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ABSTRACT

A real hypersurface M in the complex quadric Q™ = SO,,,+2/50,,S0- inherits an almost contact
metric structure . This structure allows to define, for any nonnull real number £, the so called k-th
generalized Tanaka-Webster connection on M , V"), If V denotes the Levi-Civita connection on
M , we introduce the concepts of (V) V)-Codazzi and (V*), V)-Killing shape operator S of the
real hypersurface and classify real hypersurfaces in Q™ satisfying any of these conditions.
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1. Introduction

Suppose that (M ,J,9) is a Kdhler manifold and M a real hypersurface of M, that is, a submanifold of
codimension 1 with local normal unit vector field N. The Kéhler structure (J,g) induces on M an almost
constant metric structure (¢,n,g,&). Let V be the Levi-Civita connection on M and S the shape operator
associated to N.

Given such an almost contact metric structure, if k is a nonnull real number we can define the so called k-th
generalized Tanaka-Webster connection V(*) on M by

VY = ViV + g(¢SX,Y)E —n(Y)pSX — kn(X)pY

for any X,Y tangent to M (see [3]). Let us denote by F)({k)Y =g(¢SX,Y)E —n(Y)oSX — kn(X)e¢Y, for any
X,Y tangent to M and call it the k-th Cho operator on M associated to X. Notice that if X € C, the maximal
holomorphic distribution on M given by all the vector fields orthogonal to ¢, the associated Cho operator does
not depend on k and we will denote it simply by Fx. If L is a tensor field of type (1,1) on M we sill say that

Lis (V) V)-parallel if Vx L = @%)L for any vector field X tangent to M . @g];)L = VxL for a vector field X
tangent to M if and only if F)((k)L = LF)((k), that is, the eigenspaces of L are preserved by F)((k). Let us call Lgc) to

the tensor of type (1,2) on M given by Lﬁf) (X,Y) = [F)((k), LI(Y) = F)((k)L(Y) - LF)((k) (Y), for any X,Y tangent
to M . Then L is (V¥), V)-parallel if and only if the tensor L%k) vanishes identically.

In this paper we will consider real hypersurfaces in the complex quadric. The complex quadric Q™ =
SOu42/50,S04 is a compact Hermitian symmetric space of rank 2. Q™ has a Kéhlerian structure (J, g) and a
parallel rank two vector bundle 2l which contains an S*-bundle of real structures, that is, complex conjugations
A on the tangent spaces of Q™ satisfying A*> = and AJ = —JA. This determines a maximal A-invariant
subbundle Q of the tangent bundle 7'M for a real hypersurface M in Q™. A nonzero tangent vector W at a
point of Q™ is called singular if it is tangent to more than one maximal flat in Q™ . There are two types of

singular tangent vectors for Q™
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¢ If there exists a conjugation A € 2 such that W satisfies AW = W, W is singular and is called 2-singular.
e If there exists a conjugation A € 2 and orthonormal vectors X,Y such that AX = X, AY =Y, with
W/|W| = (X + JY)/V2, W is singular and called 2-isotropic.

The study of real hypersurfaces M in Q™ was initiated by Berndt and Suh in [1]. In this paper the geometric
properties of real hypersurfaces M in complex quadric @™ , which are tubes of radius r, 0 < r < 7/2, around
the totally geodesic CP" in Q™ , when m = 2n or tubes of radius r, 0 < r < 7/2V/2, around the totally geodesic
Q™ linQ™ ,are presented. The condition of isometric Reeb flow is equivalent to the commuting condition of
the shape operator S with the structure tensor ¢ of M . The classification of such real hypersurfaces in Q™ is
obtained in [2].

A real hypersurface M in Q™ is called Hopf if its Reeb vector field £ is an eigenvector for S.

We will denote by € the maximal holomorphic distribution on M, €= {X € TM|g(X,¢{) =0}. The
distribution € is said to be integrable if [X, Y] € C for any vector fields X,Y € C. We say that M is ruled if C is
integrable and its integral manifolds are totally geodesic Q™' in Q™ . This is equivalent to have ¢(SX,Y) =0
forany X,Y € C (see [4] for examples of ruled real hypersurfaces).

We will say that a tensor field L of type (1,1) on M is (V¥), V)-Codazzi if it satisfies

(VOLY - (VL)X = (VxL)Y — (VyL)X

for any X,Y tangent to M . Its easy to see that this condition is equivalent to L%k) being symmetric, that is,
Lgf) (X,Y) = Lgf) (Y, X) for any X,Y tangent to M . This condition generalizes the concept of L being (V*), V)-
parallel.

In the particular case of L =S, in [8] we proved non-existence of real hypersurfaces in Q™ whose shape
operator is (V*), V)-parallel, for any nonnull real number k. In this paper we will study real hypersurfaces
in Q™ for wich Sg,k) is symmetric, that is Sg")(X, Y)= Sl(pk)(Y, X), eitherif XY € Corif X =¢, Y €C, in the
following

Theorem 1.1. Let M be a real hypersurface in Q™ ,m > 3. Then S}k) (X,Y) = Sl(f) (Y, X) for some nonnull real number
kandany X,Y € Cifand only if M is locally congruent to either a ruled real hypersurface or to a non Hopf non ruled real

. L o . o . o / 902
hypersurface with four distinct principal curvatures, 0 with multiplicity 2m — 4, % with multiplicity 1, % +14/8%+ %
2
and % —\/B%+ 91%, each with multiplicity 1, where « and [ are nonvanishing functions.

Theorem 1.2. Let M be a real hypersurface of Q™ , m > 3. Then Sl(vk) (&,Y)= S%k)(Y, &) for some nonnull real number
kand any Y € C if and only if M is locally congruent to a non Hopf non ruled real hypersurface with, at most, five
distinct principal curvatures.

From both Theorems we can conclude

Corollary 1.1. There does not exist any real hypersurface in Q™ , m > 3, such that Sl(f) is symmetric, for any nonnull
real number k.

We will say that a tensor field L of type (1,1) on M is (V). V)-Killing if it satisfies

(VELY + (VP L)X = (VxL)Y + (Vy L)X
for any X,Y tangent to M . This condition also generalizes the condition of L being (V¥), V)-parallel and is
equivalent to L%“) being skewsymmetric, that is, L%’“)(X YY) + L%“) (Y,X) =0 for any X,Y tangent to M . We
will study real hypersurfaces in Q™ such that S}k) is skewsymmetric either if X, Y e Corif X =¢,Y € C.
We will prove

Theorem 1.3. Let M be a real hypersurface in Q™ , m > 3. Then Sl(mk) (X,)Y) = fS}k)(Y,X) for some nonnull real
number k and any X,Y € C if and only if either

1. M is Hopf with S§¢ = 0 and N is A-isotropic, or

2. M is locally congruent to a tube around CP', m = 2I, or
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3. M is locally congruent to a ruled real hypersurface.

Theorem 1.4. Let M be a real hypersurface in Q™ , m > 3. Then Sl(f) (&Y)= —Sl(f) (Y, &) for some nonnull real number
kandanyY € Cifand only if M is locally congruent to a non Hopf non ruled real hypersurface with, at most, five distinct
principal curvatures.

Corollary 1.2. There does not exist any real hypersurface M in Q™ , m > 3, such that Sff) is skewsymmetric, for any
nonnull real number k.

2. The space Q™.

For more details in this section we refer to [5], [6], [9], [11], [12], and [13]. The complex quadric Q™ is the
complex hypersurface in CP™*" which is defined by the equation 27 + -+ - + 22, ., = 0, where z1,..., 2,42 are
homogeneous coordinates on CP™ . We equip Q™ with the Riemannian metric which is induced from the
Fubini Study metric on CP™ "' with constant holomorphic sectional curvature 4. The Kahler structure on
CP™*! induces canonically a Kdhler structure (.J, g) on the complex quadric.

The complex projective space CP™ ! is defined by using the Hopf fibration
7§ LCP™T 22,

which is said to be a Riemannian submersion. Then we can consider the following diagram for the complex
quadric Q™ :

Q — 7_(_—1(@) ? SQm—I—S C Cm+2

| [

Q=Qm —l> cpmt!

The submanifold Q of codimension 2 in 52”3 is called the Stiefel manifold of orthonormal 2-frames in R™ "2,
which is given by

~ ) . 1
Q = {z +iyeC"?|g(z,z) = g(y,y) = 5 and g(@,y) = 0},

m+2
where g(z,y) = Zi:l z;y; for any z = (z1,...,Tm2),y = (y17...7ym+2)€]Rm+2. Then the tangent space is

decomposed as 17,523 — H,oF, and T.Q = H, (Q)F.(Q)atz=x+ iyeQ respectively, where the horizontal
subspaces H, and H.(Q) are given by H, = (Cz)* and H,(Q) = (Cz&Cz)*, and F, and F,(Q) are fibers which
are isomorphic to each other. Here H(Q) is a subspace of H. of real codimension 2 and orthogonal to the two
unit normals —z and —Jz. Explicitly, at the point z =  + iy€Q it can be described as

H. = {u+iweC™| g(z,u)+g(y,v) =0, g(z,v)=g(y,u)}

and
H.(Q) ={u+weH.| g(u,z)=g(u,y)=g(v,z)=g(v,y) =0},
m—+2
where C™ 2 = R™"2@iR™2, and g(u, r) = Z_il u;x; for any u = (u1, ..., um+2),
xr = (xl, cee $7,L+2)€Rm+2.

These spaces can be naturally projected by the differential map . as 7. H, = Ty (,)CP™"" and 7. H.(Q) =
T (»)@Q respectively. Thus at the point 7(z) = [2] the tangent subspace 7}.;Q™ becomes a complex subspace of
T,;CP™ ! with complex codimension 1. The unit normal fields —r,z and —.,.JZ span the normal space of Q™
in CP™ at every point (see Reckziegel [9]).

Then let us denote by A; the shape operator of Q™ in CP™ "' with respect to the unit normal 7, z. It satisfies
Azmow = Vi Z = T, for every w € H.(Q), where V denotes the covariant derivative of CP™" induced by its
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Fubini-Study metric. That is, the shape operator A is just a complex conjugation restricted to 71.;Q™. Moreover,
it satisfies the following for any w € T},;Q™ and any AeS'CC

Aizw :A,\EA)\E’LU = A/\g)\’w

=[|\*w = w.

Accordingly, A3, = I for any AeS". So the shape operator A; becomes an anti-commuting involution such that
AZ =Tand AJ = —J A on the complex vector space 7},;Q"™ and

T.Q™ = V(Az) & JV(Az),

where V(A;) = m.(R™? N H,Q) is the (+1)-eigenspace and JV(A;) = m.(iIR™™? N H,(Q)) is the (—1)-
eigenspace of Az. Thatis, A;: X = X and A;JX = —JX, respectively, for any XeV (Az).

The Gauss equation for Q™ ¢ CP™*! implies that the Riemannian curvature tensor R of Q" can be described
in terms of the complex structure J and any complex conjugation A € 2:

RX,Y)Z = g(Y,2)X —g(X,2)Y + g(JY, 2)JX — g(JX, Z)JY —29(JX,Y)JZ
+9(AY, 2)AX — g(AX, Z)AY + g(JAY, Z)JAX — g(JAX, Z)JAY.

Note that J and each complex conjugation A anti-commute, that is, AJ = —JA for each A € 2.

3. Real hypersurfaces in Q™ .

Consider a real hypersurface M in Q™ with unit local normal vector field N. For any vector field X tangent
to M we write

JX = ¢X +n(X)N 3.1)

where X denotes the tangential component of JX. ¢ defines on M a skew-symmetric tensor field of type (1,1)
called the structure tensor. The vector field £ = —JN is called the Reeb vector field of M . Consider on M the
1-form given by n(X) = g(X, &) for any vector field X tangent to M . We have that (¢, £, 7, g) is an almost contact
metric structure on M . Therefore we have the following relations

¢’X = X +n(X)& () =1, g(6X,0Y)=g(X,Y) —n(X)n(Y) (32)
for any X, Y tangent to M. From (3.2) we also have
¢¢ =0, n(X)=g(X,8).
The tangent bundle 7'M of M splits orthogonally into
TM=Ca9,

where C = ker(n) = {X € TM|g(X,¢) =0} is the maximal complex (holomorphic) subbundle of T'M and
F = R&. Notice that the structure tensor field ¢ restricted to € coincides with the complex structure J.
At each point z € M we define a maximal 2l-invariant subspace of 7. M as

Q, ={XeT.M|AX e T, M ,VA € 2.}.
Then we have, [2],
Lemma 3.1. Let M be a real hypersurface in Q™ . Then the following are equivalent

1. The normal vector N, of M at z is A-principal.
2.9, =C¢C..

dergipark.org.tr/en/pub/iejg 224


https://dergipark.org.tr/en/pub/iejg

J.D. Pérez & D. Pérez-Lépez

If the normal vector NV, of M at z is not ™-principal there exists a real structure A € [,; such that

Ny = cos(t)Zy + sin(t)J Zs,
ANy = cos(t)Zy —sin(t)J Zs, (3.3)
where Z,, Z, are orthonormal eigenvectors of 2 with eigenvalue 1 and 0 < t < % As ¢ = —JN (3.3) implies
§) = —cos(t)JZy +sin(t)Z,
Al = cos(t)JZy +sin(t) Zs. (3.4)

So we have g(AN.},{.)) =0, g(IN., AN, ) = cos(2t) = —g(&., AL.).
The shape operator of a real hypersurface M in Q™ is denoted by S. The real hypersurface is called Hopf
hypersurface if the Reeb vector field is an eigenvector of the shape operator, i.e.

S& = ag, (3.5)
where o = g(S¢, €) is the Reeb function. The Codazzi equation of M is given by
9(VxS)Y — (Vy8)X, Z) = n(X)g(¢Y, Z) = n(Y)g(6X, Z) — 2n(Z)g(6X,Y)
+9(X, AN)g(AY, Z) — g(Y, AN)g(AX, Z) + (X, A& g(JAY, Z) — g(Y, A§)g(JAX, Z)
(3.6)
for any X, Y, Z tangent to M . To be used later we have, see [2], the following

Proposition 3.1. The following statements hold for a tube M of radius r, 0 < r < 7/2 around the totally geodesic CP'
inQm,m =2l

1. M is a Hopf hypersurface.
2. The normal bundle of M consists of A-isotropic singular tangent vectors of Q™ .

3. M has four distinct principal curvatures, unless m = 2 in which case M has two distinct principal curvatures,
which are given in the following matrix

Principal curvature |  Eigenspace | Multiplicity
—2cot(2r) F | 1
— cot(r) v.CP" o ¢ | 20 -2
tan(r) T.CP™ & [Ag] | 20 —2
0 [Ag] \ 2

4. The shape operator commutes with the structure tensor field ¢, i.e. S¢ = ¢S.
5. M is a homogeneous hypersurface.

Proposition 3.2. Let M be a Hopf real hypersurface in Q™ , m > 3. Then the tensor field 2S¢S — a(¢pS + S¢) leaves
Q and C & Q invariant and we have 2SS — a(pS + S¢) = 2¢ on Q and 2SS — a(dS + S¢) = 2u*p on C © Q, where

w=g(AE, &) = —cos(2t).
Recently, Lee and Suh, [7], have proved the following

Proposition 3.3. Let M be a Hopf real hypersurface in Q™ , m > 3. Then M has an U-principal normal vector field
in Q™ if and only if M is locally congruent to a tube of radius r, 0 < r < —_ around the m-dimensional sphere S™,

2V2
embedded in Q™ as a real form of Q™ .
The Reeb function of such a tube is @ = —v/2cot(v/2r).
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4. Proof of Theorem 1.1

Let M be a real hypersurface in Q™ such that S}k) (X,Y) = S}k) (Y,X) for any X,Y € C. This yields

9(#SX, SY)E = n(SY)pSX — g(¢SX,Y)SE = g(¢SY, SX)E —n(SX)pSY — g(4SY, X)S5¢ (4.1)

for any X,Y € €. Suppose first that M is Hopf and write S =af. From (4.1) we get g(¢SX,SY)¢ —
ag(¢SX,Y)E = g(¢SY, SX)E — ag(pSY, X)E, for any X, Y € C. Therefore , for any X € € we have

2S6SX = a(¢S + SP)X. (4.2)

As M is Hopf we know from Proposition 3.2 that 25¢SX — a(¢S + S¢) X = 2¢X forany X € Qand 25¢SX —
(¢S + S¢) X = dcos?(2t)¢X for any X € C© Q. From (4.2) we have Q = 0 and m = 2, which is impossible.

Thus M must be non Hopf. We write S¢ = o€ + U, for aunit U € €, being 8 a nonvanishing function at least
on an open neighborhood of a point of M . The calculations are made on such a neighborhood.

The scalar product of (4.1) and ¢U gives —n(SY)g(SX,U) = —n(SX)g(SY,U) for any X,Y € C. Take Y € C
and orthogonal to U. Then we have (5SX)g(SY,U) = 0 for any X € €C and such a Y. If now X = U we obtain
Bg(SU,Y) =0 for any Y € € orthogonal to U. This yields

SU = B¢ +~U (4.3)

for a certain function ~.
The scalar product of (4.1) and U implies

n(SY)g(SX, ¢U) — Bg(¢SX,Y) = n(SX)g(SY, ¢U) — Bg(¢SY, X) (4.4)

forany X,Y € C.
If we take X = U in (4.4) we get —8g(¢SU,Y) = B(S¢U,Y) + Bg(S¢U,Y) for any Y € C and, as 8 # 0 this
yields 25¢U = —¢SU = —y¢U. Thus

SoU = —%qu. (4.5)

The scalar product of (4.1) and & gives

g(#SX,8Y) — ag(¢SX,Y) = g(¢SY, SX) — ag(#SY, X) (4.6)

for any X, Y €C Take X =U, Y = ¢U in (4.6). We obtain 29(¢SU SoU) — ag(SU,U) = ag(SeU, ¢U), that is,
2 —ay = _0427 or y(y+ 2) = 0. Therefore, either y = 0 or v = —5

Now we take XY € Cy ={Z € Clg(Z,U) =g(Z,¢U) =0} in (44) and, as §#0, we get g(¢SX,Y) =
g9(¢SY, X) for any X,Y € Cy. From (4.3) and (4.5) this yields

SPX +¢pSX =0 4.7)

for any X € Cy. Suppose X € Cy is unit and satisfies SX = AX, then from (4.7), S¢X = —X¢X. Moreover, from
(4.6) SPSX — apSX = —SpSX + aS¢X. That is, 25¢0SX = a(¢S + S$)X = 0. Therefore, —2)\? = 0. Thus the
unique principal curvature on Cy is 0. Then if v = 0, M is a ruled real hypersurface.

If v= —% we have S¢ = af + BU, SU = 3£ — %U, SoU = %qﬁU and SX =0 for any X € Cp. In this case,
if « =0, M is ruled and minimal. If o # 0, M is a non Hopf, no ruled real hypersurface with four distinct

902

principal curvatures, 0 with multiplicity 2m — 4, YL 2, with multiplicity 1, — + \/ B2+ 9176 and ——/B%+ T
each with multiplicity 1, finishing the proof.

5. Proof of Theorem 1.2

Suppose now that S}k) (&Y)= S}k) (Y,¢) for any Y € C. therefore
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9($SE, SY)E — n(SY)$SE — kdSY — g(9SE,Y)S€ 51)
+hSPY = g($SY, SE)E — 1(SE)BSY + S$SY ‘

for any Y € €. Suppose first that M is Hopf with S¢ = a€. From (5.1) we have —k¢SY + kS¢Y = —adSY +
S¢SY forany Y € C. Thus

SeSY = apSY + k(Sé — ¢S)Y (5.2)
for any Y € C. If we take the scalar product of (5.2) and X € € and change X and Y we obtain

—S¢SY = —aSeY + k(S¢ — $S)Y (5.3)

forany Y € C.

If we substract (5.3) from (5.2) we get 25¢SY = a(¢S + S¢)Y for any Y € € and, as in previous Theorem, we
arrive to a contradiction. Therefore, M must be non Hopf.

We write as above S¢ = & + SU. Then (5.1) becomes

BgS(oU,Y)E — B2g(U,Y)oU — k¢SY — Bg(oU,Y)SE (5.4)
+kSPY = —Bg(SoU,Y)E — adSY + S¢SY '

for any Y € C. The scalar product of (5.4) with ¢, bearing in mind that 3 # 0, gives g(S¢U,Y) — (o +
k)g(oU,Y) = —2¢(S¢U,Y) for any Y € C. Thus 3S¢U = (a + k)¢U, that is

SeU = & ; ko, (5.5)
Taking Y = ¢U in (5.4) we obtain 8g(SeU, $U)E — keSGU — BSE — kSU = Bg(6SoU, U)E — adSSU + SHSU.
From (55) this gives B(°)¢ + k(T80 — age — B2U — kST = —8(°TF )¢ 4 (@ ; Mo - (s,

3 3
that is, (2k — a)SU = B(2k — )¢ + (k* — a? — 382)U. If a = 2k, we get —3k? — 352 = 0, which is impossible.
Thus « # 2k and

k2 — o2 — 382
2k —
Taking Y = U in (5.4) we get 82U — k¢SU + kSoU = —apSU + S$SU. From (5.5) and (5.6) we obtain

SU = B¢+ U. (5.6)

36% — k* 4+ 2a° + ak = 0. (5.7)

From (5.7), k* — o? — 3% = o + ak and we can write (5.6) as

2
k
SU=pe+ £ T Tk (5.8)
2k — a

We also have obtained that €y is S-invariant. Take Y € €y in (5.4). Then we get

—kdSY + kSoY = —agpSY + S¢SY (5.9)
for any Y € Cy. Suppose SY = \Y. From (5.9) we have —kApY + kS¢Y = —arpY + AS@Y. That is, (A —
k)S¢Y = ANa —k)pY. If A =k we get k(o — k) =0, and as k # 0, a = k. From (5.7) 38% + 2k* = 0, which is
impossible. Thus A # k and

a—k

SeY = \5—

)oY (5.10)

forany Y € Cy such that SY = \Y.
If we take ¢Y instead of Y in (5.9) we obtain —kpS¢Y — kSY = —apSeoY + SpSY. As A # k this yields
EX(a—A) = (o — k)A\(a — ). Therefore we can have

* o = )\ In this case S¢Y = a¢Y.
e a# )\ As2k—a#0,then A =0and S¢Y = 0.
* o # A\ A #0. Then a = 2k, which is impossible.

Moreover, if a = —k, from (5.7), 38% — k? 4+ 202 + ak = 33% = 0, which is impossible. This yields that our real
hypersurface is not ruled, finishing the proof.
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Remark

The real hypersurfaces appearing in Theorem 1.2 are not the ones appearing in Theorem 1.1, because if

2= QT—HC, we have a = —4k. Then from (5.7) we obtain 33 + 27k* = 0, which is impossible, proving the first

4
Corollary.

6. Proof of Theorem 1.3
Let now M be a real hypersurface satisfying Sl(f) (X,Y) = —Sl(f) (Y, X) for any X,Y € C. Then we have

—n(SY)$SX — g(¢SX,Y)SE = n(SX)pSY — g(¢SY, X)S¢ = 0 (6.1)

for any X,Y € C. Suppose first that M is Hopf and write S§ = a. The scalar product of (6.1) and ¢ gives
ag(@pSX,Y)E + ag(¢SY, X )¢ = 0. Thatis, a(¢S — S¢) X = 0forany X € C. Therefore either o # 0 and then ¢S =
S¢, thus M is locally congruent to a tube around CP', m = 21, or a = 0. In this case take X € € such that SX =
AX. Codazzi equation yields (VxS)§ — (VeS)X = —SpSX — Ve AX 4+ SV X, If we take its scalar product
with £ we obtain —g(VeAX, §) = g(AX, #SE) = 0 = g(X, AN)g(AE, §) — g(§, AN)g(AX, §) + g(X, A§)g(J AL, §) —
9(§, AN)g(JAX, &) = 29(X, AN)g(AE,€). Thus either g(A¢, &) = 0 and N is 2-isotropic or g(AN, X) = 0 for any
X € Cand N is A-principal. In this case M is locally congruent to a tube of radius r < —"_ around S™. But as

2v2
a =0, cot(V2r) = 0 and this yields r = %, which is impossible. Therefore N is 2-isotropic.

Suppose now that M is non Hopf and write again S¢ = o + SU. The scalar product of (6.1) and ¢U implies

—n(SY)g(SX,U) —n(SX)g(SY,U) =0 (6.2)

for any X,Y € C. Let Y € C be orthogonal to U and X = U. Then from (6.2) we have —3¢(SU,Y") = 0 for any
Y € € orthogonal to U. Thus

SU = B¢ +~U (6.3)

for a certain function ~.

Taking Y = U in (6.1) it follows —8¢SX — g(¢SX,U)SE — n(SX)pSU — g(¢SU, X)SE =0 for any X € €. Its
scalar product with U yields 28¢(S¢U, X) — Bg(¢SU, X) = 0 for any X € C. As 3 # 0, this gives 25¢U = ¢SU =
~¢U. Therefore

SoU = %qu. (6.4)

The scalar product of (6.1) and & implies —ag(¢SX,Y) — ag(¢SY,X) =0, for any X,Y € C.If a # 0 we have
g(@SX,Y) + g(¢SY, X) =0forany X,Y € C. Taking X =U,Y = ¢U, we get g(¢.SU, ¢U) + g(¢S¢U,U) = 0. That
is, g(SU,U) — g(SoU, pU) = v — % = % = 0. Therefore v = 0, and SU = 8¢, S¢pU = 0. Takenow X € Cy, Y =U
in (6.1) and obtain —f¢SX = 0. As § # 0, SX =0 for any X € Cy and M is ruled.

The other possibility is to have oo = 0. Then S¢ = gU. Taking Y = U, X € Cy in (6.1) we also obtain —¢SX =
0. Thatis, SX = 0 for any X € Cy. Therefore if v = 0, we have a minimal ruled real hypersurface. If v # 0, take
X =Y € Cin (6.2). Then n(SX)g(SX,U) =0 for any X € C. Taking X = U we get 5g(SU,U) =0. Thus v =0
and we arrive at a contradiction, finishing the proof.

7. Proof of Theorem 1.4

If M is a real hypersurface such that Sgc)(f ) = —Sg“)(Y, &) forany Y € C we get

—(SY)$SE — kdSY — g(¢SE,Y)SE + kSFY — n(SE)PSY + SpSY =0 (7.1)

for any Y € C. If we suppose that M is Hopf and write S¢ = o, from (7.1) we get —k¢SY + kSoY — apSY +
S¢SY = 0forany Y € C. That is
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—(k+ a)pSY + kS¢oY + SpSY =0 (7.2)
for any Y € C. If we take the scalar product of (7.2) and X € € and change X by Y and Y by X we have

(k+ a)S¢Y — koSY — SéSY =0 (7.3)
for any Y € C. Substracting (7.3) from (7.2) we obtain

25¢0SY — a(pS + S9)Y =0 (7.4)
for any Y € C. As we have seen above, this yields m = 2 and it is impossible.
Therefore we suppose M is non Hopf and write S¢ = o + SU. Then (7.1) yields
—8n(SY)oU — kopSY — Bg(oU,Y)SE + kESPY — apSY + SoSY =0 (7.5)
forany Y € C. The scalar product of (7.5) and & gives —aB8g(¢U,Y) + kBg(¢Y,U) + Bg(¢SY,U) = 0forany Y € C
and as 5 # 0 we get —(a+ k)g(¢U,Y) — g(S¢U,Y) = 0 for any Y € C. Then
SoU = —(a + k)oU. (7.6)

The scalar product of (7.1) and ¢U gives —fn(SY) — (k+ a)g(SY,U) + kg(¢Y, S¢U) + g(¢SY, S¢U) = 0 for
any Y € C,and bearing in mind (7.6) we get —3%g(Y,U) — 2(a + k)g(SU,Y) — k(a + k)g(Y,U) = O forany Y € C.
If o + k = 0, we should have 3 = 0, which is impossible. Therefore

a+k#0. 7.7
Moreover, if Y € Cy we have (o + k)g(SU,Y) =0 and from (7.7), g(SU,Y) =0forany Y € Cy. If Y = U, it
follows 2(a + k)g(SU,U) = —k(a + k) — 2. Thus

e kLB
SU=B- G+ 307w

If we take Y = ¢U in (7.5) we get —k¢pSoU — S — kSU — apSoU + SpSoU = 0, that is, —(k + a)pSoU —
BSE — kSU + (a+ k)SU = 0. Then, —(k + a)?U — 3S¢ + aSU = 0 and its scalar product with U gives —(k +
a)? — B2+ ag(SU,U) = 0. If « = 0 we obtain —k* — 3* = 0, which is impossible. Therefore

)U. (7.8)

a#0 (7.9)
and
2 2
SU = pe 4 B+ a; 5y (7.10)
k 52 _(k:-i—a)Q—&-BQ . . 2 3
From (7.8) and (7.10), T T et k) " and this yields —k(a + k)a — a8” = 2(k 4+ a)” + 2(a +
k)?. Therefore
(a+ k) (—ak — 2(a + k)?) = (3o + 2k) 52, (7.11)
2 2 2 3
If 30+ 2k = 0, k = —ga and from (7.11), (o — 37“)(3% - 2(—370“ +a)?) = 0. Then —%(3% - 2%) = —% =
0. Then a = 0, a contradiction with (7.9). Therefore,
3a + 2k # 0. (7.12)

We also know that Cy; is S-invariant. Let Y € Cy. From (7.5) we obtain

—koSY + koY — apSY + S¢SY = 0. (7.13)
As Cy is S-invariant, if we take the scalar product of (7.13) and X € Cy and change X by Y we obtain

kSoY — k¢SY + aS¢Y — S¢SY = 0. (7.14)
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Substracting (7.14) from (7.13) we get

—a(S + SP)Y +25¢SY =0 (7.15)

forany Y € €y and adding (7.13) and (7.14) we have

(2k + a)(S¢Y — ¢pSY) =0 (7.16)

for any Y € Cy. If we suppose 2k +a =0, from (7.11) we have —k(2k? — 2(—k)?) = 0 = —43?, which is
impossible. Then

2%+ a0 (7.17)

and

SPY = ¢SY (7.18)

forany Y € Cy. Let us suppose that Y € Cy satisfies SY = AY. Then (7.18) yields S¢Y = A¢Y and from (7.15)
—2a\pY +2)\?¢Y = 0. Thus A(A — a) = 0 and either A = 0 or \ = a. Therefore on €; we have at most two
distinct principal curvatures, o and 0. From (7.7) our real hypersurface is not ruled and the proof is finished.
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