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ABSTRACT

A real hypersurface M in the complex quadric Qm = SOm+2/SOmSO2 inherits an almost contact
metric structure . This structure allows to define, for any nonnull real number k, the so called k-th
generalized Tanaka-Webster connection on M , ∇̂(k). If ∇ denotes the Levi-Civita connection on
M , we introduce the concepts of (∇̂(k),∇)-Codazzi and (∇̂(k),∇)-Killing shape operator S of the
real hypersurface and classify real hypersurfaces in Qm satisfying any of these conditions.
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1. Introduction

Suppose that (M̃, J, g) is a Kähler manifold and M a real hypersurface of M̃ , that is, a submanifold of
codimension 1 with local normal unit vector field N . The Kähler structure (J, g) induces on M an almost
constant metric structure (ϕ, η, g, ξ). Let ∇ be the Levi-Civita connection on M and S the shape operator
associated to N .

Given such an almost contact metric structure, if k is a nonnull real number we can define the so called k-th
generalized Tanaka-Webster connection ∇̂(k) on M by

∇̂(k)
X Y = ∇XY + g(ϕSX, Y )ξ − η(Y )ϕSX − kη(X)ϕY

for any X,Y tangent to M (see [3]). Let us denote by F
(k)
X Y = g(ϕSX, Y )ξ − η(Y )ϕSX − kη(X)ϕY , for any

X,Y tangent to M and call it the k-th Cho operator on M associated to X . Notice that if X ∈ C, the maximal
holomorphic distribution on M given by all the vector fields orthogonal to ξ, the associated Cho operator does
not depend on k and we will denote it simply by FX . If L is a tensor field of type (1,1) on M we sill say that
L is (∇̂(k),∇)-parallel if ∇XL = ∇̂(k)

X L for any vector field X tangent to M . ∇̂(k)
X L = ∇XL for a vector field X

tangent to M if and only if F (k)
X L = LF

(k)
X , that is, the eigenspaces of L are preserved by F

(k)
X . Let us call L(k)

F to
the tensor of type (1,2) on M given by L

(k)
F (X,Y ) = [F

(k)
X , L](Y ) = F

(k)
X L(Y )− LF

(k)
X (Y ), for any X,Y tangent

to M . Then L is (∇̂(k),∇)-parallel if and only if the tensor L(k)
F vanishes identically.

In this paper we will consider real hypersurfaces in the complex quadric. The complex quadric Qm =
SOm+2/SOmSO2 is a compact Hermitian symmetric space of rank 2. Qm has a Kählerian structure (J, g) and a
parallel rank two vector bundle A which contains an S1-bundle of real structures, that is, complex conjugations
A on the tangent spaces of Qm satisfying A2 = I and AJ = −JA. This determines a maximal A-invariant
subbundle Q of the tangent bundle TM for a real hypersurface M in Qm. A nonzero tangent vector W at a
point of Qm is called singular if it is tangent to more than one maximal flat in Qm . There are two types of
singular tangent vectors for Qm
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• If there exists a conjugation A ∈ A such that W satisfies AW = W , W is singular and is called A-singular.
• If there exists a conjugation A ∈ A and orthonormal vectors X,Y such that AX = X , AY = Y , with

W/∥W∥ = (X + JY )/
√
2, W is singular and called A-isotropic.

The study of real hypersurfaces M in Qm was initiated by Berndt and Suh in [1]. In this paper the geometric
properties of real hypersurfaces M in complex quadric Qm , which are tubes of radius r, 0 < r < π/2, around
the totally geodesic CPn in Qm , when m = 2n or tubes of radius r, 0 < r < π/2

√
2, around the totally geodesic

Qm−1 in Qm , are presented. The condition of isometric Reeb flow is equivalent to the commuting condition of
the shape operator S with the structure tensor ϕ of M . The classification of such real hypersurfaces in Qm is
obtained in [2].

A real hypersurface M in Qm is called Hopf if its Reeb vector field ξ is an eigenvector for S.
We will denote by C the maximal holomorphic distribution on M , C = {X ∈ TM |g(X, ξ) = 0}. The

distribution C is said to be integrable if [X,Y ] ∈ C for any vector fields X,Y ∈ C. We say that M is ruled if C is
integrable and its integral manifolds are totally geodesic Qm−1 in Qm . This is equivalent to have g(SX, Y ) = 0
for any X,Y ∈ C (see [4] for examples of ruled real hypersurfaces).

We will say that a tensor field L of type (1,1) on M is (∇̂(k),∇)-Codazzi if it satisfies

(∇̂(k)
X L)Y − (∇̂(k)

Y L)X = (∇XL)Y − (∇Y L)X

for any X,Y tangent to M . Its easy to see that this condition is equivalent to L
(k)
F being symmetric, that is,

L
(k)
F (X,Y ) = L

(k)
F (Y,X) for any X,Y tangent to M . This condition generalizes the concept of L being (∇̂(k),∇)-

parallel.
In the particular case of L = S, in [8] we proved non-existence of real hypersurfaces in Qm whose shape

operator is (∇̂(k),∇)-parallel, for any nonnull real number k. In this paper we will study real hypersurfaces
in Qm for wich S

(k)
F is symmetric, that is S

(k)
F (X,Y ) = S

(k)
F (Y,X), either if X,Y ∈ C or if X = ξ, Y ∈ C, in the

following

Theorem 1.1. Let M be a real hypersurface in Qm , m ≥ 3. Then S
(k)
F (X,Y ) = S

(k)
F (Y,X) for some nonnull real number

k and any X,Y ∈ C if and only if M is locally congruent to either a ruled real hypersurface or to a non Hopf non ruled real

hypersurface with four distinct principal curvatures, 0 with multiplicity 2m− 4,
α

4
with multiplicity 1,

α

4
+

√
β2 +

9α2

16

and
α

4
−
√

β2 +
9α2

16
, each with multiplicity 1, where α and β are nonvanishing functions.

Theorem 1.2. Let M be a real hypersurface of Qm , m ≥ 3. Then S
(k)
F (ξ, Y ) = S

(k)
F (Y, ξ) for some nonnull real number

k and any Y ∈ C if and only if M is locally congruent to a non Hopf non ruled real hypersurface with, at most, five
distinct principal curvatures.

From both Theorems we can conclude

Corollary 1.1. There does not exist any real hypersurface in Qm , m ≥ 3, such that S(k)
F is symmetric, for any nonnull

real number k.

We will say that a tensor field L of type (1,1) on M is (∇̂(k),∇)-Killing if it satisfies

(∇̂(k)
X L)Y + (∇̂(k)

Y L)X = (∇XL)Y + (∇Y L)X

for any X,Y tangent to M . This condition also generalizes the condition of L being (∇̂(k),∇)-parallel and is
equivalent to L

(k)
F being skewsymmetric, that is, L(k)

F (X,Y ) + L
(k)
F (Y,X) = 0 for any X,Y tangent to M . We

will study real hypersurfaces in Qm such that S(k)
F is skewsymmetric either if X,Y ∈ C or if X = ξ, Y ∈ C.

We will prove

Theorem 1.3. Let M be a real hypersurface in Qm , m ≥ 3. Then S
(k)
F (X,Y ) = −S

(k)
F (Y,X) for some nonnull real

number k and any X,Y ∈ C if and only if either

1. M is Hopf with Sξ = 0 and N is A-isotropic, or

2. M is locally congruent to a tube around CP l, m = 2l, or
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3. M is locally congruent to a ruled real hypersurface.

Theorem 1.4. Let M be a real hypersurface in Qm , m ≥ 3. Then S
(k)
F (ξ, Y ) = −S

(k)
F (Y, ξ) for some nonnull real number

k and any Y ∈ C if and only if M is locally congruent to a non Hopf non ruled real hypersurface with, at most, five distinct
principal curvatures.

Corollary 1.2. There does not exist any real hypersurface M in Qm , m ≥ 3, such that S(k)
F is skewsymmetric, for any

nonnull real number k.

2. The space Qm.

For more details in this section we refer to [5], [6], [9], [11], [12], and [13]. The complex quadric Qm is the
complex hypersurface in CPm+1 which is defined by the equation z21 + · · ·+ z2m+2 = 0, where z1, . . . , zm+2 are
homogeneous coordinates on CPm+1. We equip Qm with the Riemannian metric which is induced from the
Fubini Study metric on CPm+1 with constant holomorphic sectional curvature 4. The Kähler structure on
CPm+1 induces canonically a Kähler structure (J, g) on the complex quadric.

The complex projective space CPm+1 is defined by using the Hopf fibration

π : S2m+3→CPm+1, z→[z],

which is said to be a Riemannian submersion. Then we can consider the following diagram for the complex
quadric Qm :

Q̃ = π−1(Q) S2m+3 ⊂ Cm+2

Q = Qm CPm+1

ĩ

π π

i

The submanifold Q̃ of codimension 2 in S2m+3 is called the Stiefel manifold of orthonormal 2-frames in Rm+2,
which is given by

Q̃ = {x+ iy∈Cm+2|g(x, x) = g(y, y) =
1

2
and g(x, y) = 0},

where g(x, y) =
∑m+2

i=1
xiyi for any x = (x1, . . ., xm+2), y = (y1, . . ., ym+2)∈Rm+2. Then the tangent space is

decomposed as TzS
2m+3 = Hz⊕Fz and TzQ̃ = Hz(Q)⊕Fz(Q) at z = x+ iy∈Q̃ respectively, where the horizontal

subspaces Hz and Hz(Q) are given by Hz = (Cz)⊥ and Hz(Q) = (Cz⊕Cz̄)⊥, and Fz and Fz(Q) are fibers which
are isomorphic to each other. Here Hz(Q) is a subspace of Hz of real codimension 2 and orthogonal to the two
unit normals −z̄ and −Jz̄. Explicitly, at the point z = x+ iy∈Q̃ it can be described as

Hz = {u+ iv∈Cm+2| g(x, u) + g(y, v) = 0, g(x, v) = g(y, u)}

and
Hz(Q) = {u+ iv∈Hz| g(u, x) = g(u, y) = g(v, x) = g(v, y) = 0},

where Cm+2 = Rm+2⊕iRm+2, and g(u, x) =
∑m+2

i=1
uixi for any u = (u1, . . ., um+2),

x = (x1, . . ., xm+2)∈Rm+2.

These spaces can be naturally projected by the differential map π∗ as π∗Hz = Tπ(z)CPm+1 and π∗Hz(Q) =
Tπ(z)Q respectively. Thus at the point π(z) = [z] the tangent subspace T[z]Q

m becomes a complex subspace of
T[z]CPm+1 with complex codimension 1. The unit normal fields −π∗z̄ and −π∗Jz̄ span the normal space of Qm

in CPm at every point (see Reckziegel [9]).

Then let us denote by Az̄ the shape operator of Qm in CPm+1 with respect to the unit normal π∗z̄. It satisfies
Az̄π∗w = ∇̃π∗wz̄ = π∗w̄ for every w ∈ Hz(Q), where ∇̃ denotes the covariant derivative of CPm+1 induced by its
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Fubini-Study metric. That is, the shape operator Az̄ is just a complex conjugation restricted to T[z]Q
m. Moreover,

it satisfies the following for any w ∈ T[z]Q
m and any λ∈S1⊂C

A2
λz̄w =Aλz̄Aλz̄w = Aλz̄λw̄

=λAz̄λw̄ = λ∇̄λw̄z̄ = λλ̄ ¯̄w

=|λ|2w = w.

Accordingly, A2
λz̄ = I for any λ∈S1. So the shape operator Az̄ becomes an anti-commuting involution such that

A2
z̄ = I and AJ = −JA on the complex vector space T[z]Q

m and

T[z]Q
m = V (Az̄)⊕ JV (Az̄),

where V (Az̄) = π∗(Rm+2 ∩HzQ) is the (+1)-eigenspace and JV (Az̄) = π∗(iRm+2 ∩Hz(Q)) is the (−1)-
eigenspace of Az̄ . That is, Az̄X = X and Az̄JX = −JX , respectively, for any X∈V (Az̄).

The Gauss equation for Qm ⊂ CPm+1 implies that the Riemannian curvature tensor R̄ of Qm can be described
in terms of the complex structure J and any complex conjugation A ∈ A:

R̄(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

+g(AY,Z)AX − g(AX,Z)AY + g(JAY,Z)JAX − g(JAX,Z)JAY.

Note that J and each complex conjugation A anti-commute, that is, AJ = −JA for each A ∈ A.

3. Real hypersurfaces in Qm .

Consider a real hypersurface M in Qm with unit local normal vector field N . For any vector field X tangent
to M we write

JX = ϕX + η(X)N (3.1)

where ϕX denotes the tangential component of JX . ϕ defines on M a skew-symmetric tensor field of type (1,1)
called the structure tensor. The vector field ξ = −JN is called the Reeb vector field of M . Consider on M the
1-form given by η(X) = g(X, ξ) for any vector field X tangent to M . We have that (ϕ, ξ, η, g) is an almost contact
metric structure on M . Therefore we have the following relations

ϕ2X = −X + η(X)ξ, η(ξ) = 1, g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ) (3.2)

for any X,Y tangent to M . From (3.2) we also have

ϕξ = 0, η(X) = g(X, ξ).

The tangent bundle TM of M splits orthogonally into

TM = C⊕ F,

where C = ker(η) = {X ∈ TM |g(X, ξ) = 0} is the maximal complex (holomorphic) subbundle of TM and
F = Rξ. Notice that the structure tensor field ϕ restricted to C coincides with the complex structure J .

At each point z ∈ M we define a maximal A-invariant subspace of TzM as

Qz = {X ∈ TzM |AX ∈ TzM, ∀A ∈ Az}.

Then we have, [2],

Lemma 3.1. Let M be a real hypersurface in Qm . Then the following are equivalent

1. The normal vector Nz of M at z is A-principal.

2. Qz = Cz .
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If the normal vector Nz of M at z is not A-principal there exists a real structure A ∈ A[z] such that

N[z] = cos(t)Z1 + sin(t)JZ2,

AN[z] = cos(t)Z1 − sin(t)JZ2, (3.3)

where Z1, Z2 are orthonormal eigenvectors of A with eigenvalue 1 and 0 < t ≤ π

4
. As ξ = −JN (3.3) implies

ξ[z] = − cos(t)JZ1 + sin(t)Z2,

Aξ[z] = cos(t)JZ1 + sin(t)Z2. (3.4)

So we have g(AN[z], ξ[z]) = 0, g(Nz, ANz) = cos(2t) = −g(ξz, Aξz).
The shape operator of a real hypersurface M in Qm is denoted by S. The real hypersurface is called Hopf

hypersurface if the Reeb vector field is an eigenvector of the shape operator, i.e.

Sξ = αξ, (3.5)

where α = g(Sξ, ξ) is the Reeb function. The Codazzi equation of M is given by

g((∇XS)Y − (∇Y S)X,Z) = η(X)g(ϕY,Z)− η(Y )g(ϕX,Z)− 2η(Z)g(ϕX, Y )

+g(X,AN)g(AY,Z)− g(Y,AN)g(AX,Z) + g(X,Aξ)g(JAY,Z)− g(Y,Aξ)g(JAX,Z)

(3.6)

for any X,Y, Z tangent to M . To be used later we have, see [2], the following

Proposition 3.1. The following statements hold for a tube M of radius r, 0 < r < π/2 around the totally geodesic CP l

in Qm , m = 2l:

1. M is a Hopf hypersurface.

2. The normal bundle of M consists of A-isotropic singular tangent vectors of Qm .

3. M has four distinct principal curvatures, unless m = 2 in which case M has two distinct principal curvatures,
which are given in the following matrix

Principal curvature Eigenspace Multiplicity

−2 cot(2r) F 1

− cot(r) νzCPn ⊖ [ξ] 2l − 2

tan(r) TzCPn ⊖ [Aξ] 2l − 2

0 [Aξ] 2

4. The shape operator commutes with the structure tensor field ϕ, i.e. Sϕ = ϕS.

5. M is a homogeneous hypersurface.

Proposition 3.2. Let M be a Hopf real hypersurface in Qm , m ≥ 3. Then the tensor field 2SϕS − α(ϕS + Sϕ) leaves
Q and C⊖ Q invariant and we have 2SϕS − α(ϕS + Sϕ) = 2ϕ on Q and 2SϕS − α(ϕS + Sϕ) = 2µ2ϕ on C⊖ Q, where
µ = g(Aξ, ξ) = −cos(2t).

Recently, Lee and Suh, [7], have proved the following

Proposition 3.3. Let M be a Hopf real hypersurface in Qm , m ≥ 3. Then M has an A-principal normal vector field
in Qm if and only if M is locally congruent to a tube of radius r, 0 < r <

π

2
√
2

around the m-dimensional sphere Sm,

embedded in Qm as a real form of Qm .

The Reeb function of such a tube is α = −
√
2cot(

√
2r).

225 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


New Results on Derivatives of the Shape Operator of Real Hypersurfaces in the Complex Quadric

4. Proof of Theorem 1.1

Let M be a real hypersurface in Qm such that S(k)
F (X,Y ) = S

(k)
F (Y,X) for any X,Y ∈ C. This yields

g(ϕSX,SY )ξ − η(SY )ϕSX − g(ϕSX, Y )Sξ = g(ϕSY, SX)ξ − η(SX)ϕSY − g(ϕSY,X)Sξ (4.1)

for any X,Y ∈ C. Suppose first that M is Hopf and write Sξ = αξ. From (4.1) we get g(ϕSX,SY )ξ −
αg(ϕSX, Y )ξ = g(ϕSY, SX)ξ − αg(ϕSY,X)ξ, for any X,Y ∈ C. Therefore , for any X ∈ C we have

2SϕSX = α(ϕS + Sϕ)X. (4.2)

As M is Hopf we know from Proposition 3.2 that 2SϕSX − α(ϕS + Sϕ)X = 2ϕX for any X ∈ Q and 2SϕSX −
α(ϕS + Sϕ)X = 4cos2(2t)ϕX for any X ∈ C⊖ Q. From (4.2) we have Q = 0 and m = 2, which is impossible.

Thus M must be non Hopf. We write Sξ = αξ + βU , for a unit U ∈ C, being β a nonvanishing function at least
on an open neighborhood of a point of M . The calculations are made on such a neighborhood.

The scalar product of (4.1) and ϕU gives −η(SY )g(SX,U) = −η(SX)g(SY,U) for any X,Y ∈ C. Take Y ∈ C

and orthogonal to U . Then we have η(SX)g(SY,U) = 0 for any X ∈ C and such a Y . If now X = U we obtain
βg(SU, Y ) = 0 for any Y ∈ C orthogonal to U . This yields

SU = βξ + γU (4.3)

for a certain function γ.
The scalar product of (4.1) and U implies

η(SY )g(SX, ϕU)− βg(ϕSX, Y ) = η(SX)g(SY, ϕU)− βg(ϕSY,X) (4.4)

for any X,Y ∈ C.
If we take X = U in (4.4) we get −βg(ϕSU, Y ) = β(SϕU, Y ) + βg(SϕU, Y ) for any Y ∈ C and, as β ̸= 0 this

yields 2SϕU = −ϕSU = −γϕU . Thus

SϕU = −γ

2
ϕU. (4.5)

The scalar product of (4.1) and ξ gives

g(ϕSX,SY )− αg(ϕSX, Y ) = g(ϕSY, SX)− αg(ϕSY,X) (4.6)

for any X,Y ∈ C. Take X = U , Y = ϕU in (4.6). We obtain 2g(ϕSU, SϕU)− αg(SU,U) = αg(SϕU, ϕU), that is,
−γ2 − αγ = −αγ

2
, or γ(γ +

α

2
) = 0. Therefore, either γ = 0 or γ = −α

2
.

Now we take X,Y ∈ CU = {Z ∈ C|g(Z,U) = g(Z, ϕU) = 0} in (4.4) and, as β ̸= 0, we get g(ϕSX, Y ) =
g(ϕSY,X) for any X,Y ∈ CU . From (4.3) and (4.5) this yields

SϕX + ϕSX = 0 (4.7)

for any X ∈ CU . Suppose X ∈ CU is unit and satisfies SX = λX , then from (4.7), SϕX = −λϕX . Moreover, from
(4.6) SϕSX − αϕSX = −SϕSX + αSϕX . That is, 2SϕSX = α(ϕS + Sϕ)X = 0. Therefore, −2λ2 = 0. Thus the
unique principal curvature on CU is 0. Then if γ = 0, M is a ruled real hypersurface.

If γ = −α

2
we have Sξ = αξ + βU , SU = βξ − α

2
U , SϕU =

α

4
ϕU and SX = 0 for any X ∈ CU . In this case,

if α = 0, M is ruled and minimal. If α ̸= 0, M is a non Hopf, no ruled real hypersurface with four distinct

principal curvatures, 0 with multiplicity 2m− 4,
α

4
, with multiplicity 1,

α

4
+

√
β2 +

9α2

16
and

α

4
−
√

β2 +
9α2

16
,

each with multiplicity 1, finishing the proof.

5. Proof of Theorem 1.2

Suppose now that S(k)
F (ξ, Y ) = S

(k)
F (Y, ξ) for any Y ∈ C. therefore
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g(ϕSξ, SY )ξ − η(SY )ϕSξ − kϕSY − g(ϕSξ, Y )Sξ
+kSϕY = g(ϕSY, Sξ)ξ − η(Sξ)ϕSY + SϕSY

(5.1)

for any Y ∈ C. Suppose first that M is Hopf with Sξ = αξ. From (5.1) we have −kϕSY + kSϕY = −αϕSY +
SϕSY for any Y ∈ C. Thus

SϕSY = αϕSY + k(Sϕ− ϕS)Y (5.2)

for any Y ∈ C. If we take the scalar product of (5.2) and X ∈ C and change X and Y we obtain

−SϕSY = −αSϕY + k(Sϕ− ϕS)Y (5.3)

for any Y ∈ C.
If we substract (5.3) from (5.2) we get 2SϕSY = α(ϕS + Sϕ)Y for any Y ∈ C and, as in previous Theorem, we

arrive to a contradiction. Therefore, M must be non Hopf.
We write as above Sξ = αξ + βU . Then (5.1) becomes

βgS(ϕU, Y )ξ − β2g(U, Y )ϕU − kϕSY − βg(ϕU, Y )Sξ
+kSϕY = −βg(SϕU, Y )ξ − αϕSY + SϕSY

(5.4)

for any Y ∈ C. The scalar product of (5.4) with ξ, bearing in mind that β ̸= 0, gives g(SϕU, Y )− (α+
k)g(ϕU, Y ) = −2g(SϕU, Y ) for any Y ∈ C. Thus 3SϕU = (α+ k)ϕU , that is

SϕU =
α+ k

3
ϕU. (5.5)

Taking Y = ϕU in (5.4) we obtain βg(SϕU, ϕU)ξ − kϕSϕU − βSξ − kSU = βg(ϕSϕU,U)ξ − αϕSϕU + SϕSU .

From (5.5) this gives β(
α+ k

3
)ξ + k(

α+ k

3
)U − αβξ − β2U − kSU = −β(

α+ k

3
)ξ + α(

α+ k

3
)U − (

α+ k

3
)SU ,

that is, (2k − α)SU = β(2k − α)ξ + (k2 − α2 − 3β2)U . If α = 2k, we get −3k2 − 3β2 = 0, which is impossible.
Thus α ̸= 2k and

SU = βξ +
k2 − α2 − 3β2

2k − α
U. (5.6)

Taking Y = U in (5.4) we get β2ϕU − kϕSU + kSϕU = −αϕSU + SϕSU . From (5.5) and (5.6) we obtain

3β2 − k2 + 2α2 + αk = 0. (5.7)

From (5.7), k2 − α2 − 3β2 = α2 + αk and we can write (5.6) as

SU = βξ +
α2 + αk

2k − α
U. (5.8)

We also have obtained that CU is S-invariant. Take Y ∈ CU in (5.4). Then we get

−kϕSY + kSϕY = −αϕSY + SϕSY (5.9)

for any Y ∈ CU . Suppose SY = λY . From (5.9) we have −kλϕY + kSϕY = −αλϕY + λSϕY . That is, (λ−
k)SϕY = λ(α− k)ϕY . If λ = k we get k(α− k) = 0, and as k ̸= 0, α = k. From (5.7) 3β2 + 2k2 = 0, which is
impossible. Thus λ ̸= k and

SϕY = λ(
α− k

λ− k
)ϕY (5.10)

for any Y ∈ CU such that SY = λY .
If we take ϕY instead of Y in (5.9) we obtain −kϕSϕY − kSY = −αϕSϕY + SϕSY . As λ ̸= k this yields

kλ(α− λ) = (α− k)λ(α− λ). Therefore we can have

• α = λ. In this case SϕY = αϕY .
• α ̸= λ. As 2k − α ̸= 0, then λ = 0 and SϕY = 0.
• α ̸= λ, λ ̸= 0. Then α = 2k, which is impossible.

Moreover, if α = −k, from (5.7), 3β2 − k2 + 2α2 + αk = 3β2 = 0, which is impossible. This yields that our real
hypersurface is not ruled, finishing the proof.
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Remark

The real hypersurfaces appearing in Theorem 1.2 are not the ones appearing in Theorem 1.1, because if
α

4
=

α+ k

3
, we have α = −4k. Then from (5.7) we obtain 3β2 + 27k2 = 0, which is impossible, proving the first

Corollary.

6. Proof of Theorem 1.3

Let now M be a real hypersurface satisfying S
(k)
F (X,Y ) = −S

(k)
F (Y,X) for any X,Y ∈ C. Then we have

−η(SY )ϕSX − g(ϕSX, Y )Sξ − η(SX)ϕSY − g(ϕSY,X)Sξ = 0 (6.1)

for any X,Y ∈ C. Suppose first that M is Hopf and write Sξ = αξ. The scalar product of (6.1) and ξ gives
αg(ϕSX, Y )ξ + αg(ϕSY,X)ξ = 0. That is, α(ϕS − Sϕ)X = 0 for any X ∈ C. Therefore either α ̸= 0 and then ϕS =
Sϕ, thus M is locally congruent to a tube around CP l, m = 2l, or α = 0. In this case take X ∈ C such that SX =
λX . Codazzi equation yields (∇XS)ξ − (∇ξS)X = −SϕSX −∇ξλX + S∇ξX . If we take its scalar product
with ξ we obtain −g(∇ξλX, ξ) = g(λX, ϕSξ) = 0 = g(X,AN)g(Aξ, ξ)− g(ξ, AN)g(AX, ξ) + g(X,Aξ)g(JAξ, ξ)−
g(ξ, AN)g(JAX, ξ) = 2g(X,AN)g(Aξ, ξ). Thus either g(Aξ, ξ) = 0 and N is A-isotropic or g(AN,X) = 0 for any
X ∈ C and N is A-principal. In this case M is locally congruent to a tube of radius r <

π

2
√
2

around Sm. But as

α = 0, cot(
√
2r) = 0 and this yields r =

π

2
√
2

, which is impossible. Therefore N is A-isotropic.

Suppose now that M is non Hopf and write again Sξ = αξ + βU . The scalar product of (6.1) and ϕU implies

−η(SY )g(SX,U)− η(SX)g(SY,U) = 0 (6.2)

for any X,Y ∈ C. Let Y ∈ C be orthogonal to U and X = U . Then from (6.2) we have −βg(SU, Y ) = 0 for any
Y ∈ C orthogonal to U . Thus

SU = βξ + γU (6.3)

for a certain function γ.
Taking Y = U in (6.1) it follows −βϕSX − g(ϕSX,U)Sξ − η(SX)ϕSU − g(ϕSU,X)Sξ = 0 for any X ∈ C. Its

scalar product with U yields 2βg(SϕU,X)− βg(ϕSU,X) = 0 for any X ∈ C. As β ̸= 0, this gives 2SϕU = ϕSU =
γϕU . Therefore

SϕU =
γ

2
ϕU. (6.4)

The scalar product of (6.1) and ξ implies −αg(ϕSX, Y )− αg(ϕSY,X) = 0, for any X,Y ∈ C. If α ̸= 0 we have
g(ϕSX, Y ) + g(ϕSY,X) = 0 for any X,Y ∈ C. Taking X = U , Y = ϕU , we get g(ϕSU, ϕU) + g(ϕSϕU,U) = 0. That
is, g(SU,U)− g(SϕU, ϕU) = γ − γ

2
=

γ

2
= 0. Therefore γ = 0, and SU = βξ, SϕU = 0. Take now X ∈ CU , Y = U

in (6.1) and obtain −βϕSX = 0. As β ̸= 0, SX = 0 for any X ∈ CU and M is ruled.
The other possibility is to have α = 0. Then Sξ = βU . Taking Y = U , X ∈ CU in (6.1) we also obtain −βϕSX =

0. That is, SX = 0 for any X ∈ CU . Therefore if γ = 0, we have a minimal ruled real hypersurface. If γ ̸= 0, take
X = Y ∈ C in (6.2). Then η(SX)g(SX,U) = 0 for any X ∈ C. Taking X = U we get βg(SU,U) = 0. Thus γ = 0
and we arrive at a contradiction, finishing the proof.

7. Proof of Theorem 1.4

If M is a real hypersurface such that S(k)
F (ξ, Y ) = −S

(k)
F (Y, ξ) for any Y ∈ C we get

−η(SY )ϕSξ − kϕSY − g(ϕSξ, Y )Sξ + kSϕY − η(Sξ)ϕSY + SϕSY = 0 (7.1)

for any Y ∈ C. If we suppose that M is Hopf and write Sξ = αξ, from (7.1) we get −kϕSY + kSϕY − αϕSY +
SϕSY = 0 for any Y ∈ C. That is
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−(k + α)ϕSY + kSϕY + SϕSY = 0 (7.2)

for any Y ∈ C. If we take the scalar product of (7.2) and X ∈ C and change X by Y and Y by X we have

(k + α)SϕY − kϕSY − SϕSY = 0 (7.3)

for any Y ∈ C. Substracting (7.3) from (7.2) we obtain

2SϕSY − α(ϕS + Sϕ)Y = 0 (7.4)

for any Y ∈ C. As we have seen above, this yields m = 2 and it is impossible.
Therefore we suppose M is non Hopf and write Sξ = αξ + βU . Then (7.1) yields

−βη(SY )ϕU − kϕSY − βg(ϕU, Y )Sξ + kSϕY − αϕSY + SϕSY = 0 (7.5)

for any Y ∈ C. The scalar product of (7.5) and ξ gives −αβg(ϕU, Y ) + kβg(ϕY,U) + βg(ϕSY,U) = 0 for any Y ∈ C

and as β ̸= 0 we get −(α+ k)g(ϕU, Y )− g(SϕU, Y ) = 0 for any Y ∈ C. Then

SϕU = −(α+ k)ϕU. (7.6)

The scalar product of (7.1) and ϕU gives −βη(SY )− (k + α)g(SY,U) + kg(ϕY, SϕU) + g(ϕSY, SϕU) = 0 for
any Y ∈ C, and bearing in mind (7.6) we get −β2g(Y,U)− 2(α+ k)g(SU, Y )− k(α+ k)g(Y, U) = 0 for any Y ∈ C.
If α+ k = 0, we should have β = 0, which is impossible. Therefore

α+ k ̸= 0. (7.7)

Moreover, if Y ∈ CU we have (α+ k)g(SU, Y ) = 0 and from (7.7), g(SU, Y ) = 0 for any Y ∈ CU . If Y = U , it
follows 2(α+ k)g(SU,U) = −k(α+ k)− β2. Thus

SU = βξ − (
k

2
+

β2

2(α+ k)
)U. (7.8)

If we take Y = ϕU in (7.5) we get −kϕSϕU − βSξ − kSU − αϕSϕU + SϕSϕU = 0, that is, −(k + α)ϕSϕU −
βSξ − kSU + (α+ k)SU = 0. Then, −(k + α)2U − βSξ + αSU = 0 and its scalar product with U gives −(k +
α)2 − β2 + αg(SU,U) = 0. If α = 0 we obtain −k2 − β2 = 0, which is impossible. Therefore

α ̸= 0 (7.9)

and

SU = βξ +
(k + α)2 + β2

α
U. (7.10)

From (7.8) and (7.10), −k

2
− β2

2(α+ k)
=

(k + α)2 + β2

α
and this yields −k(α+ k)α− αβ2 = 2(k + α)3 + 2(α+

k)β2. Therefore

(α+ k)(−αk − 2(α+ k)2) = (3α+ 2k)β2. (7.11)

If 3α+ 2k = 0, k = −3

2
α and from (7.11), (α− 3α

2
)(
3α2

2
− 2(−3α

2
+ α)2) = 0. Then −α

2
(
3α2

2
− 2α2

4
) = −α3

2
=

0. Then α = 0, a contradiction with (7.9). Therefore,

3α+ 2k ̸= 0. (7.12)

We also know that CU is S-invariant. Let Y ∈ CU . From (7.5) we obtain

−kϕSY + kϕY − αϕSY + SϕSY = 0. (7.13)

As CU is S-invariant, if we take the scalar product of (7.13) and X ∈ CU and change X by Y we obtain

kSϕY − kϕSY + αSϕY − SϕSY = 0. (7.14)
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Substracting (7.14) from (7.13) we get

−α(ϕS + Sϕ)Y + 2SϕSY = 0 (7.15)

for any Y ∈ CU and adding (7.13) and (7.14) we have

(2k + α)(SϕY − ϕSY ) = 0 (7.16)

for any Y ∈ CU . If we suppose 2k + α = 0, from (7.11) we have −k(2k2 − 2(−k)2) = 0 = −4β2, which is
impossible. Then

2k + α ̸= 0 (7.17)

and

SϕY = ϕSY (7.18)

for any Y ∈ CU . Let us suppose that Y ∈ CU satisfies SY = λY . Then (7.18) yields SϕY = λϕY and from (7.15)
−2αλϕY + 2λ2ϕY = 0. Thus λ(λ− α) = 0 and either λ = 0 or λ = α. Therefore on CU we have at most two
distinct principal curvatures, α and 0. From (7.7) our real hypersurface is not ruled and the proof is finished.
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