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ABSTRACT

Supposing that the Ricci curvature has an appropriate lower bound and applying suitable
maximum principles, we establish triviality results which guarantee that a gradient Bach soliton
must be trivial and Bach-flat. Our approach is based on three main cores: convergence to zero at
infinity, polynomial volume growth (both related to complete noncompact Riemannian manifolds)
and stochastic completeness.
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1. Introduction

Given an n-dimensional Riemannian manifold (Mn, g), with n ≥ 4, the Bach tensor, which was introduced by
Bach in [4] to study conformal geometry in early 1920’s, is the symmetric and trace-free tensor defined as

Bij =
1

n− 3
∇k∇lWikjl +

1

n− 2
RklWikjl, (1.1)

where Wikjl is the Weyl tensor, which is given by

Wikjl = Rikjl −
1

n− 2
(gijRkl − gilRkj − gkjRil + gklRij) +

R

(n− 1)(n− 2)
(gijgkl − gilgkj).

When n = 4, the Bach tensor is conformally invariant of weight 1, but it is not conformally invariant in any other
dimension (see, for instance, [12]). Moreover, it is not difficult to see that if (Mn, g) is either locally conformally
flat (that is, Wikjl = 0) or Einstein, then (Mn, g) is Bach-flat, which means that Bij = 0. From a physics point
of view, the Bach tensor B arises in the theory of conformal gravity, where instead of Einstein’s equation one
arrives at the Bach equation Bµν = κTµν by varying the Weyl-squared action with respect to the metric tensor.
Conformal gravity has been extensively studied; for more details see, for instance, [24, 25].

In 2012, Das and Kar [9] investigated several aspects of a geometric flow defined using the Bach tensor, the
so-called Bach flow. The equation of Bach flow is given by

∂

∂t
gij = −Bij . (1.2)

Given a smooth vector field X on an n-dimensional Riemannian manifold (Mn, g), with n ≥ 4, we say that
(Mn, g,X) is a Bach soliton if it is a self-similar solution of the Bach flow (1.2), which means that it satisfies the
equation

Bij +
1

2
LXgij = λgij , (1.3)

where L denotes the Lie derivative, λ is a constant and Bij is the Bach tensor defined in (1.1).
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Here, we are interested when the vector field X is gradient, that is, X = ∇f for some smooth potential function
f : Mn → R. In this case, (Mn, g, f) is said a gradient Bach soliton and equation (1.3) reads as follows

Bij +∇i∇jf = λgij .

If the potential function is constant, then the gradient Bach soliton (Mn, g, f) is called trivial.
In [20], Ho studied the solitons to the Bach flow and, in particular, he showed that any compact gradient

Bach soliton must be Bach-flat. In the noncompact case, Ho proved the existence of non-trivial gradient solitons
to the Bach flow. Furthermore, Ho investigated the Bach flow on a four-dimensional Lie group, in which he
considered the convergence of the Bach flow. More recently, Shin [29] proved that, under a finite weighted
Dirichlet integral condition, any complete noncompact gradient Bach soliton with harmonic Weyl curvature
(which means that the divergence of W vanishes) is Bach-flat. In particular, he also studied complete four-
dimensional gradient Bach solitons. Afterwards, the first and second authors joint with Mi [7] improved Shin’s
results by assuming Ric(∇f,∇f) ≥ 0 instead of harmonic Weyl curvature.

Going a step further, here we establish new characterization results which guarantee that a gradient Bach
soliton must be trivial and Bach-flat, under the assumption that such a soliton is either complete noncompact
or stochastically complete. For this, we also suppose an appropriate lower bound on the Ricci curvature in
the direction of ∇f . Our approach is based on three main cores: convergence to zero at infinity, polynomial
volume growth (both related to complete noncompact Riemannian manifolds) and stochastic completeness.
These cores are motivated by the maximum principles developed in the works of Alías, Caminha and
Nascimento [1, 2] and Pigola, Rigoli and Setti [26, 27].

2. Statements of the main results

This section is devoted to quote the statements of our main results according to the analytical machinery that
we use to establish them.

2.1. Via convergence to zero at infinity

Let (Mn, g) be a complete noncompact Riemannian manifold and let d( · , x0) : M
n → [0,+∞) denote the

Riemannian distance of Mn, measured from a fixed point x0 ∈ Mn. According to [1], we say that a continuous
function u ∈ C0(M) converges to zero at infinity, when it satisfies the following condition

lim
d(x,x0)→+∞

u(x) = 0.

Taking into this terminology, we obtain the following result:

Theorem 2.1. Let (Mn, g, f) be a complete noncompact gradient Bach soliton, whose Ricci curvature satisfies
Ric(∇f,∇f) ≥ 0. If |∇f | converges to zero at infinity, then (Mn, g, f) must be trivial and Bach-flat.

Let us observe that if the Weyl curvature tensor is harmonic then Ric(∇f, ·) = 0 (see [29, Lemma 2.1]).
Consequently, from Theorem 2.1 we derive the following consequence, also obtained in [8, Corollary 5.3]:

Corollary 2.1. Let (Mn, g, f) be a complete noncompact gradient Bach soliton with harmonic Weyl curvature. If |∇f |
converges to zero at infinity, then (Mn, g, f) must be trivial and Bach-flat.

2.2. Via polynomial volume growth

Let (Mn, g) be a connected, oriented, complete noncompact Riemannian manifold. We denote by B(p, r) the
geodesic ball centered at p and with radius r. Given a polynomial function σ : (0,+∞) → (0,+∞), we say that
(Mn, g) has polynomial volume growth like σ(t) if there exists p ∈ Mn such that

V(B(p, r)) = O(σ(r)),

as r → +∞, where V denotes the volume related to the metric g. As it was observed in the beginning of [2,
Section 2], if p, q ∈ Mn are at distance d from each other, we can verify that

V(B(p, r))

σ(r)
≥ V(B(q, r − d))

σ(r − d)
.
σ(r − d)

σ(r)
.
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So, the choice of p in the notion of volume growth is immaterial. For this reason, we will just say that (Mn, g)
has polynomial volume growth.

Keeping in mind this previous digression, in the next result we obtain Bach-flat metrics by assuming that
the norm of the gradient and of the Hessian of the potential function f are bounded, via a maximum principle
related to polynomial volume growth due Alías et al. [2, Theorem 2.1.].

Theorem 2.2. Let (Mn, g, f) be a complete noncompact gradient Bach soliton, whose Ricci curvature satisfies
Ric(∇f,∇f) ≥ α|∇f |2, for some positive constant α. If (Mn, g) has polynomial volume growth and |∇f |, |∇2f | ∈
L∞(M), then (Mn, g, f) must be trivial and Bach-flat.

2.3. Via stochastic completeness

We recall that a (non necessarily complete) Riemannian manifold (Mn, g) is said to be stochastically complete if,
for some (and, hence, for any) (x, t) ∈ Mn × (0,+∞), the heat kernel p(x, y, t) of the Laplace operator ∆ satisfies
the conservation property ∫

M

p(x, y, t)dµ(y) = 1. (2.1)

From the probabilistic viewpoint, stochastic completeness is the property of a stochastic process to have
infinite life time. For the Brownian motion on a manifold, the conservation property (2.1) means that the total
probability of the particle to be found in the state space is constantly equal to one (see [11, 16, 17, 30]).

A weaker version of the Theorem 2.2 without asking the hypotheses |∇2f | ∈ L∞ and polynomial volume
growth can be obtained by assuming stochastic completeness.

Theorem 2.3. Let (Mn, g, f) be a stochastically complete gradient Bach soliton, whose Ricci curvature satisfies
Ric(∇f,∇f) ≥ α|∇f |2, for some positive constant α. If |∇f | ∈ L∞(M), then (Mn, g, f) must be trivial and Bach-flat.

It is not difficult to verify that from [3, Theorem 2.13] (see also [28, Theorem 2.3]) jointly with Theorem 2.3
we get:

Corollary 2.2. Let (Mn, g, f) be a complete noncompact gradient Bach soliton, whose Ricci curvature satisfies
Ric(∇f,∇f) ≥ α|∇f |2, for some positive constant α, and such that Ric ≥ −G(r), for a function G ∈ C1([0,+∞))
obeying

G(0) > 0, G′ ≥ 0 and G−1/2 ̸∈ L1([0,+∞)),

where r denotes the Riemannian distance function from a fixed origin in Mn. If |∇f | ∈ L∞(M), then (Mn, g, f) must be
trivial and Bach-flat.

We recall that a (non necessarily complete) Riemannian manifold (Mn, g) is said to be parabolic (with respect
to the Laplacian operator) if the constant functions are the only subharmonic functions on Mn which are
bounded from above, that is, for a function u ∈ C2(M)

∆u ≥ 0 and u ≤ u∗ < +∞ implies u = constant.

It is well known that every parabolic Riemannian manifold is stochastically complete (see [17, Corollary
6.4]). Obviously, every closed Riemannian manifold Mn is parabolic, where by closed we mean compact and
without boundary. Moreover, there are several interesting geometric conditions which imply the parabolicity
of a Riemannian manifold Mn. As it was observed in [19], when Mn is a complete Riemannian manifold, we
can state sufficient conditions for parabolicity and stochastic completeness in terms of the volume function
V (r) = V (B(x0, r)), where B(x0, r) is the geodesic ball of radius r centered at a fixed point x0 ∈ Mn. Namely,
the following implications are true:∫ ∞

r0

rdr

V (r)
= +∞ ⇒ Mn is parabolic, (2.2)

∫ ∞

r0

rdr

log V (r)
= +∞ ⇒ Mn is stochastically complete. (2.3)

For instance, V (r) ≤ Cr2 and V (r) ≤ exp(Cr2) will imply the volume conditions in (2.2) and (2.3), respectively.
Cheng and Yau in [6] proved that V (r) ≤ Cr2 is a sufficient condition for parabolicity. The sharp
sufficient condition (2.2) for parabolicity was proved by several authors in [14], [15], [22] and [33]. Several
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authors [10], [21], [23], [32] showed that V (r) ≤ exp(Cr2) is a sufficient condition for stochastic completeness
(see also an earlier result [13]), and the sharp result (2.3) was obtained in [15] (see [18] and [31] for its
extensions). For a model manifold with pole at x0, both the parabolicity and stochastic completeness can be
characterized solely in terms of the function V (r) and its derivative (see [17] and [5]).

Motivated by this previous discussion, we quote the following consequence of Theorem 2.3:

Corollary 2.3. Let (Mn, g, f) be a parabolic gradient Bach soliton, whose Ricci curvature satisfies Ric(∇f,∇f) ≥
α|∇f |2, for some positive constant α. If |∇f | ∈ L∞(M), then (Mn, g, f) must be trivial and Bach-flat.

3. Proofs of the Theorems

We start recalling a very nice maximum principle at infinity which corresponds to item (a) of [1, Theorem
2.2].

Lemma 3.1. Let (Mn, g) be a complete noncompact Riemannian manifold and let X ∈ X(M) be a smooth vector field on
Mn. Assume that there exists a nonnegative, non-identically vanishing function u ∈ C∞(M) which converges to zero at
infinity and such that g(∇u,X) ≥ 0. If divX ≥ 0 on Mn, then g(∇u,X) ≡ 0 on Mn.

Now, we are in position to prove our first result.

Proof of Theorem 2.1. Let us assume, by contradiction, that the potential function f is not constant. In this
case, we can consider the function u := |∇f |2, which is nonnegative, non-identically vanishing and converges
to zero at infinity. Also let us consider the smooth vector field X := ∇|∇f |2 on Mn. Then

g(∇u,X) = |∇|∇f |2|2 ≥ 0.

Moreover, since the Bach tensor B is trace free and ∆f = λn, from Bochner’s formula we have that

1

2
divX =

1

2
∆|∇f |2 = |∇2f |2 +Ric(∇f,∇f) ≥ 0.

Thus, from Lemma 3.1 we obtain
|∇|∇f |2|2 = g(∇u,X) ≡ 0.

Hence, u = |∇f |2 is a constant and, since it converges to zero at infinity, we conclude that u vanishes identically,
giving us a contradiction. Therefore, (Mn, g, f) must be trivial and, from structural equation λ = 0, (Mn, g, f)
is Bach-flat.

In order to prove our next results, we quote the following key lemma which corresponds to a particular case
of a more general maximum principle due to Alías, Caminha and Nascimento (see [2, Theorem 2.1]).

Lemma 3.2. Let Mn be a connected, oriented, complete noncompact Riemannian manifold and let X ∈ X(M) be a
bounded smooth vector field on Mn. Let u ∈ C∞(M) be a nonnegative smooth function such that g(∇u,X) ≥ 0 and
divX ≥ au on Mn, for some positive constant a ∈ R. If Mn has polynomial volume growth, then u vanishes identically
on Mn.

We use Lemma 3.2 to prove Theorem 2.2 as follows.

Proof of Theorem 2.2. Assuming that (Mn, g, f) is not trivial, we can consider the nonnegative smooth
function u := |∇f |2 and the smooth vector field X := ∇|∇f |2. The structural equation together Bochner’s
formula give us

1

2
divX =

1

2
∆|∇f |2 = |∇2f |2 +Ric(∇f,∇f) ≥ αu,

and
g(∇u,X) = |∇|∇f |2|2 ≥ 0.

Moreover, from Kato’s inequality we get

|X| = 2|∇f ||∇|∇f || ≤ 2|∇f ||∇2f | ≪ +∞,

since |∇f |, |∇2f | ∈ L∞(M).
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Hence, since (Mn, g) has polynomial volume growth, we can apply Lemma 3.2 to conclude that u vanishes
identically on Mn. Therefore, f is constant on Mn, which corresponds to a contradiction with the non-triviality
of (Mn, g, f). Therefore, we have that (Mn, g, f) must be trivial with λ = 0 and, consequently, (Mn, g, f) is
Bach-flat.

Pigola, Rigoli and Setti showed that stochastic completeness turns out to be equivalent to the validity of
a weak form of the Omori-Yau maximum principle (see [26, Theorem 1.1] and [27, Theorem 3.1]), as it is
expressed below.

Lemma 3.3. A Riemannian manifold Mn is stochastically complete if, and only if, for every u ∈ C2(M) satisfying
supM u < +∞ there exists a sequence of points {pk} ⊂ Mn such that

lim
k

u(pk) = sup
M

u and lim sup
k

∆u(pk) ≤ 0.

In what follows, we will apply Lemma 3.3 to prove our last result.

Proof of Theorem 2.3. From Bochner’s formula jointly with Kato’s inequality we have that

|∇f |∆|∇f |+ |∇|∇f ||2 =
1

2
∆|∇f |2 = |∇2f |2 +Ric(∇f,∇f)

≥ |∇|∇f ||2 + α|∇f |2,

implying that
∆|∇f | ≥ α|∇f |.

Now, suppose by contradiction that supM |∇f | > 0. Since |∇f | ∈ L∞(M) and Mn is stochastically complete,
Lemma 3.3 issues the existence of a sequence of points {pk} ⊂ Mn such that

0 ≥ lim sup
k

∆|∇f |(pk) ≥ α sup
M

|∇f | > 0,

and we reach at a contradiction. This concludes the proof of the theorem.
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