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ABSTRACT

Using elementary and effective methods we study cone curves and their associated curves or
partner curves in the three dimensional lightlike cone Q3, which is called three dimensional
degenerated space form of the four dimensional Minkowski space E4

1. We define the associated
curve of the cone curve and also partner curves of some special curves, such as a Bertrand curve
and a Mannheim curve. We consider the properties and relations of a curve and its associated curve
or partner curve. Some geometric characterizations of these curves are also given.
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1. Introduction.

Special curves, or characteristic curves in some sense, are very useful and significant object, which should
be good understood not only in geometry and other mathematical fields, but also in a lot of practical sciences,
such as industrial design, pattern recognition and intelligent system, graph and image processing, etc ([1]-[4],
[20]-[21]). The curves theory of the Minkowski space is very fundamental and important in both physics and
mathematics. In [8], a kind of special curves, cone curves are studied and the notion of the cone curvature
functions and also some examples of the cone curves in the Minkowski space are given. The applications of
the cone curves in the three dimensional Minkowski space (simply, Minkowski 3-space) are given in [9]-[11],
[13]-[15] and [19].

In [12], using very elementary and effective methods, a necessary and sufficient condition of a Bertrand curve
is given for the non flat three dimensional Riemannian space forms (simply, Riemannian 3-space forms). And
an explicit expression of the partner curve of a Bertrand curve is obtained.

As the extended topic, using associated curve, a new necessary and sufficient condition of which a Frenet
curve is a Mannheim curve or Mannheim partner curve in the three dimensional Euclidean space is given and
relative conclusions are generalized for the curves which lie on the three dimensional Riemannian sphere or
lie in the three dimensional hyperbolic space in [16]. From these conclusions we know that the Mannheim
curve and Mannheim partner curve on the three dimensional Riemannian sphere or in the three dimensional
hyperbolic space can not be as a curves mate as in the case of the three dimensional Euclidean space. And it is
easy to see that the geometric characterizations of such curves are conformal invariant.

In this work, for the curves in the three dimensional lightlike cone, i.e. degenerated 3-space form, we
consider the generalization of the notions of classical Bertrand curve and Mannheim curve. At first we define
the Bertrand curve and Mannheim curve in the 3-dimensional lightlike cone with the algebraic condition.
Using associated curve of the cone curve we state a new necessary and sufficient condition of which a cone
curve is a Bertrand curve or Mannheim curve in the degenerated 3-space form. We also give some geometric
characterizations of these curves. Especially we consider also the partner curves of a cone curve both on the de
Sitter space S3

1 and in the hyperbolic space H3.
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2. Preliminaries.

In this section we recall some notations and concepts defined in [8]. Let x : I → Q3 ⊂ E4
1 be a spacelike curve

in the three dimensional lightlike cone Q3 (degenerated 3-space form) of the four dimensional Minkowski
space (Minkowski 4-space) E4

1 with arc length parameter s. We put

y(s) = −ẍ(s)− 1

2
⟨ẍ(s), ẍ(s)⟩x(s), (2.1)

and have
⟨y(s), y(s)⟩ = ⟨x(s), x(s)⟩ = ⟨y(s), ẋ(s)⟩ = 0, ⟨x(s), y(s)⟩ = 1. (2.2)

Definition 2.1. Let x = x(s) : I → Q3 ⊂ E4
1 be a spacelike curve in Q3 with arc length parameter s. Then y(s),

defined by (2.1), is also a curve in Q3 and called associated curve (or dual curve) of the curve x(s).
We choose vector field β(s) such that {x(s), α(s), β(s), y(s)} forms a standard asymptotic orthonormal basis

of the Minkowski 4-space E4
1. Then the Frenet formulas of the curve x = x(s) : I → Q3 ⊂ E4

1 can be written as
ẋ(s) = α(s),
α̇(s) = κ(s)x(s)− y(s),

β̇(s) = τ(s)x(s),
ẏ(s) = −κ(s)α(s)− τ(s)β(s).

(2.3)

Definition 2.2. The functions κ(s) and τ(s) in (2.3) are called the (first) cone curvature and cone torsion (or
second cone curvature) of the curve x(s) in Q3 ∈ E4

1. The frame field {x(s), α(s), β(s), y(s)} is called the cone
Frenet frame of the curve x(s).

We consider the associated curve y(s) of x(s) ⊂ Q3 ⊂ E4
1. Define x̃(s̃) := y(s) and denote the arc length

parameter of x̃(s̃) by s̃, and the cone Frenet frame of x̃(s̃) by {x̃(s), α̃(s), β̃(s), ỹ(s)}. From (2.3) we have

α̃
ds̃

ds
= −κ(s)α(s)− τ(s)β(s). (2.4)

Let
α̃ = α cos θ + β sin θ, θ = θ(s). (2.5)

For convenience we put
ds̃

ds
=

√
κ2 + τ2. (2.6)

Then we have
cos θ =

−κ√
κ2 + τ2

, sin θ =
−τ√

κ2 + τ2
, tan−1 θ =

κ

τ
. (2.7)

From the definition of the cone Frenet frame and (2.5)-(2.7), by a direct calculation, we get

d2x̃

ds̃2
=

θ′√
κ2 + τ2

(− sin θ + β cos θ)− cos θ√
κ2 + τ2

y − x (2.8)

and

⟨d
2x̃

ds̃2
,
d2x̃

ds̃2
⟩ = θ′2 − 2κ

κ2 + τ2
.

Then

−d2x̃

ds̃2
− 1

2
⟨d

2x̃

ds̃2
,
d2x̃

ds̃2
⟩x̃ =

−θ′√
κ2 + τ2

(−α sin θ + β cos θ) + x− 1

2

(
θ′2

κ2 + τ2

)
y. (2.9)

Therefore, together with (2.1), we have

ỹ = x− 1

2

(
θ′2

κ2 + τ2

)
y − θ′√

κ2 + τ2
(−α sin θ + β cos θ), (2.10)

and
β̃ =

θ′√
κ2 + τ2

y + (−α sin θ + β cos θ). (2.11)

Thus we get the following conclusions.
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Theorem 2.1. Let x(s) ⊂ Q3 ⊂ E4
1 be a cone curve with arc length parameter s. Put

y(s) = −ẍ(s)− 1

2
⟨ẍ(s), ẍ(s)⟩x(s), (2.12)

then the following statements are equivalent.

(1) The curvature κ(s) and the torsion τ(s) of x(s) satisfy
τ

κ
= constant.

(2) The tangent vector field of curve x(s) intersects tangent vector field of its associate curve y(s) at a constant
angle.

(3) The associate curve of x(s) is y(s), and the associate curve of y(s) is x(s).

Proof. From (2.5) and (2.7) we know that the statements (1) and (2) are equivalent. From (2.10) we know that
the statements (2) and (3) are equivalent.

3. Cone Bertrand curve and partner.

For any constants a, c and µ such that ac ̸= 0 and 2ac+ µ2 = 0, we consider a new cone curve x̄(s̄) in Q3:

x̄(s̄) := cx+ ay + µβ, (3.1)

where s̄ is the arc length parameter of x̄(s̄). From (3.1) we have

ᾱ
ds̄

ds
= (c− aκ)α− aτβ + µτx. (3.2)

We put
ds̄

ds
=

√
(c− aκ)2 + a2τ2 (3.3)

and
ᾱ = α cosφ+ β sinφ+ λx. (3.4)

Then we have

cosφ =
c− aκ√

(c− aκ)2 + a2τ2
, sinφ =

−aτ√
(c− aκ)2 + a2τ2

, tan−1 φ =
c− aκ

−aτ
, (3.5)

and
λ =

µτ√
(c− aκ)2 + a2τ2

. (3.6)

Therefore we obtain the following conclusion:

Theorem 3.1. Let x(s) ⊂ Q3 ⊂ E4
1 be a cone curve with arc length parameter s. Put

y(s) = −ẍ(s)− 1

2
⟨ẍ(s), ẍ(s)⟩x(s) (3.7)

and
x̄(s̄) := x̄(s) = cx(s) + ay(s) + µβ(s). (3.8)

Where the frame field {x(s), α(s), β(s), y(s)} is the cone Frenet frame of the cone curve x(s). Then the curvature
κ(s) and the torsion τ(s) of x(s) satisfy aκ+ bτ = c if and only if the tangent vector field of the curve x(s)
intersects the tangent vector field of the curve x̄(s) at a constant angle, where a, b, c, µ are constant and ac ̸= 0,
2ac+ µ2 = 0.

Proof. From (3.5) we know that aκ+ bτ = c if and only if φ is constant.

According to the classical curves theories and notions in the Euclidean 3-space, we give the following
definition for the Bertrand curves in Q3 ⊂ E4

1 ([8]).
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Definition 3.1. Let x(s) be a proper curve in Q3 ⊂ E4
1 with arc length parameter s. Then x(s) is called a Bertrand

curve in Q3 if the curvature function κ(s) and the torsion function τ(s) of x(s) satisfy aκ(s) + bτ(s) = c for some
constants a, b, c and ab ̸= 0. The curve x̄(s) defined by (3.8) is called the cone partner curve (or cone mate) of
the Bertrand curve x(s).

Remark 3.1. In the Definition 3.1 we use an algebraic condition to avoid the use of other notions.

For a Bertrand curve x(s) with c− aκ = bτ , the relations (3.3) - (3.6) become

ds̄

ds
=

√
b2 + a2(ετ), ε = ±1, ετ > 0, (3.9)

ᾱ(s) = α(s) cosφ+ β(s) sinφ+ λx(s), (3.10)

cosφ =
εb√

b2 + a2
, sinφ =

−εa√
b2 + a2

, tan−1 φ =
b

−a
, λ =

εµ√
b2 + a2

. (3.11)

By a direct calculation we have

¨̄x
ds̄

ds
= (κ cosφ+ τ sinφ)x− y cosφ+ λα,

¨̄x =
(κ cosφ+ τ sinφ)x− y cosφ+ λα√

b2 + a2(ετ)
=

(bκ− aτ)x− by + µα

τ(a2 + b2)
,

⟨¨̄x, ¨̄x⟩ =
−2κ

τ2(a2 + b2)
,

κ̄(s̄) = −1

2
⟨ ˙̄α(s̄), ˙̄α(s̄)⟩ = −1

2
⟨¨̄x(s̄), ¨̄x(s̄)⟩ (3.12)

=
κ

τ2(a2 + b2)
,

ȳ(s̄) = ȳ(s) = −¨̄x(s)− 1

2
⟨¨̄x(s), ¨̄x(s)⟩x̄(s) (3.13)

= − (bκ− aτ)x− by + µα

τ(a2 + b2)
+

κ

τ2(a2 + b2)
(cx+ ay + µβ)

=
[
(a2 + b2)τ2

]−1 [
a(κ2 + τ2)x− µτα+ µκβ + cy

]
,

β̄(s̄) = β̄(s) = [(a2 + b2)τ2]−1[−µκx− aτα+ (bτ + 2aκ)β − µy]. (3.14)

Then 
x̄(s̄) = cx(s) + ay(s) + µβ(s),
ᾱ(s) = α(s) cosφ+ β(s) sinφ+ λx(s),
β̄(s̄) = [(a2 + b2)τ2]−1[−µκx− aτα+ (bτ + 2aκ)β − µy],

ȳ(s̄) =
[
(a2 + b2)τ2

]−1 [
a(κ2 + τ2)x− µτα+ µκβ + cy

]
.

(3.15)

Remark 3.2. Really the curve (3.8) can be written as

x̄(s̄) := x̄(s) = cx(s) + ay(s) + µ1α(s) + µ2β(s), (3.16)

where 2ac+ µ2
1 + µ2

2 = 0.
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4. Cone Mannheim curve and partner.

Theorem 4.1. Let x(s) ⊂ Q3 ⊂ E4
1 be a cone curve with arc length parameter s. Put

y(s) = −ẍ(s)− 1

2
⟨ẍ(s), ẍ(s)⟩x(s) (4.1)

and
x̄(s̄) := x̄(s) = cx(s) + ay(s) + µβ(s). (4.2)

Where the frame field {x(s), α(s), β(s), y(s)} is the cone Frenet frame of the cone curve x(s). The curvature
function κ(s) and torsion function τ(s) of x(s) satisfy cκ(s) = a(κ2(s) + τ2(s)) if and only if the intersection
angle φ between the tangent vector fields of the curve x(s) and x̄(s) satisfies

tanφ(s) = −κ(s)

τ(s)
,

where a, c, µ are constant and ac ̸= 0, 2ac+ µ2 = 0.

Proof. From cκ = a(κ2 + τ2) we have

−κ

τ
=

−aτ

c− ακ
.

Therefore by (3.5) we get the conclusion of the theorem.

Definition 4.1. Let x(s) be a proper curve in Q3 ⊂ E4
1 with arc length parameter s. Then x(s) is called a Mannheim

curve in Q3 if the curvature function κ(s) and the torsion function τ(s) of x(s) satisfy cκ = a(κ2 + τ2) for some
constants a, c and ac ̸= 0. The curve x̄(s) defined by (4.2) is called the cone partner curve (or cone mate) of the
Mannheim curve x(s).

For the Mannheim curve, (3.3) - (3.6) become

ds̄

ds
=

√
c(c− aκ), (4.3)

ᾱ = α cosφ+ β sinφ+ λx, (4.4)

cosφ =
c− aκ√
c(c− aκ)

, sinφ =
−aτ√

c(c− aκ)
, tan−1 φ =

c− aκ

−aτ
, (4.5)

λ =
µτ√

c(c− aκ)
. (4.6)

By a direct calculation we have

¨̄x
ds̄

ds
= φ̇(−α sinφ+ β cosφ)− y cosφ+ λ̇x+ λα,

¨̄x =
φ̇(−α sinφ+ β cosφ)− y cosφ+ λα√

(c− aκ)2 + a2τ2

=
φ̇[aτα+ (c− aκ)β]− (c− aκ)y + µτα

c(c− aκ)

=
φ̇aτ + µτ

c(c− aκ)
α+

φ̇

c
β − 1

c
y

= c−1
[
τ(aφ̇+ µ)(c− aκ)−1α+ φ̇β − y

]
,

⟨¨̄x, ¨̄x⟩ =
τ2(aφ̇+ µ)2 + φ̇2(c− aκ)2

c2(c− aκ)2
,

κ̄(s̄) = −1

2
⟨ ˙̄α(s̄), ˙̄α(s̄)⟩ = −1

2
⟨¨̄x(s̄), ¨̄x(s̄)⟩ (4.7)

=
τ2(aφ̇+ µ)2 + φ̇2(c− aκ)2

−2c2(c− aκ)2
,
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ȳ(s̄) = ȳ(s) = −¨̄x(s)− 1

2
⟨¨̄x(s), ¨̄x(s)⟩x̄(s) = −¨̄x(s) + κ̄(s̄)x̄(s) (4.8)

= −c−1
[
τ(aφ̇+ µ)(c− aκ)−1α+ φ̇β − y

]
+ κ̄(cx+ ay + µβ)

= cκ̄x− c−1τ(aφ̇+ µ)(c− aκ)−1α+ (µκ̄− c−1φ̇)β + (aκ̄+ c−1)y,

β̄(s̄) = β̄(s) = B1(s)x(s) +B2(s)α(s) +B3(s)β(s) +B4(s)y(s). (4.9)

Where

−1 = β1B1(s) + β2B2(s) + β3B3(s) + β4B4(s).

=

∣∣∣∣∣∣∣
c 0 µ a
λ cosφ sinφ 0
β1 β2 β3 β4

cκ̄ −c−1τ(aφ̇+ µ)(c− aκ)−1 µκ̄− c−1φ̇ aκ̄+ c−1

∣∣∣∣∣∣∣ . (4.10)

Then 
x̄(s̄) = cx(s) + ay(s) + µβ(s),
ᾱ(s) = α(s) cosφ+ β(s) sinφ+ λx(s),
β̄(s̄) = B1(s)x(s) +B2(s)α(s) +B3(s)β(s) +B4(s)y(s),
ȳ(s̄) = cκ̄x− c−1τ(aφ̇+ µ)(c− aκ)−1α+ (µκ̄− c−1φ̇)β + (aκ̄+ c−1)y.

(4.11)

5. Spherical and hyperbolic Bertrand partner curve.

Now we construct a new curve on S3
1 or in H3 using the curve x(s) ⊂ Q3 ⊂ E4

1 and its associated curve y(s).
For any constants a, c such that ac ̸= 0, we consider the curve x̄(s̄) on S3

1 (ac > 0) or in H3 (ac < 0):

x̄(s̄) :=
1√
2|ac|

(cx+ ay), (5.1)

where s̄ is the arc length parameter of x̄(s̄). From (5.1) we have

ᾱ
ds̄

ds
=

1√
2|ac|

[(c− aκ)α− aτβ] . (5.2)

We put
ds̄

ds
=

√
(c− aκ)2 + a2τ2√

2|ac|
(5.3)

and
ᾱ = α cosφ+ β sinφ. (5.4)

Then we have

cosφ =
c− aκ√

(c− aκ)2 + a2τ2
, sinφ =

−aτ√
(c− aκ)2 + a2τ2

, tan−1 φ =
c− aκ

−aτ
. (5.5)

Therefore we obtain the following conclusion:
Theorem 5.1. Let x(s) ⊂ Q3 ⊂ E4

1 be a cone curve with arc length parameter s. Put

y(s) = −ẍ(s)− 1

2
⟨ẍ(s), ẍ(s)⟩x(s) (5.6)

and
x̄(s̄) := x̄(s) =

1√
2|ac|

[cx(s) + ay(s)] . (5.7)

Then the curvature function κ(s) and the torsion function τ(s) of x(s) satisfy aκ+ bτ = c, i.e. a Bertrand curve
in Q3, if and only if the tangent vector field of the curve x(s) intersects the tangent vector field of the curve x̄(s)
at a constant angle, where a, c are constant and ac ̸= 0.
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Proof. From (5.5) we know that aκ+ bτ = c if and only if φ is constant.

Definition 5.1. Let x(s) be a Bertrand curve in Q3 ⊂ E4
1 with arc length parameter s. Then the curve x̄(s) defined

by (5.7) is called the spherical partner curve (ac > 0) (spherical mate) of x(s) or the hyperbolic partner curve
(ac < 0) (hyperbolic mate) of x(s).

Remark 5.1. Since
⟨x̄, x̄⟩ = 2ac

2|ac|
= ε = ±1,

the partner curve x̄(s̄) of the cone curve x(s) is the curve lie on the de Sitter space S3
1 (ac > 0) or in the hyperbolic

space H3 (ac < 0).

Remark 5.2. To avoid Crossref, we omit the introduction of the spherical curve on de Sitter space and
hyperbolical curve in hyperbolic space.

• For the spherical curve x(s) on S3
1 ⊂ E4

1, see [12], section 2, page 472.
• For the hyperbolical curve x(s) in H3 ⊂ E4

1, see [12], section 3, page 476.

Remark 5.3. The Mannheim partner curve can be characterized with the same methods. We end here to avoid
lengthy.
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