of dendritic 
spines (17). 
 
In recent years, researchers have focused on the 

discovery of novel LIMK inhibitors, and various small 
molecules have been described in the literature. In 
research, Singh et al. employed similar in silico 
strategies, encompassing pharmacophore-based 
virtual screening, docking, and ADMET analyses, to 

identify novel compounds with inhibitory activities 
against LIMK1 in 2023. They constructed their 

pharmacophore models and successfully identified 
three virtual hits based on their compound (18). 
 
In a parallel study, Rangaswamy et al. (2023) 
pinpointed five potential compounds for LIMK2 
inhibition in cancer treatment, which was achieved 
through pharmacophore-based virtual screening, in 

silico ADMET studies, along with molecular docking 
and dynamics. Their research highlighted two out of 
the five compounds as promising candidates that 
could be further developed for cancer therapy (19). 
 
In 2020, Zhang's group employed an in silico virtual 

screening approach to discover LIMK1 inhibitors for 
the purpose of inhibiting cell proliferation. Through in 

silico virtual screening, they identified a compound 
known as luteolin. Subsequent molecular docking 
assessments and experimental findings of their 
discovered compound indicated that it has 
demonstrated significant inhibitory activity against 

LIMK1 (20). 
 
The literature inquiry offers a comprehensive insight 
into potential inhibitors of LIMKs and their possible 
therapeutic applications in various diseases, 
including neurological disorders and cancer. 
However, it has been noted that there are only a 

limited number of studies specifically investigating 
the role of LIMK1 activity in Alzheimer's Disease. 

Therefore, in our study, we initially employed 

pharmacophore-based virtual screening to detect 
potential compounds to inhibit LIMK1 for AD 
treatment. In the subsequent step, the screened 
candidates were further evaluated with molecular 
docking simulation along with the determination of 
ADME (absorption, distribution, metabolism, 

excretion) profiles using various in silico techniques. 
 
The toxicity properties of these screened molecules 
were also analyzed and calculated to reveal potential 
risks. Leveraging the findings of these calculations, 
candidate pharmaceuticals possessing the highest 

binding affinity and the complex of the native ligand 
with its macromolecule were further investigated 
with molecular dynamics simulation {PubChem-
329823760: LIMK1 (native ligand) and PubChem-
136621040: LIMK1 (best-docked ligand) complexes, 

respectively} to reveal root-mean-square deviation 
(RMSD), root-mean-square fluctuation (RMSF), 

solvent-accessible surface area (SASA), and radius 
of gyration (Rg) graphs to determine the post-dock 
analysis including binding stability of the system 
after the docking study, protein rigidity and residue 
interactions during the MD simulation. 
 
In this scope, our study encompasses the 

identification and comprehensive analysis of novel 
LIMK1 inhibitors for the potential treatment of 
Alzheimer's Disease. Through advanced in silico 
methodologies, including pharmacophore-based 
virtual screening, molecular docking simulations, and 
ADME profiling, we aim to evaluate the efficacy, 

safety, and binding stability of candidate compounds. 
Furthermore, by employing molecular dynamics 

simulations, we assess the structural and dynamic 
behavior of these inhibitors, providing critical 
insights into their therapeutic potential against 
LIMK1-mediated neurodegeneration. 
 

In this study, we employed an in silico approach to 
identify candidate molecules with the requisite 
characteristics for inhibiting the LIMK1 receptor, 
including the ability to permeate the blood-brain 
barrier, optimal pharmacokinetic properties, minimal 
toxicity, and robust binding affinity coupled with 
binding stability. Our research integrates 
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methodologies such as pharmacophore-based virtual 
screening, ADME/T evaluations using various web-
based platforms to obtain enhanced pharmacological 

and pharmacokinetic profiles of the investigated 
ligands, molecular docking of the compounds to the 
target receptor, and molecular dynamics (MD) 
simulations to assess the stability of the docked 

complexes with LIMK1. 
 
2. COMPUTATIONAL STUDIES 
 
2.1. Pharmacophore-Based Virtual Screening 
Pharmacophore-based virtual screening was 

performed using the Pharmit server 
(http://pharmit.csb.pitt.edu), which allows the use 
of several databases (PubChem, ZINC, ChEMBL, and 
Molport, etc.) to identify candidates potentially to 
inhibit LIMK1. To achieve this, input files of the 
structure of LIM domain kinase 1 (PDB ID: 5NXC), 
which is co-crystallized with its native ligand 

(PubChem-329823) obtained from the RCSB Protein 
Data Bank (www.rcsb.org), with no mutations in its 
protein sequence were submitted, and 
pharmacophore model based on the pharmacophore 
classes of the native ligand was generated on the 
server. The initial screening was conducted by 
applying this pharmacophore model, selecting the 

PubChem database, which contains a vast collection 
of 103,302,052 compounds. 419 compounds were 
discovered through the application of a 
pharmacophore filter at the initial step. 
Subsequently, Lipinski's filter was applied to these 
molecules to identify the desired compounds having 

the ideal drug-likeness properties. Therefore, 
parameters to provide the screened ligands to obey 
this rule were selected. The compounds possessing a 
molecular weight (MW) lower than 500 Da, hydrogen 

bond acceptor (HBA) not much than 10, hydrogen 
bond donor (HBD) less than 5, number of rotatable 
bonds (nROTB) no more than 10, and clogPo/w value 

less than 5 were intentionally configured to eliminate 
undesired compounds. A total of 78 candidates were 
successfully obtained following the application of 
Lipinski's filter. These compounds were further 
evaluated with the embedded docking application of 
Pharmit to detect the compounds whose RMSD 
values are less than 2.0 Å². As a result, 49 

compounds out of 78 hits were also eliminated, and 
29 compounds possessing the most desired drug-
likeness characteristics were obtained for further 
analysis. 
 
2.2. Molecular Docking Studies 

The docking simulation aimed to generate a 
comprehensive viewpoint for potential 

pharmaceuticals that potentially demonstrate their 
binding ability against LIMK1. For this reason, the 
OneAngstrom SAMSON platform/2023-R1 software 
package's AutoDock Vina extension was used to 
forecast every step of the process, including docking 

validation, pre-docking preparation, and molecular 
docking simulations. To verify our chosen docking 
methodology, docking validation was initially 
performed, which involved a redocking of the initial 
conformation of the native ligand with the same 
structure using our docking parameters. Following 
this, the native compound was superimposed with 

the docked compound, and the RMSD value was 
computed. 
 

Consequently, pre-docking preparation was 
concluded for the LIMK1 crystal structure, which was 
retrieved from the RCSB Protein Data Bank 
(www.rcsb.org). The macromolecule's co-crystallized 

native ligand (PubChem-329823) was deleted, along 
with all ions and water molecules. Subsequently, 
necessary charges were applied, and hydrogens were 
included in the system. Since LIMK1 possesses only 
one chain, no modification, including chain removal, 
was carried out. Additionally, the target protein and 

the screened ligands were adjusted to a physiological 
pH of 7.4. The grid box size was set at 30.00 x 24.90 
x 24.80 Å³ with a grid point spacing of 0.375 Å, and 
the center coordinates of the grid box were defined 
as x: 18.60, y: 16.50, and z: 12.50. The coordinates 
were also derived using SAMSON, through the 
identification of the macromolecule's binding site. 

This operation was performed by selecting an area 
within a radius of 10.00 Å around the native ligand. 
 
Furthermore, a library of ligands was constructed 
from the input file, encompassing 29 potential 
inhibitors, which was generated in SDF format and 
downloaded from the Pharmit website. Before the 

docking procedure, our compounds underwent 5000 
steps of energy minimization to determine their most 
stable conformations. Following the completion of 
the docking simulation, the top 10 compounds with 
the highest docking scores were intentionally 
selected, and their binding affinities, along with the 

molecular structures, were deeply investigated. 
 
2.3. ADMET Studies 
ADME (Absorption, Distribution, Metabolism, and 

Elimination) evaluations provide valuable insights 
into a drug's physiological responses and potential 
interactions. For this reason, evaluating a 

compound's suitability as a drug candidate requires 
more than just looking at its docking score; 
examination of ADME analyses is also necessary. 
Several web-based platforms, such as SwissADME, 
PreADMET, OSIRIS, and Molinspiration, were utilized 
to conduct ADME assessments to evaluate the drug-
likeness properties and efficacy of the screened 

compounds. Furthermore, possible toxicity 
assessments were assessed using the Syntelly 
platform, which is based on the application of 
artificial intelligence to evaluate many toxicity 
parameters that identify potential negative effects of 
the pharmaceutical candidates. 

 
2.3.1. SwissADME 

SwissADME is a freely available online tool that 
provides a wide range of information and forecasts 
about small molecules' physicochemical and 
pharmacological properties. It also evaluates 
compounds' ADME, and drug-likeness profiles based 

on Lipinski's rule of five (RO5), which plays a 
significant role in drug discovery and development to 
identify ideal pharmacological properties for 
candidate small molecules (21). The rule of five 
outlines essential criteria for assessing the suitability 
of a compound for drug development. These criteria 
include a molecular weight (MW) of no more than 500 
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g/mol, a maximum of 10 hydrogen bond acceptors 
(HBAs), less than 5 hydrogen bond donors, logPo/w, 
which indicates the partition coefficient between 

octanol and water, used to evaluate lipophilicity 
characteristics not exceeding 5, and topological polar 
surface area (TPSA) below 140 Å². Moreover, 
compliance with the rule dictates that the number of 

rotatable bonds (nROTBs) in a potential 
pharmaceutical should be less than 9 (22). 
 
2.3.2. PreADMET 
ADME properties of our compounds were determined 
using the PreADMET platform 

(http://preadmet.bmdrc.org/). In this scope, blood-
barrier permeability (BBB), passive gastrointestinal 
absorption (HIA), and protein-plasma binding 
abilities (PPB) were detected. BBB could be 
computed as the ratio of steady-state concentrations 
of radiolabeled compounds in the brain to that in the 
peripheral blood (23). It is noteworthy that 

compounds with BBB values less than 0.10 are 
considered to have low CNS absorption, those with 
values between 0.10 and 0.20 exhibit moderate 
absorption, and those with values exceeding 0.2 are 
characterized by high CNS absorption capacity (24). 
Furthermore, plasma protein binding (PPB) denotes 
the extent of interaction between pharmaceutical 

compounds and various plasma proteins, including 
human serum albumins (HSAs), present in the 
bloodstream. This parameter is critical for predicting 
the pharmacokinetic profile of a drug, particularly in 
terms of its distribution within the body, and for 
assessing the proportion of the drug that effectively 

reaches its target site of action(25). 
 
2.3.3. OSIRIS property explorer 
Mutagenicity, tumorigenicity, skin irritability, and 

reproductive effectiveness assessments of our 
investigated molecules were completed through the 
application of the OSIRIS Property Explorer 

(v.4.5.1), which is a freely downloadable tool 
(http://www.organic-chemistry.org/prog/peo/). 
 
In addition to these assessments, two descriptors, 
namely drug-likeness (d) and drug score (ds), were 
also analyzed to support our findings. Therefore, a 
mathematical approach to the drug-likeness 

parameter and drug-score evaluation were also 
implemented, and all results were tabulated in Table 
4. Calculation of the drug-likeness (d) of the hit 
compounds was assessed with Equation 1, where Vi 
indicates scores of molecular fragments and n 
denotes the number of molecular fragments. 

 

𝑑 =  
∑ 𝑉𝑖

√𝑛
      (1) 

 
Equation 2 is utilized to obtain the drug-score (ds) 
values of the compounds, where the si represents the 
contributions calculated directly from clogP, logS, 
molecular weight, and drug-likeness, and ti 
represents the contribution taken from the four 

toxicity risk classes. 
 

𝑑𝑠 =  𝜋 (
1

2
+

1

2
𝑠𝑖) . 𝜋𝑡𝑖    (2) 

 
 

2.3.4. Molinspiration 
Along with ADME calculations, potential bioactivities 
such as G-coupled protein receptor ligand (GPCR), 

ion-channel modulator (ICM), kinase inhibitor (KI), 
nuclear receptor ligand (NRL), protease inhibitor 
(PI), and enzyme inhibitor (KI) were revealed via 
Molinspiration (https://www.molinspiration.com) 

platform. Notably, G protein-coupled receptors 
(GPCRs) are an important group of signaling proteins 
that mediate the responses of cells to a wide range 
of substances, including hormones, metabolites, 
cytokines, and neurotransmitters. In addition, ion 
channels support several cellular functions, including 

fast cellular rearrangements, heart and skeletal 
muscle contraction, hormone synthesis, 
immunological reaction, and tumor cell growth. 
Furthermore, NRLs are transcription factors that are 
induced by ligands and, upon translocation to the 
nucleus, directly influence the transcription of genes, 
which are essential to several important physiological 

functions (26). It is essential to note that the 
assessment of the kinase inhibition (KI) descriptor is 
of significant importance in determining the 
bioactivity of the screened candidates against the 
LIM kinase 1 protein to support the binding scores of 
our analyzed candidates. The following ranges could 
be considered in determining the bioactivities: 

ratings greater than 0.00 indicate substantial 
bioactivity. Scores that fall within the range of -0.50 
to 0.00 represent moderate activity. Bioactivity 
scores less than -0.50 are considered to indicate 
inactivity (27). 
 

2.3.5. Syntelly 
Syntelly is an online web tool that utilizes artificial 
intelligence (AI) to accelerate the physicochemical 
properties, drug-likeness assessments, and toxicity 

effectiveness of organic compounds. In our study, we 
have evaluated an alternative perspective on the 
toxicity profiles of the screened ligands and their 

drug-likeness properties. For this reason, various 
toxicity properties, namely Mouse Oral LD50, 
reproductive toxicity, hepatotoxicity, cardiotoxicity, 
and carcinogenicity, were predicted to reveal the 
potential toxicity risks of the investigated candidates. 
 
2.4. Molecular Dynamics 

Molecular Dynamics (MD) is a computational 
simulation commonly employed to evaluate the 
physical motion of larger molecular systems, with a 
particular emphasis on protein-ligand complexes. In 
the most prevalent approach, the trajectories of 
molecules are ascertained based on Newton's law 

equations for a system of interacting particles. In this 
scope, LIMK1: PubChem-136621040, which 

exhibited the highest docking score, was subjected 
to MD simulation alongside LIMK1: native ligand 
(PubChem-329823760), serving as the reference 
protein-ligand complex. The input files of the optimal 
conformations of these complexes were derived from 

the docking simulation, and all processes were 
conducted using the GROningen Machine for 
Chemical Simulations (GROMACS) 2023.3 software 
package (28). The preprocessing step was 
accomplished by selecting the CHARMM36 force field 
and the TIP3P water model. Subsequently, 
electrostatic interactions were computed using the 
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Particle Mesh Ewald (PME) method, with a Fourier 
spacing of 0.16 nm and a short-range cut-off of 1.2 
nm employed for electrostatic treatment. Following 

the addition of chloride ions to neutralize the system 
of the complexes, energy minimization was 
undertaken with 5000 steps of the steepest descent 
minimization method until the maximum force was 

less than 10.0 kJmol-1nm-1. Consequently, system 
equilibration was performed in two phases, 
comprising a constant number of particles, volume, 
and temperature (NVT) ensemble and a continuous 
number of particles, pressure, and temperature 
(NPT) ensemble with 5000 steps of steepest descent 

equilibration. The temperature was escalated within 
100 ps in the NVT ensemble and maintained at 300 
K with the Berendsen Thermostat to satisfy the room 
temperature, succeeded by the NPT ensemble at 1 
bar for 100 ps. 75 ns MD simulation was completed 
for both complexes, and corresponding calculations, 
including root-mean-square deviation (RMSD), root 

mean square fluctuation (RMSF), solvent-accessible 
surface area (SASA), and radius of gyration (Rg), 
were also generated with the GROMACS package to 
elucidate various dynamic behaviors of our 
investigated systems. 
 
2.4.1. Root mean square deviation (RMSD) analysis 

Root Mean Square Deviation (RMSD) is a metric used 
to evaluate the average distance between atoms in 
proteins or ligands that are superimposed after 
simulation, particularly those that form the 
backbone. RMSD makes it easier to compare 
structural differences between different 

conformational states of proteins or protein-ligand 
complexes. To calculate the RMSD, the two selected 
structures must be superimposed. Then, the squared 
deviation between the coordinates of the respective 

atoms must be calculated, and the square root of the 
mean of these squared deviations must be extracted 
(29). In this context, the conformational stability of 

complexes during Molecular Dynamics (MD) 
simulations is often evaluated by the creation of 
RMSD charts, which may be easily completed with 
GROMACS. 
 
The following equation (Equation 3) represents the 
mathematical calculation of RMSD. 

 

𝑅𝑀𝑆𝐷 = √
∑ 𝑚𝑖(𝑟𝑖−𝑟𝑖

2)2𝑁
𝑖=1

∑ 𝑚𝑖
𝑁
𝑖=1

     (3) 

 
2.4.2. Root mean square fluctuation (RMSF) analysis 
Root Mean Square Fluctuation (RMSF) is a statistical 
approach employed to quantify how a particle, 

including a protein residue, varies from its initial 

position over a period. It provides important 
information about areas of a protein that deviate 
from the typical structure or show the highest degree 
of flexibility. RMSF is widely used in simulations to 
identify regions of a protein that exhibit significant 
flexibility or rigidity (30). RMSF facilitates the 

evaluation of residue flexibility by helping to identify 
fluctuating regions during simulations, providing 
insight into the ways in which ligand binding affects 
protein flexibility. The formula for computing RMSF is 
shown in the following equation (Equation 4). 
 

𝑅𝑀𝑆𝐹 =  √
1

𝑁
∑ (𝑥𝑖(𝑗) −𝑁

𝐽 (𝑥𝑖))2   (4) 

 

2.4.3. Solvent-accesible surface area (SASA) 
investigation 
Surface area of a biological system that is accessible 
to a solvent is measured by the Solvent-Accessible 
Surface Area (SASA) method. It is usually computed 

using a rolling ball algorithm, which examines the 
molecule's surface using a sphere that represents the 
solvent of a specific radius (31). The transfer of free 
energy needed to move a biomolecule from an 
aqueous solvent to a non-polar solvent, like a lipid 
environment, is frequently computed using SASA. 

SASA analysis is especially essential in the context of 
MD simulations of protein-ligand complexes since it 
is utilized to estimate the non-polar solvation-free 
energy, which is a significant part of the protein-
ligand complex's binding free energy. The biological 
activity of the ligand is influenced by the binding free 

energy, which is a crucial factor in determining the 

binding affinity between the protein and the ligand. 
SASA also sheds light on how a ligand interacts with 
a protein and changes its structure. SASA variations 
show that the protein is going through significant 
structural changes in certain areas, which may have 
an impact on its function. The SASA of the protein-
ligand compound is often evaluated during MD 

simulations at different intervals, providing a real-
time view of how the molecule's solvent accessibility 
changes over time. 
 
2.4.4. Radius of gyration (Rg) assessment 
A molecule or a group of atoms can be evaluated for 

size and structure using the radius of gyration (Rg). 
It offers a view of the molecule's general shape and 
spatial extent by revealing the distribution of mass 

with respect to its center of mass. Rg can be used to 
monitor conformational changes, such as those that 
occur during folding or unfolding events, or to 
characterize the compactness of a molecular 

structure over time (32). By quantifying this 
dispersion, Rg helps characterize the compactness, 
flexibility, and conformational changes of 
macromolecules during the MD simulation. It offers 
important details about the size and shape of 
macromolecules and their dynamics. Mathematically, 
Rg is defined as the root mean square distance of 

each particle from the center of mass in Equation 5.  
 

𝑅𝑔 =  √
1

𝑁
∑ 𝑚𝑖 . 𝑟𝑖

2𝑁
𝑖=1     (5) 

 
3. RESULTS AND DISCUSSION 
 

3.1. Molecular Docking Studies 
3.1.1. Docking validation 
Docking validation was initially completed to verify 
our specified docking methodology. This was 
achieved by removing the native ligand from the 
crystal structure and conducting a molecular docking 
simulation with the same compound, a process 

known as redocking. The original compound 
(depicted in green) was then superimposed with the 
docked compound (shown in blue), and the Root 
Mean Square Deviation (RMSD) value, measuring the 
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difference between these two conformations, was 
determined to be 1.6 Å (Figure 2). 
 

 
Figure 2: Superimposition of the redocked 
PubChem-329823760 (blue) onto its initial 

conformation in the active site of LIMK1 (RMSD: 

1.6Å). 

3.1.2. Docking results 
The main purpose of this analysis is to conduct an 
extensive molecular docking investigation to assess 

the inhibitory potential of 30 candidate drugs against 
the LIMK1 receptor (PDB ID: 5NXC). The binding 
scores of the top 10 ligands, which exhibited the 
highest binding affinity to the macromolecule, are 

presented in Table 1, accompanied by the 2D 
structures of the analyzed ligands. Figure 3, in 
addition, provides a visual representation of the 
binding poses and residue interactions between 
LIMK1 and the best-docked ligand (PubChem-
136621040). Moreover, the binding pose and residue 

interaction of LIMK1 with the native ligand were also 
depicted. Docking scores, binding poses, and residue 
interactions of the remaining 20 virtual hits were 
given in electronic supplementary material in Table 
S5-S6, and Figure S6, respectively.

 
Table 1: Docking scores and 2D structure representations of the top 10 ligands. 

 

PubChem ID 
Docking Scores 

(kcal/mol) 

329823760 (Native ligand) -9.80 
136621040 -10.60 
141609259 -10.10 
136141701 -10.00 
136141741 -10.00 

136141618 -9.80 
135797427 -9.60 
136401905 -9.50 
136622946 -9.50 
136622951 -9.50 
135774110 -9.30 

 

Our findings have revealed that the binding affinities 
of the 30 screened molecules ranged from -5.20 to -
10.60 kcal/mol. Among these 30 virtual hits, docking 
scores of the top 10 compounds were specifically 

selected to evaluate their binding potentials. For the 
top-ranked four ligands, specifically PubChem-
136621040 (-10.60 kcal/mol), PubChem-141609259 
(-10.10 kcal/mol), PubChem-136141701 (-10.00 
kcal/mol), and PubChem-136141741 (-10.00 
kcal/mol), exhibited relatively higher binding 

affinities in comparison with the native ligand 
{PubChem-136621040 (-9.80 kcal/mol)}. In 

addition, PubChem-136141618 (-9.80 kcal/mol) 
showed an identical binding potential with the 
reference ligand. Subsequently, the remaining 
compounds including, PubChem-135797427 (-9.60 

kcal/mol), PubChem-136401937 (-9.60 kcal/mol), 
PubChem-136401905 (-9.50 kcal/mol), PubChem-
136622946 (-9.50 kcal/mol), and PubChem-
13662951 (-9.50 kcal/mol) demonstrated lower 
binding potentials, indicating weaker binding 
interactions with the residues of LIMK1 receptor 

(Figure 3). 
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PubChem-329823760: LIMK1 complex (Native Ligand) || Binding score: -9.80 kcal/mol 

 

PubChem-136621040: LIMK1 complex (Best-docked Ligand) || Binding score: -10.6 kcal/mol 

 
 

Figure 3: Binding poses and residue interactions of the native and the screened ligand with LIMK1 (PDB 

ID: 5NXC). 
 
It is crucial to state that the highest-ranked 
compound that possessed -10.60 kcal/mol has 
shown relatively greater binding affinity among these 
virtual hits in terms of its docking score. Therefore, 

we have also checked the patent status of the 
compound. The findings revealed that the molecule 

had been previously identified in a patent document 
as an inhibitor of checkpoint kinase 1 (CHK-1 or 
p56CHK-1), a member of the kinase family. With 
respect to the binding poses and residue interactions 
of the native ligand LIMK1 complex (PubChem-

329823760), the diazepinoindole subunit of the 
compound was found to interact with a variety of 
amino acid residues, including LEU345, LEU467, 
ALA353, and VAL366. A range of intermolecular 
interactions were identified between the ligand and 
the residues, encompassing hydrogen bond 
interactions, pi-alkyl interactions, and pi-sigma 

interactions. Various hydrogen bond interactions 
were also observed with several residues, namely 
LYS347, LYS368, and ASP478. Our analyzed 
compound, which exhibited the highest docking 
score (PubChem-136321040), demonstrated a 

greater number of residue interactions with the 

LIMK1 receptor. The diazepinoindole fragment of the 
ligand showed a higher degree of residue 
interactions, including various hydrogen bond 
interactions with residues LYS368, THR413, GLU414, 
and ILE416, in addition to pi-alkyl interactions with 
residues ALA353, LEU345, LEU467, and VAL366. 
Other interactions were observed with residues 

LYS347 and ASP478. Hydrogen bond interactions 
were also detected with these two amino acids. 
Additionally, the substitution of the fluorobenzene 
unit in our compound with the cyclohexyl fragment 

present in the structure of the native ligand enabled 
the formation of interactions with an increased 
number of amino acids, including the halogen 
interactions with GLU352 and GLU369. This could 

consequently lead to an increase in the docking score 
of this ligand. 

 
3.2. Prediction of ADMET, Drug-likeness and 
Pharmacokinetic Properties 
3.2.1. SwissADME analysis 
SwissADME server was employed to elucidate the 

pharmacological characteristics of our potential 
inhibitory agents against the LIMK1 receptor. Within 
this context, the results for the top 10 compounds 
were listed in Table 2, whereas the data for the 
remaining 20 compounds can be found in Table S1 in 
the electronic supplementary information (ESI†). 
The evaluation process was guided by Lipinski's rule 

of five. All the compounds demonstrated molecular 
weights under 500 Da, thereby satisfying the set 
benchmark. Furthermore, the analysis of hydrogen 
bond acceptors (HBA) and hydrogen bond donors 
(HBD) was in accordance with the rule of five, 

suggesting the compounds possess desirable drug-

like characteristics. Analysis of the number of 
rotatable bonds (nROTB), highly influencing 
molecular flexibility, revealed that our candidate 
compounds adhered to the ideal pharmaceutical limit 
of 9. Importantly, all candidate compounds exhibited 
topological polar surface area (TPSA) values that 
were below the threshold of 140 Å², which is 

indicative of favorable drug absorption potential. 
Therefore, the majority of our candidate compounds 
demonstrated a high potential for gastrointestinal 
absorption. However, four compounds, namely 
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PubChem-136401905, PubChem-135774106, 
PubChem-136181657, and PubChem-135794603, 
were exceptions to this trend. Consensus logPo/w was 

also assessed to evaluate lipophilicity, and all the 
molecules that ranged from -0.79 to 3.69 showed the 
desired values that obey Lipinski's rule.

 
Table 2: ADME Results of the top 10 candidate pharmaceuticals possessing the highest docking scores. 

PubChem ID 
aMW 
(Da) 

bHBA cHBD dnROTB 
eTPSA 
(Å2) 

fGI 
abs. 

gBBB hclogPo/w Sol. 
Viola-
tion 

329823760 419.48 5 4 5 134.48 High No 2.85 PS 0 

136621040 465.87 6 4 6 120.49 High No 2.54 S 0 

141609259 347.32 4 4 3 115.05 High No 2.39 MS 0 

146582701 262.29 3 4 3 115.34 High No 0.57 S 0 

136141741 420.51 5 5 5 128.69 High No 2.22 S 0 

136141618 373.84 4 4 4 116.66 High No 2.54 S 0 

135797427 418.49 4 4 5 121.59 High No 2.56 S 0 

136401905 459.50 5 5 7 139.97 Low No 3.19 MS 0 

136622946 453.92 5 4 6 120.49 High No 2.58 MS 0 

136622951 453.92 5 4 6 120.49 High No 2.45 MS 0 

135774110 367.44 4 4 5 116.66 High No 2.61 S 0 

Lipinski’s Rule: aMW≤500g/mol, bHBA≤10, cHBD≤5, dnROTB≤9 eTPSA≤140Å², fclogPo/w≤5 
Abbreviations: aMW: Molecular Weight, bHBA: Hydrogen Bond Acceptor, cHBD: Hydrogen Bond Donor, 
dnROTB: Number of Rotatable Bonds, eTPSA: Topological Polar Surface Area, fGI abs: Gastrointestinal 
absorption gBBB: Blood-brain Barrier Permeability, hclogPo/w: Consensus hclogPo/w, IS: Insoluble, 𝑃𝑆: 

Poorly Soluble, 𝑀𝑆: Moderately Soluble, 𝑆: Soluble, 𝐻𝑆: Highly Soluble. 

 

Among these parameters, the descriptor that 
assesses blood-brain barrier permeability (BBB) that 
determines whether the investigated compounds 
permeate the central nervous system (CNS) plays a 
critical role in the development of novel drug 
molecules against Alzheimer's Disease. It was 
deduced from SwissADME findings that our screened 

candidates possessed no BBB permeability. Given 
that these initial calculations did not yield definitive 
results, particularly in terms of quantifying BBB 
permeability, we intended to elucidate the CNS 

permeability of our using additional in silico 
platforms, which were discussed in the following 
section. 

We have also employed the BOILED-Egg (Brain or 
Intestinal Estimated Permeation) graphical tool, 
integrated within the SwissADME platform, to 
evaluate the passive permeability of the blood-brain 
barrier, represented by the yellow region, and the 
passive gastrointestinal absorption (HIA), 
represented by the white region. These assessments 

are based on the positioning of the molecules, 
calculated using the total area of the WLOGP versus 
TPSA (Wildman & Crippen, 1999). The BOILED-Egg 
representation of our analyzed pharmaceuticals is 

given in Figure 4. 

 

 
Figure 4: BOILED-EGG representation: Prediction of passive gastrointestinal absorption and passive brain 

penetration of candidate molecules. 
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The prediction of P-glycoprotein (P-gp) substrates is 
crucial, as it is the primary active efflux mechanism 
implicated in various biological barriers, including the 

blood-brain barrier. This could be visually 
represented and evaluated through a color-coded 
graphical depiction. Passive absorption is indicated 
by the positioning within or outside the white zone, 

while passive brain access is denoted by the 
positioning within or outside the yellow region. The 
active efflux from the central nervous system or into 
the gastrointestinal lumen is represented by color-
coding: blue dots for P-gp substrates (PGP+) and red 
dots for non-P-gp substrates (PGP−). From the 

graphical representation, it is evident that the 
majority of our molecules, including PubChem-
329823760 (the reference ligand) and PubChem-
136621040 (which has the highest docking score 
against the receptor), are located within the white 
region of the egg. This suggests that the 
gastrointestinal system could passively absorb these 

compounds. 
 
Conversely, several compounds, namely PubChem-
136181657, PubChem-136401905, PubChem-
141608268, and PubChem-135794603, were unable 
to traverse the gastrointestinal system passively. As 
a result, no passive permeation of the BBB was 

observed with our candidate compounds. 
Interestingly, compounds denoted as blue dots 
(PGP+) have successfully crossed the central nervous 
system actively, while those denoted with red dots 
(PGP-) were unable to permeate the CNS actively. 
Excluding PubChem-136141675, PubChem-

79013386, PubChem-65813383, PubChem-
146582701, PubChem-143275306, and PubChem-
136401905, our compounds have successfully 

crossed the CNS, including our best-docked 
compound (PubChem-136621040) and the native 
ligand. 

 
Bioavailability radars serve as valuable tools for 
visually presenting computed physicochemical and 
pharmacological attributes of potential drug 

candidates concerning oral drug characteristics, 
offering insights into their potential oral 
bioavailability. These radars depict parameters 
including lipophilicity (LIPO), molecular weight 
(SIZE), polarity (POLAR), insolubility (INSOLU), 
unsaturation (INSATU), and flexibility (FLEX). Figure 

5 illustrates the bioavailability radars of a reference 
ligand (PubChem-329823760) and the ligand 
exhibiting the highest binding affinity (PubChem-
136621040) against LIMK1. Parameters crucial for 
the oral bioavailability of our lead molecule, 
characterized by the highest docking score, fell 
within the desired range except for saturation in 

comparison to the reference ligand. Saturation, 
delineated by the proportion of carbons in sp3 
hybridization within the molecule, ideally falls 
between 0.25 and 1. 
 
However, a saturation value of 0.09 was observed for 
our compound, resulting in a deviation from the 

designated pink hexagonal region. Radar 
representations of other scrutinized ligands are 
available in the supplementary material (ESI†). 
These radar plots similarly indicate that the oral 
availability potential of these candidate molecules 
conforms to an ideal trend, falling within the pink 

hexagonal area, except for PubChem-136141701, 
where the saturation value deviates from the ideal, 
akin to the highest-docked compound. 

 

 
Figure 5: Bioavailability radar representations and structures of the native ligand and best-docked 

compound. 
 

3.2.2. PreADMET calculations 
Our findings showed that most of the candidate 
pharmaceuticals exhibited substantial absorption 

capabilities through the central nervous system 
(CNS) and, consequently, the blood-brain barrier 
(BBB), with values ranging from 0.01 to 0.35. The 
native ligand, in comparison, showed a relatively 

lower absorption with a BBB value of 0.12. Notably, 
our top-docked compound demonstrated a BBB value 
of 0.20, indicating its high absorption potential 
through the BBB. We have also evaluated the passive 
gastrointestinal absorption, denoted as HIA, and 
plasma-protein binding (PPB) capacities of our 

compounds. The majority of compounds exhibited 
over 70% passive absorption through the 
gastrointestinal system except PubChem-143275306 

(44.70%), PubChem-107728922 (46.96%), and 
PubChem-107728896 (49.31%). Specifically, 
PubChem-136621040 (the best-docked molecule) 
displayed an impressive HIA value of 89.50%, while 

the native ligand (PubChem-136621040) had a value 
of 82.70%. The PPB capacities of our compounds 
varied from 0.00% to 92.24%. Our compound 
demonstrated a significantly higher plasma-protein 
binding capacity (88.00%) compared to the native 
ligand, which had a value of 50.95% (Table 3). 
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Table 3: Various ADME profiles of the top 10 compounds with the highest binding affinities. 

PubChem ID BBBa ([brain]/[blood]) HIAc (%) PPBe (%) 

329823760 0.12 82.70 50.95 

136621040 0.20 89.50 88.00 

141609259 0.04 90.80 78.70 

146582701 0.53 87.11 87.29 

136141741 0.15 78.64 28.05 

136141618 0.22 83.67 46.55 

135797427 0.27 85.50 64.53 

136401905 0.34 83.45 84.98 

136622946 0.35 87.75 86.05 

136622951 0.30 87.74 82.83 

135774110 0.29 80.76 56.29 

Abbreviations: aBBB: Blood-brain barrier, cHIA: Passive gastrointestinal absorp-
tion, ePPB: Plasma-protein binding 
The rule for BBB permeability: <0.1 low absorption by CNS, between 0.1 and 
0.2 moderate absorption, >0.2 high absorption 

 

3.2.3. OSIRIS property explorer analysis 
Toxicity risk factors of the compounds, including 

mutagenicity, tumorigenicity, skin irritability, and 
reproductive effectiveness, were evaluated using 
OSIRIS software. Additionally, the studied ligands' 
drug-likeness characteristics and drug scores were 
assessed to assess the compounds further, and the 
results of the top 10 compounds possessing the 

highest docking scores were illustrated in Table 4. 
The results of the remaining screened candidates 
were provided in Table S2 in the electronic 
supplementary information (ESI†). 
 
In the context of mutagenicity assessment, select 
compounds, namely PubChem-136621040, 

PubChem-136622946, PubChem-136622951, 
PubChem-135774106, and PubChem-135794603, 

demonstrated moderate toxicity, while PubChem-
141609259, PubChem-136141701, PubChem-
136401905, and PubChem-146582701 exhibited 
high toxicity. Conversely, the remaining ligands 
exhibited negligible toxicity. Remarkably, the initial 

18 ligands, characterized by the highest binding 
affinities, displayed significant tumorigenic potential, 
contrasting with the absence of toxicity indications in 

other ligands. Moreover, PubChem-136141701, 
PubChem-136401905, and PubChem-141608268 

exhibited notable irritancy and reproductive toxicity, 
while others showed minimal to no such effects. 
Regarding drug-likeness (d), the compound with the 
best binding score (PubChem-136621040) 
showcased the highest value at 7.46, surpassing the 
reference ligands' 1.34, with other ligands ranging 

from -52.96 to +4.07. Notably, most investigated 
ligands exhibited superior drug-likeness compared to 
the reference. Additionally, drug-score values, which 
is another mathematical approach used to calculate 
pharmacological features of the studied compounds, 
ranged from 0.05 to 0.78. 
 

3.2.4. Molinspiration studies 
Bioactivity scores and pharmacological aspects of the 

compounds were also investigated using the 
Molinspiration Property Calculation tool. Table 5 
presents the bioactivity scores of the ligands, and 
drug-likeness analysis results are listed in Table 6. 
The remaining results were tabulated in the 

electronic supplementary information (ESI†) in Table 
S5 and Table S6. 

 
Table 4: Toxicity results of the studied candidates. 

PubChem ID Mut Tum Irr. Rep. E. d ds 

329823760     +1.34 0.33 

136621040     +7.46 0.27 

141609259     -2.64 0.12 

136141701     +0.55 0.05 

136141741     +0.85 0.32 

136141618     +0.50 0.31 

135797427     +1.24 0.33 

136401905     +3.26 0.05 

136622946     +3.74 0.25 

136622951     +4.07 0.28 

135774110     +0.68 0.32 

Abbreviations: Mut: Mutagenic, Tum: Tumorigenic, Irr: Irritation, Rep. E: 
Reproductive effectiveness, d: Drug-likeness, ds: Drug Score 

 No detectable toxicity  Moderate toxicity  High toxicity 
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Table 5: Bioactivity calculations against several receptors of the top 10 molecules with the best docking 
scores. 

PubChem ID GPCR ICM KI NRL PI EI 

329823760 0.04 -0.14 0.40 -0.88 -0.04 0.19 

136621040 -0.12 -0.30 0.29 -0.72 -0.38 -0.02 

141609259 -0.03 -0.25 0.05 -0.20 -0.14 0.04 

136141701 0.05 -0.03 0.31 -0.52 0.05 0.23 

136141741 0.20 0.09 0.34 -0.51 0.07 0.31 

136141618 0.10 0.04 0.31 -0.67 0.07 0.25 

135797427 0.14 -0.03 0.51 -0.41 -0.08 0.34 

136401905 0.13 0.00 0.19 -0.40 0.15 0.25 

136622946 -0.04 -0.17 0.28 -0.81 -0.23 0.07 

136622951 0.17 0.04 0.45 -0.44 -0.01 0.35 

135774110 -0.02 -0.06 0.22 -0.67 -0.01 0.20 

Abbreviations: GPCR: G protein-coupled receptor ligands, ICM: Ion 
Channel Modulator, KI: Kinase Inhibitor, NRL: Nuclear Receptor Ligand, 
PI: Protease Inhibitor, EI: Enzyme Inhibitor 

 
Various bioactivity descriptors were effectively 
computed using the Molinspiration platform, 

including G protein-coupled receptor ligands 
(GPCRL), ion-channel modulators (ICM), kinase 
inhibitors (KI), nuclear receptor ligands (NRL), 
protease inhibitors (PI), and enzyme inhibitors (EI). 
As discussed, a bioactivity score exceeding 0.00 
denotes significant bioactivity, while values within 

the range of -0.50 to 0.0 indicate moderate 
bioactivity, and those below -0.50 indicate a lack of 
bioactivity. The GPCR inhibitory activity values for 
these compounds ranged from -0.12 to +0.46, 
demonstrating bioactivity levels ranging from 
moderate to significant. Similarly, ICM values varied 
from -0.30 to +0.24, indicating moderate or 

significant bioactivity against ion-channel 
modulators. NRL capabilities were relatively lower 

compared to other descriptors, with values ranging 
from -0.92 to -0.01, suggesting either a lack of 
bioactivity or moderate bioactivity for certain 
compounds. Protease and enzyme inhibitory activity 
also ranged from moderate to high, with values 
spanning from -0.38 to +0.48 and -0.02 to +0.48, 

respectively. Notably, kinase inhibition capability 
emerged as the most crucial descriptor for our 
investigated candidates, with the top 10 compounds 
effectively inhibiting kinase proteins, including LIM 
kinase proteins, with values ranging from -0.66 to 
+0.51.

 

Table 6: ADME Assessments of the top 10 ligands having the highest docking score. 

PubChem 

ID 

mi-

LogPa 
TPSAb nAtomsc nONd nOHNHe nROTBf 

Vol-

ume 

Viola-

tion 

329823760 1.25 134.49 31 9 5 4 375.50 0 

136621040 2.21 120.50 33 9 4 5 376.50 0 

141609259 2.60 115.05 26 7 4 2 290.78 0 

136141701 2.87 116.67 31 7 5 4 377.73 0 

136141741 1.24 128.69 31 8 6 4 385.70 1 

136141618 2.00 116.67 26 7 5 3 319.86 0 

135797427 1.78 121.60 31 8 5 4 379.66 0 

136401905 4.82 139.97 34 9 5 5 405.85 0 

136622946 2.74 120.50 32 9 4 5 390.15 0 

136622951 2.30 120.50 32 9 4 5 390.15 0 

135774110 2.00 116.67 27 7 5 4 339.69 0 

Abbreviations: amilogP: Partition coefficient between n-octanol and water (logPo/w), bTPSA: Top-
ological polar surface area, cnAtoms: Number of atoms, dnON: Number of hydrogen bond accep-
tors (HBA), enOHNH: Number of hydrogen bond donors (HBD), fnROTB: Number of rotatable 
bonds 

 
Likewise, ADME analyses were conducted using the 

Molinspiration platform to corroborate the previous 
findings obtained from OSIRIS and SwissADME. Thus 
far, parameters including Hydrogen Bond Acceptors 
(HBA), Hydrogen Bond Donors (HBD), and the 
number of Rotatable Bonds (nROTB) have been 

determined to adhere to Lipinski's rule, indicating 

favorable drug-likeness. Furthermore, the lipophilic 
characteristics of the candidate compounds, 
assessed through milogP values, were within the 
prescribed range, with all compounds falling below 
the upper limit of milogP (5), thereby aligning with 
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Lipinski's rule. This comprehensive evaluation 
underscores the compatibility of the identified hits 
with established criteria for drug development, 

further validating their potential as viable therapeutic 
candidates. 
 
3.2.5. Syntelly calculations 

Several toxicity characteristics of our candidate 
pharmaceuticals were assessed through the Syntelly 
platform, an online AI-powered compound 
characterization tool. In this scope, mouse oral LD50, 
hepatotoxicity, cardiotoxicity, and carcinogenicity 
characteristics of our investigated compounds were 

calculated. The findings suggest that the LD50 values 
of our target molecules ranged from 745 to 2320 
mg/kg. The compound PubChem-141609259 

exhibited the highest LD50 value, indicating 
relatively lower toxicity in mice. The compound with 
the highest docking score exhibited an LD50 value of 
784 mg/kg, compared to the native ligand's LD50 

value of 920 mg/kg. All the investigated compounds 
showed signs of reproductive toxicity, but none 
displayed cardiotoxicity. The top-docked 
conformation was found to be hepatotoxic; however, 
no signs of carcinogenicity were observed (Table 7). 

 
Table 7: Toxicity assessments of the investigated compounds. 

PubChem ID 
M.O LD50 

(mg/kg) 
Rep. 
Tox. 

Hpt. Crd. Crn. Tox Phys Bio Eco 

329823760 920.00 T NT NT NT 
    

136621040 784.00 T T NT NT 
    

141609259 2320.00 T T NT NT 
    

136141701 946.00 T NT NT NT 
    

136141741 650.00 T NT NT NT 
    

136141618 1280.00 T NT NT NT 
    

135797427 1040.00 T NT NT NT 
    

136401905 2130.00 T T NT NT 
    

136622946 796.00 T NT NT NT 
    

136622951 847.00 T T NT NT 
    

135774110 745.00 T NT NT T     
Abbreviations: M.O. LD50: Mouse oral LD50, Rep. Tox: Reproductive toxicity, Hpt: Hepatotoxicity, Crd: 
Cardiotoxicity, Crn: Carcinogenicity, T: Toxic, NT: Non-toxic, logBB: Logarithmic value of blood-brain 
barrier permeability 

 
3.3. Molecular Dynamics Simulations 

Molecular dynamics simulations were implemented 
utilizing GROningen Machine for Chemical 
Simulations (GROMACS) 2023.3 software package to 
investigate the binding stability of the selected 

complexes during the simulation. In this scope, MD 
simulations of PubChem-329823760: LIMK1 (native 

ligand: LIMK1) and PubChem-136321040: LIMK1 
(best-docked compound: LIMK1) complexes were 
carried out to analyze the binding stabilities during 
the simulation better. For this reason, root mean 
square deviation (RMSD), root mean square 
fluctuation (RMSF), solvent-accessible surface area 
(SASA), and radius of gyration (Rg) analyses were 

calculated using the trajectories and corresponding 
graphs were illustrated in Figure 6-9. 
 

3.3.1. Root mean square deviation (RMSD) analysis 

In the evaluation RMSD results, the complex 
PubChem-329823760: LIMK1 exhibited an average 
RMSD value of 0.31 nm, while the apo form 
registered an average of 0.29 nm. Minor fluctuations 

were observed in both the complex and the apo form 
in the interval from 10 ns to 25 ns. A notable 

fluctuation was discerned in the complex around the 
40th ns, with an RMSD value approximating 0.50 nm. 
Concurrently, the apo form was found to be more 
stable than the complex, with its fluctuation ranging 
between 0.20 and 0.30 nm. Post the 40 ns mark, 
both the complex and the apo form were observed to 
attain relative stability, which was maintained 

throughout the remaining duration of the simulation 
(Figure 6). 

  
Figure 6: RMSD trajectory plots of PubChem-329823760: LIMK1 (native ligand) and PubChem-

136321040: LIMK1 (best-docked) complexes with their corresponding Apo forms. 
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Additionally, the complex, including our target 
compound, exhibited an average RMSD value of 0.23 
nm, while the apo form of this complex showed an 

RMSD of 0.26 nm. This could be interpreted as a sign 
of the relative stability of our screened candidate 
during the MD simulation in the binding site of LIMK1. 
In the initial 25 ns, a slight fluctuation was observed 

in both the complex and the apo form. During these 
stages, the complex demonstrated a slightly more 
substantial fluctuation. However, stability was 
observed to be achieved subsequent to the 30 ns 
threshold. The apo form did not present any 
significant fluctuations, and a state of equilibrium 

was sustained in the system for the remainder of the 
simulation period. 
 
3.3.2. Root mean square fluctuation (RMSF) analysis 
The computation of RMSF for the trajectories of the 
complexes PubChem-329823760: LIMK1 (native 

ligand) and PubChem-136321040: LIMK1 (best-
docked) is depicted in Figure 7. This illustration 
provides insight into the adaptability of the 

respective ligands within the receptor network and 
the mobility of residues within the LIMK1 
macromolecule's binding site. A lower RMSF 
fluctuation is typically indicative of a flexible complex 

characterized by a rigid protein secondary structure, 
while a higher RMSF value suggests a relatively 
weaker bonded structure. The application of Cα 
atoms facilitated a more comprehensive 
understanding of each residue's average position. 
The RMSF value for the complex with the native 

ligand (PubChem-329823760: LIMK1) was 
determined to be approximately 0.12 nm, while the 
average RMSF for the highest-ranked complex 
(PubChem-136321040: LIMK1) was found to be 0.10 
nm (Figure 7). 

 

  
 
Figure 7: Cα RMSF plots of PubChem-329823760: LIMK1 (native ligand) and PubChem-136321040: LIMK1 

(best-docked) complexes. 

 
In the residue number range of approximately 350 to 
450, substantial fluctuations were observed. 
Specifically, a significant peak of about 0.45 nm was 

discerned around residues 375 and 400, suggesting 
an enhanced interaction between the native ligand 
and these residues. Minor peaks, each approximately 
0.15 nm, were identified between residues 425 and 
450. Another peak of note was also identified around 
residues 520 and 525, with an approximate value of 

0.25 nm. Additionally, a series of minor residue 
fluctuations were detected in the range from 550 to 
650 residue numbers, most of which were around 
0.10 nm. 
 
A comparatively lower RMSF value with minor peaks 
was noted for the top-ranked ligand (PubChem-

136321040: LIMK1). Specifically, more subtle 
fluctuations were observed between residue 
numbers 350 and 450, in contrast to the complex 
with the native ligand. Two similar peaks were also 
detected around residues 425 and 450. For these 
complexes, relatively higher fluctuations were 
observed in the range of 500 to 650, with various 

peaks at residues 525, 550, and 610 with an RMSF 
value of 0.20 nm and a minor fluctuation around 
residue 580 at approximately 0.10 nm. 
 
 

3.3.3. Solvent-accessible surface area (SASA) 
calculation 
Solvent Accessible Surface Area is a measure of the 

surface area of a protein-ligand complex that is 
directly engaged in interactions with solvent 
molecules. An increase in SASA values implies a 
more unfolded or open conformation, signifying a 
higher degree of exposure to the solvent (33). During 
75 ns MD simulation, the average SASA values of the 

complexes PubChem-329823760: LIMK1 (native 
ligand) and PubChem-136321040: LIMK1 (best-
docked) were observed. The native ligand LIMK1 
complex displayed an average SASA value of 
approximately 150.80 nm², while the best-docked 
compound, LIMK1, exhibited a nearly identical 
average value of 150.20 nm². Notably, the complex 

containing the native compound demonstrated 
relatively more stability during the first 40 ns. 
 
In contrast, the fluctuation of the complex with the 
best-docked compound slightly decreased between 
30 and 50 ns. Both complexes showed nearly 
identical fluctuations until the end of the trajectories. 

Minor fluctuations were noted in the trajectory of the 
PubChem-136321040: LIMK1 complex between 50 
and 75 ns. These comprehensive SASA analyses 
suggest that both complexes interacted with a similar 
quantity of solvents throughout the MD simulation 
(Figure 8). 
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Figure 8: SASA trajectories of PubChem-329823760: LIMK1 (native ligand) and PubChem-136321040: 

LIMK1 (best-docked) complexes. 
 
3.3.4. Radius of gyration (Rg) analysis 

The calculation of the radius of gyration was 
employed to assess the compactness and rigidity of 
the macromolecule throughout the MD simulation. 
The trajectories of Rg versus time for our complexes 
are depicted in Figure 9. The average Rg values were 
determined to be 2.06 nm and 2.04 nm for the 
PubChem-329823760: LIMK1 and PubChem-

136321040: LIMK1 complexes, respectively. In the 

initial 20 ns, both complexes exhibited a similar 
trend, indicative of the molecule's stable 
compactness at the onset of the simulation. 
Subsequently, the fluctuation of the native 
compound complex increased from approximately 
2.05 nm to 2.10 nm between 30 and 40 ns. 

 

 
Figure 9: Radius of gyration graphs of PubChem-329823760: LIMK1 (native ligand) and PubChem-

136321040: LIMK1 (best-docked) complexes. 

 
In comparison, the fluctuation of the complex 
containing our candidate compound slightly 
decreased from 2.05 nm to around 2.00 nm from 30 
ns to 45 ns before this trend slightly increased again 
and reached equilibrium from 55 ns to 75 ns. The 
native ligand-LIMK1 complex achieved equilibrium 

after a significant fluctuation at about 45 ns and 

maintained its stability for the duration of the 
simulation. It could be deduced from both complexes 
that these protein systems maintained their rigidity 
during the simulation, based on the average results, 
as discussed above. 
 

4. CONCLUSION 
 
In this study, we successfully identified several 
candidate compounds possessing the inhibitory 
potential against LIM domain kinase 1 receptor, 
playing a pivotal role in Alzheimer's Disease (AD). 

PubChem database through Pharmit server was 
utilized to conduct pharmacophore-based virtual 
screening to determine similar structures. 419 
compounds were discovered at initial, and 29 hit 
compounds were identified by applying 
pharmacophore filter and Lipinski’s filter. 

 

 PubChem-136621040 stood out as particularly 
promising, exhibiting not only a high binding affinity 
but also favorable pharmacokinetic and ADMET 
profiles, as evidenced by comprehensive in silico 
analyses encompassing molecular docking, dynamic 
simulations, and ADMET predictions. 

 
The docking results corroborated the compound's 
superior binding affinity for LIMK1 relative to the 
native ligand, as indicated by a significantly elevated 
docking score, thereby highlighting its potential as a 
highly effective inhibitor. The 75 ns MD simulations 
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offered detailed insights into the interactions 
between the LIMK1 enzyme and the identified 
inhibitors. RMSD analysis revealed that PubChem-

136621040 maintained a lower average RMSD value 
of 0.23 nm compared to the native ligand's 0.31 nm, 
indicating a stable interaction throughout the 
simulation. RMSF analysis further corroborated these 

findings, showing that PubChem-136621040 had a 
lower average RMSF value, suggesting a stable and 
consistent interaction with key residues within the 
LIMK1 binding site. The SASA and radius of gyration 
(Rg) analyses offered further understanding of the 
dynamic behavior of the ligand-enzyme complexes. 

The SASA values, approximately 150 nm² for both 
the native ligand and PubChem-136621040, 
suggested stable solvation properties during the 
simulation. Concurrently, the Rg analysis revealed 
that both complexes preserved their structural 
integrity and compactness, with PubChem-
136621040 exhibiting a modest increase in rigidity 

relative to the native ligand. 
 
These findings will enhance the expanding research 
on LIMK1 inhibitors for Alzheimer's disease 
treatment and set the stage for subsequent in vitro 
and in vivo validation studies, structure-activity 
relationship analyses, and investigations into 

potential synergistic effects with other AD therapies. 
This study exemplifies the effectiveness of combining 
various computational approaches in drug discovery 
and establishes a robust basis for the development 
of innovative therapeutic strategies for AD. 
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