New Results on Derivatives of the Shape Operator of Real Hypersurfaces in the Complex Quadric

Juan de Dios Pérez* and David Pérez-López

(Dedicated to Professor Bang-Yen CHEN on the occasion of his 80th birthday)

Abstract

A real hypersurface M in the complex quadric $Q^{m}=S O_{m+2} / S O_{m} S O_{2}$ inherits an almost contact metric structure. This structure allows to define, for any nonnull real number k, the so called k-th generalized Tanaka-Webster connection on $M, \hat{\nabla}^{(k)}$. If ∇ denotes the Levi-Civita connection on M, we introduce the concepts of $\left(\hat{\nabla}^{(k)}, \nabla\right)$-Codazzi and $\left(\hat{\nabla}^{(k)}, \nabla\right)$-Killing shape operator S of the real hypersurface and classify real hypersurfaces in Q^{m} satisfying any of these conditions.

Keywords: Complex quadric, real hypersurface, shape operator, k-th generalized Tanaka-Webster connection, Cho operators.
AMS Subject Classification (2020): Primary: 53C15 ; Secondary: 53B25.

1. Introduction

Suppose that (\tilde{M}, J, g) is a Kähler manifold and M a real hypersurface of \tilde{M}, that is, a submanifold of codimension 1 with local normal unit vector field N. The Kähler structure (J, g) induces on M an almost constant metric structure (ϕ, η, g, ξ). Let ∇ be the Levi-Civita connection on M and S the shape operator associated to N.

Given such an almost contact metric structure, if k is a nonnull real number we can define the so called k-th generalized Tanaka-Webster connection $\hat{\nabla}^{(k)}$ on M by

$$
\hat{\nabla}_{X}^{(k)} Y=\nabla_{X} Y+g(\phi S X, Y) \xi-\eta(Y) \phi S X-k \eta(X) \phi Y
$$

for any X, Y tangent to M (see [3]). Let us denote by $F_{X}^{(k)} Y=g(\phi S X, Y) \xi-\eta(Y) \phi S X-k \eta(X) \phi Y$, for any X, Y tangent to M and call it the k-th Cho operator on M associated to X. Notice that if $X \in \mathcal{C}$, the maximal holomorphic distribution on M given by all the vector fields orthogonal to ξ, the associated Cho operator does not depend on k and we will denote it simply by F_{X}. If L is a tensor field of type $(1,1)$ on M we sill say that L is $\left(\hat{\nabla}^{(k)}, \nabla\right)$-parallel if $\nabla_{X} L=\hat{\nabla}_{X}^{(k)} L$ for any vector field X tangent to $M . \hat{\nabla}_{X}^{(k)} L=\nabla_{X} L$ for a vector field X tangent to M if and only if $F_{X}^{(k)} L=L F_{X}^{(k)}$, that is, the eigenspaces of L are preserved by $F_{X}^{(k)}$. Let us call $L_{F}^{(k)}$ to the tensor of type (1,2) on M given by $L_{F}^{(k)}(X, Y)=\left[F_{X}^{(k)}, L\right](Y)=F_{X}^{(k)} L(Y)-L F_{X}^{(k)}(Y)$, for any X, Y tangent to M. Then L is $\left(\hat{\nabla}^{(k)}, \nabla\right)$-parallel if and only if the tensor $L_{F}^{(k)}$ vanishes identically.
In this paper we will consider real hypersurfaces in the complex quadric. The complex quadric $Q^{m}=$ $S O_{m+2} / \mathrm{SO}_{m} \mathrm{SO}_{2}$ is a compact Hermitian symmetric space of rank 2. Q^{m} has a Kählerian structure (J, g) and a parallel rank two vector bundle \mathfrak{A} which contains an S^{1}-bundle of real structures, that is, complex conjugations A on the tangent spaces of Q^{m} satisfying $A^{2}=I$ and $A J=-J A$. This determines a maximal \mathfrak{A}-invariant subbundle 2 of the tangent bundle $T M$ for a real hypersurface M in Q^{m}. A nonzero tangent vector W at a point of Q^{m} is called singular if it is tangent to more than one maximal flat in Q^{m}. There are two types of singular tangent vectors for Q^{m}

[^0]- If there exists a conjugation $A \in \mathfrak{A}$ such that W satisfies $A W=W, W$ is singular and is called \mathfrak{A}-singular.
- If there exists a conjugation $A \in \mathfrak{A}$ and orthonormal vectors X, Y such that $A X=X, A Y=Y$, with $W /\|W\|=(X+J Y) / \sqrt{2}, W$ is singular and called \mathfrak{A}-isotropic.

The study of real hypersurfaces M in Q^{m} was initiated by Berndt and Suh in [1]. In this paper the geometric properties of real hypersurfaces M in complex quadric Q^{m}, which are tubes of radius $r, 0<r<\pi / 2$, around the totally geodesic $\mathbb{C} P^{n}$ in Q^{m}, when $m=2 n$ or tubes of radius $r, 0<r<\pi / 2 \sqrt{2}$, around the totally geodesic Q^{m-1} in Q^{m}, are presented. The condition of isometric Reeb flow is equivalent to the commuting condition of the shape operator S with the structure tensor ϕ of M. The classification of such real hypersurfaces in Q^{m} is obtained in [2].

A real hypersurface M in Q^{m} is called Hopf if its Reeb vector field ξ is an eigenvector for S.
We will denote by \mathcal{C} the maximal holomorphic distribution on $M, \mathcal{C}=\{X \in T M \mid g(X, \xi)=0\}$. The distribution \mathcal{C} is said to be integrable if $[X, Y] \in \mathcal{C}$ for any vector fields $X, Y \in \mathcal{C}$. We say that M is ruled if \mathcal{C} is integrable and its integral manifolds are totally geodesic Q^{m-1} in Q^{m}. This is equivalent to have $g(S X, Y)=0$ for any $X, Y \in \mathcal{C}$ (see [4] for examples of ruled real hypersurfaces).

We will say that a tensor field L of type $(1,1)$ on M is $\left(\hat{\nabla}^{(k)}, \nabla\right)$-Codazzi if it satisfies

$$
\left(\hat{\nabla}_{X}^{(k)} L\right) Y-\left(\hat{\nabla}_{Y}^{(k)} L\right) X=\left(\nabla_{X} L\right) Y-\left(\nabla_{Y} L\right) X
$$

for any X, Y tangent to M. Its easy to see that this condition is equivalent to $L_{F}^{(k)}$ being symmetric, that is, $L_{F}^{(k)}(X, Y)=L_{F}^{(k)}(Y, X)$ for any X, Y tangent to M. This condition generalizes the concept of L being $\left(\hat{\nabla}^{(k)}, \nabla\right)-$ parallel.

In the particular case of $L=S$, in [8] we proved non-existence of real hypersurfaces in Q^{m} whose shape operator is $\left(\hat{\nabla}^{(k)}, \nabla\right)$-parallel, for any nonnull real number k. In this paper we will study real hypersurfaces in Q^{m} for wich $S_{F}^{(k)}$ is symmetric, that is $S_{F}^{(k)}(X, Y)=S_{F}^{(k)}(Y, X)$, either if $X, Y \in \mathcal{C}$ or if $X=\xi, Y \in \mathcal{C}$, in the following

Theorem 1.1. Let M be a real hypersurface in $Q^{m}, m \geq 3$. Then $S_{F}^{(k)}(X, Y)=S_{F}^{(k)}(Y, X)$ for some nonnull real number k and any $X, Y \in \mathcal{C}$ if and only if M is locally congruent to either a ruled real hypersurface or to a non Hopf non ruled real hypersurface with four distinct principal curvatures, 0 with multiplicity $2 m-4, \frac{\alpha}{4}$ with multiplicity $1, \frac{\alpha}{4}+\sqrt{\beta^{2}+\frac{9 \alpha^{2}}{16}}$ and $\frac{\alpha}{4}-\sqrt{\beta^{2}+\frac{9 \alpha^{2}}{16}}$, each with multiplicity 1 , where α and β are nonvanishing functions.

Theorem 1.2. Let M be a real hypersurface of $Q^{m}, m \geq 3$. Then $S_{F}^{(k)}(\xi, Y)=S_{F}^{(k)}(Y, \xi)$ for some nonnull real number k and any $Y \in \mathcal{C}$ if and only if M is locally congruent to a non Hopf non ruled real hypersurface with, at most, five distinct principal curvatures.

From both Theorems we can conclude
Corollary 1.1. There does not exist any real hypersurface in $Q^{m}, m \geq 3$, such that $S_{F}^{(k)}$ is symmetric, for any nonnull real number k.

We will say that a tensor field L of type $(1,1)$ on M is $\left(\hat{\nabla}^{(k)}, \nabla\right)$-Killing if it satisfies

$$
\left(\hat{\nabla}_{X}^{(k)} L\right) Y+\left(\hat{\nabla}_{Y}^{(k)} L\right) X=\left(\nabla_{X} L\right) Y+\left(\nabla_{Y} L\right) X
$$

for any X, Y tangent to M. This condition also generalizes the condition of L being $\left(\hat{\nabla}^{(k)}, \nabla\right)$-parallel and is equivalent to $L_{F}^{(k)}$ being skewsymmetric, that is, $L_{F}^{(k)}(X, Y)+L_{F}^{(k)}(Y, X)=0$ for any X, Y tangent to M. We will study real hypersurfaces in Q^{m} such that $S_{F}^{(k)}$ is skewsymmetric either if $X, Y \in \mathcal{C}$ or if $X=\xi, Y \in \mathcal{C}$.

We will prove
Theorem 1.3. Let M be a real hypersurface in $Q^{m}, m \geq 3$. Then $S_{F}^{(k)}(X, Y)=-S_{F}^{(k)}(Y, X)$ for some nonnull real number k and any $X, Y \in \mathcal{C}$ if and only if either

1. M is Hopf with $S \xi=0$ and N is \mathfrak{A}-isotropic, or
2. M is locally congruent to a tube around $\mathbb{C} P^{l}, m=2 l$, or

3. M is locally congruent to a ruled real hypersurface.

Theorem 1.4. Let M be a real hypersurface in $Q^{m}, m \geq 3$. Then $S_{F}^{(k)}(\xi, Y)=-S_{F}^{(k)}(Y, \xi)$ for some nonnull real number k and any $Y \in \mathcal{C}$ if and only if M is locally congruent to a non Hopf non ruled real hypersurface with, at most, five distinct principal curvatures.

Corollary 1.2. There does not exist any real hypersurface M in $Q^{m}, m \geq 3$, such that $S_{F}^{(k)}$ is skewsymmetric, for any nonnull real number k.

2. The space Q^{m}.

For more details in this section we refer to [5], [6], [9], [11], [12], and [13]. The complex quadric Q^{m} is the complex hypersurface in $\mathbb{C} P^{m+1}$ which is defined by the equation $z_{1}^{2}+\cdots+z_{m+2}^{2}=0$, where z_{1}, \ldots, z_{m+2} are homogeneous coordinates on $\mathbb{C} P^{m+1}$. We equip Q^{m} with the Riemannian metric which is induced from the Fubini Study metric on $\mathbb{C} P^{m+1}$ with constant holomorphic sectional curvature 4 . The Kähler structure on $\mathbb{C} P^{m+1}$ induces canonically a Kähler structure (J, g) on the complex quadric.

The complex projective space $\mathbb{C} P^{m+1}$ is defined by using the Hopf fibration

$$
\pi: S^{2 m+3} \rightarrow \mathbb{C} P^{m+1}, \quad z \rightarrow[z]
$$

which is said to be a Riemannian submersion. Then we can consider the following diagram for the complex quadric Q^{m} :

The submanifold \tilde{Q} of codimension 2 in $S^{2 m+3}$ is called the Stiefel manifold of orthonormal 2-frames in \mathbb{R}^{m+2}, which is given by

$$
\tilde{Q}=\left\{x+i y \in \mathbb{C}^{m+2} \left\lvert\, g(x, x)=g(y, y)=\frac{1}{2}\right. \text { and } g(x, y)=0\right\}
$$

where $g(x, y)=\sum_{i=1}^{m+2} x_{i} y_{i}$ for any $x=\left(x_{1}, \ldots, x_{m+2}\right), y=\left(y_{1}, \ldots, y_{m+2}\right) \in \mathbb{R}^{m+2}$. Then the tangent space is decomposed as $T_{z} S^{2 m+3}=H_{z} \oplus F_{z}$ and $T_{z} \tilde{Q}=H_{z}(Q) \oplus F_{z}(Q)$ at $z=x+i y \in \tilde{Q}$ respectively, where the horizontal subspaces H_{z} and $H_{z}(Q)$ are given by $H_{z}=(\mathbb{C} z)^{\perp}$ and $H_{z}(Q)=(\mathbb{C} z \oplus \mathbb{C} \bar{z})^{\perp}$, and F_{z} and $F_{z}(Q)$ are fibers which are isomorphic to each other. Here $H_{z}(Q)$ is a subspace of H_{z} of real codimension 2 and orthogonal to the two unit normals $-\bar{z}$ and $-J \bar{z}$. Explicitly, at the point $z=x+i y \in \tilde{Q}$ it can be described as

$$
H_{z}=\left\{u+i v \in \mathbb{C}^{m+2} \mid \quad g(x, u)+g(y, v)=0, \quad g(x, v)=g(y, u)\right\}
$$

and

$$
H_{z}(Q)=\left\{u+i v \in H_{z} \mid \quad g(u, x)=g(u, y)=g(v, x)=g(v, y)=0\right\}
$$

where $\mathbb{C}^{m+2}=\mathbb{R}^{m+2} \oplus i \mathbb{R}^{m+2}$, and $g(u, x)=\sum_{i=1}^{m+2} u_{i} x_{i}$ for any $u=\left(u_{1}, \ldots, u_{m+2}\right)$, $x=\left(x_{1}, \ldots, x_{m+2}\right) \in \mathbb{R}^{m+2}$.

These spaces can be naturally projected by the differential map π_{*} as $\pi_{*} H_{z}=T_{\pi(z)} \mathbb{C} P^{m+1}$ and $\pi_{*} H_{z}(Q)=$ $T_{\pi(z)} Q$ respectively. Thus at the point $\pi(z)=[z]$ the tangent subspace $T_{[z]} Q^{m}$ becomes a complex subspace of $T_{[z]} \mathbb{C} P^{m+1}$ with complex codimension 1 . The unit normal fields $-\pi_{*} \bar{z}$ and $-\pi_{*} J \bar{z}$ span the normal space of Q^{m} in $\mathbb{C} P^{m}$ at every point (see Reckziegel [9]).

Then let us denote by $A_{\bar{z}}$ the shape operator of Q^{m} in $\mathbb{C} P^{m+1}$ with respect to the unit normal $\pi_{*} \bar{z}$. It satisfies $A_{\bar{z}} \pi_{*} w=\tilde{\nabla}_{\pi_{*} w} \bar{z}=\pi_{*} \bar{w}$ for every $w \in H_{z}(Q)$, where $\tilde{\nabla}$ denotes the covariant derivative of $\mathbb{C} P^{m+1}$ induced by its

Fubini-Study metric. That is, the shape operator $A_{\bar{z}}$ is just a complex conjugation restricted to $T_{[z]} Q^{m}$. Moreover, it satisfies the following for any $w \in T_{[z]} Q^{m}$ and any $\lambda \in S^{1} \subset \mathbb{C}$

$$
\begin{aligned}
A_{\lambda \bar{z}}^{2} w & =A_{\lambda \bar{z}} A_{\lambda \bar{z}} w=A_{\lambda \bar{z}} \lambda \bar{w} \\
& =\lambda A_{\bar{z}} \lambda \bar{w}=\lambda \bar{\nabla}_{\lambda \bar{w}} \bar{z}=\lambda \bar{\lambda} \overline{\bar{w}} \\
& =|\lambda|^{2} w=w .
\end{aligned}
$$

Accordingly, $A_{\lambda \bar{z}}^{2}=I$ for any $\lambda \in S^{1}$. So the shape operator $A_{\bar{z}}$ becomes an anti-commuting involution such that $A_{\bar{z}}^{2}=I$ and $A J=-J A$ on the complex vector space $T_{[z]} Q^{m}$ and

$$
T_{[z]} Q^{m}=V\left(A_{\bar{z}}\right) \oplus J V\left(A_{\bar{z}}\right)
$$

where $V\left(A_{\bar{z}}\right)=\pi_{*}\left(\mathbb{R}^{m+2} \cap H_{z} Q\right)$ is the (+1)-eigenspace and $J V\left(A_{\bar{z}}\right)=\pi_{*}\left(i \mathbb{R}^{m+2} \cap H_{z}(Q)\right)$ is the (-1)eigenspace of $A_{\bar{z}}$. That is, $A_{\bar{z}} X=X$ and $A_{\bar{z}} J X=-J X$, respectively, for any $X \in V\left(A_{\bar{z}}\right)$.

The Gauss equation for $Q^{m} \subset \mathbb{C} P^{m+1}$ implies that the Riemannian curvature tensor \bar{R} of Q^{m} can be described in terms of the complex structure J and any complex conjugation $A \in \mathfrak{A}$:

$$
\begin{aligned}
\bar{R}(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+g(J Y, Z) J X-g(J X, Z) J Y-2 g(J X, Y) J Z \\
& +g(A Y, Z) A X-g(A X, Z) A Y+g(J A Y, Z) J A X-g(J A X, Z) J A Y
\end{aligned}
$$

Note that J and each complex conjugation A anti-commute, that is, $A J=-J A$ for each $A \in \mathfrak{A}$.

3. Real hypersurfaces in Q^{m}.

Consider a real hypersurface M in Q^{m} with unit local normal vector field N. For any vector field X tangent to M we write

$$
\begin{equation*}
J X=\phi X+\eta(X) N \tag{3.1}
\end{equation*}
$$

where ϕX denotes the tangential component of $J X . \phi$ defines on M a skew-symmetric tensor field of type $(1,1)$ called the structure tensor. The vector field $\xi=-J N$ is called the Reeb vector field of M. Consider on M the 1-form given by $\eta(X)=g(X, \xi)$ for any vector field X tangent to M. We have that (ϕ, ξ, η, g) is an almost contact metric structure on M. Therefore we have the following relations

$$
\begin{equation*}
\phi^{2} X=-X+\eta(X) \xi, \quad \eta(\xi)=1, \quad g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{3.2}
\end{equation*}
$$

for any X, Y tangent to M. From (3.2) we also have

$$
\phi \xi=0, \quad \eta(X)=g(X, \xi)
$$

The tangent bundle $T M$ of M splits orthogonally into

$$
T M=\mathcal{C} \oplus \mathcal{F}
$$

where $\mathcal{C}=\operatorname{ker}(\eta)=\{X \in T M \mid g(X, \xi)=0\}$ is the maximal complex (holomorphic) subbundle of $T M$ and $\mathcal{F}=\mathbb{R} \xi$. Notice that the structure tensor field ϕ restricted to \mathcal{C} coincides with the complex structure J.

At each point $z \in M$ we define a maximal \mathfrak{A}-invariant subspace of $T_{z} M$ as

$$
\mathcal{Q}_{z}=\left\{X \in T_{z} M \mid A X \in T_{z} M, \forall A \in \mathfrak{A}_{z}\right\} .
$$

Then we have, [2],
Lemma 3.1. Let M be a real hypersurface in Q^{m}. Then the following are equivalent

1. The normal vector N_{z} of M at z is \mathfrak{A}-principal.
2. $Q_{z}=\mathcal{C}_{z}$.

If the normal vector N_{z} of M at z is not \mathfrak{A}-principal there exists a real structure $A \in \mathfrak{A}_{[z]}$ such that

$$
\begin{align*}
N_{[z]} & =\cos (t) Z_{1}+\sin (t) J Z_{2}, \\
A N_{[z]} & =\cos (t) Z_{1}-\sin (t) J Z_{2}, \tag{3.3}
\end{align*}
$$

where Z_{1}, Z_{2} are orthonormal eigenvectors of \mathfrak{A} with eigenvalue 1 and $0<t \leq \frac{\pi}{4}$. As $\xi=-J N$ (3.3) implies

$$
\begin{align*}
\xi_{[z]} & =-\cos (t) J Z_{1}+\sin (t) Z_{2}, \\
A \xi_{[z]} & =\cos (t) J Z_{1}+\sin (t) Z_{2} . \tag{3.4}
\end{align*}
$$

So we have $g\left(A N_{[z]}, \xi_{[z]}\right)=0, g\left(N_{z}, A N_{z}\right)=\cos (2 t)=-g\left(\xi_{z}, A \xi_{z}\right)$.
The shape operator of a real hypersurface M in Q^{m} is denoted by S. The real hypersurface is called Hopf hypersurface if the Reeb vector field is an eigenvector of the shape operator, i.e.

$$
\begin{equation*}
S \xi=\alpha \xi \tag{3.5}
\end{equation*}
$$

where $\alpha=g(S \xi, \xi)$ is the Reeb function. The Codazzi equation of M is given by

$$
\begin{align*}
& g\left(\left(\nabla_{X} S\right) Y-\left(\nabla_{Y} S\right) X, Z\right)=\eta(X) g(\phi Y, Z)-\eta(Y) g(\phi X, Z)-2 \eta(Z) g(\phi X, Y) \\
& +g(X, A N) g(A Y, Z)-g(Y, A N) g(A X, Z)+g(X, A \xi) g(J A Y, Z)-g(Y, A \xi) g(J A X, Z) \tag{3.6}
\end{align*}
$$

for any X, Y, Z tangent to M. To be used later we have, see [2], the following
Proposition 3.1. The following statements hold for a tube M of radius $r, 0<r<\pi / 2$ around the totally geodesic $\mathbb{C} P^{l}$ in $Q^{m}, m=2 l$:

1. M is a Hopf hypersurface.
2. The normal bundle of M consists of \mathfrak{A}-isotropic singular tangent vectors of Q^{m}.
3. M has four distinct principal curvatures, unless $m=2$ in which case M has two distinct principal curvatures, which are given in the following matrix

Principal curvature	Eigenspace	Multiplicity
$-2 \cot (2 r)$	\mathcal{F}	1
$-\cot (r)$	$\nu_{z} \mathbb{C} P^{n} \ominus[\xi]$	$2 l-2$
$\tan (r)$	$T_{z} \mathbb{C} P^{n} \ominus[A \xi]$	$2 l-2$
0	$[A \xi]$	

4. The shape operator commutes with the structure tensor field ϕ, i.e. $S \phi=\phi S$.
5. M is a homogeneous hypersurface.

Proposition 3.2. Let M be a Hopf real hypersurface in $Q^{m}, m \geq 3$. Then the tensor field $2 S \phi S-\alpha(\phi S+S \phi)$ leaves \mathcal{Q} and $\mathcal{C} \ominus \mathcal{Q}$ invariant and we have $2 S \phi S-\alpha(\phi S+S \phi)=2 \phi$ on \mathcal{Q} and $2 S \phi S-\alpha(\phi S+S \phi)=2 \mu^{2} \phi$ on $\mathcal{C} \ominus \mathcal{Q}$, where $\mu=g(A \xi, \xi)=-\cos (2 t)$.

Recently, Lee and Suh, [7], have proved the following
Proposition 3.3. Let M be a Hopf real hypersurface in $Q^{m}, m \geq 3$. Then M has an \mathfrak{A}-principal normal vector field in Q^{m} if and only if M is locally congruent to a tube of radius $r, 0<r<\frac{\pi}{2 \sqrt{2}}$ around the m-dimensional sphere S^{m}, embedded in Q^{m} as a real form of Q^{m}.
The Reeb function of such a tube is $\alpha=-\sqrt{2} \cot (\sqrt{2} r)$.

4. Proof of Theorem 1.1

Let M be a real hypersurface in Q^{m} such that $S_{F}^{(k)}(X, Y)=S_{F}^{(k)}(Y, X)$ for any $X, Y \in \mathcal{C}$. This yields

$$
\begin{equation*}
g(\phi S X, S Y) \xi-\eta(S Y) \phi S X-g(\phi S X, Y) S \xi=g(\phi S Y, S X) \xi-\eta(S X) \phi S Y-g(\phi S Y, X) S \xi \tag{4.1}
\end{equation*}
$$

for any $X, Y \in \mathcal{C}$. Suppose first that M is Hopf and write $S \xi=\alpha \xi$. From (4.1) we get $g(\phi S X, S Y) \xi-$ $\alpha g(\phi S X, Y) \xi=g(\phi S Y, S X) \xi-\alpha g(\phi S Y, X) \xi$, for any $X, Y \in \mathcal{C}$. Therefore , for any $X \in \mathcal{C}$ we have

$$
\begin{equation*}
2 S \phi S X=\alpha(\phi S+S \phi) X \tag{4.2}
\end{equation*}
$$

As M is Hopf we know from Proposition 3.2 that $2 S \phi S X-\alpha(\phi S+S \phi) X=2 \phi X$ for any $X \in Q$ and $2 S \phi S X-$ $\alpha(\phi S+S \phi) X=4 \cos ^{2}(2 t) \phi X$ for any $X \in \mathcal{C} \ominus \mathcal{Q}$. From (4.2) we have $\mathcal{Q}=0$ and $m=2$, which is impossible.

Thus M must be non Hopf. We write $S \xi=\alpha \xi+\beta U$, for a unit $U \in \mathcal{C}$, being β a nonvanishing function at least on an open neighborhood of a point of M. The calculations are made on such a neighborhood.

The scalar product of (4.1) and ϕU gives $-\eta(S Y) g(S X, U)=-\eta(S X) g(S Y, U)$ for any $X, Y \in \mathcal{C}$. Take $Y \in \mathcal{C}$ and orthogonal to U. Then we have $\eta(S X) g(S Y, U)=0$ for any $X \in \mathcal{C}$ and such a Y. If now $X=U$ we obtain $\beta g(S U, Y)=0$ for any $Y \in \mathcal{C}$ orthogonal to U. This yields

$$
\begin{equation*}
S U=\beta \xi+\gamma U \tag{4.3}
\end{equation*}
$$

for a certain function γ.
The scalar product of (4.1) and U implies

$$
\begin{equation*}
\eta(S Y) g(S X, \phi U)-\beta g(\phi S X, Y)=\eta(S X) g(S Y, \phi U)-\beta g(\phi S Y, X) \tag{4.4}
\end{equation*}
$$

for any $X, Y \in \mathcal{C}$.
If we take $X=U$ in (4.4) we get $-\beta g(\phi S U, Y)=\beta(S \phi U, Y)+\beta g(S \phi U, Y)$ for any $Y \in \mathcal{C}$ and, as $\beta \neq 0$ this yields $2 S \phi U=-\phi S U=-\gamma \phi U$. Thus

$$
\begin{equation*}
S \phi U=-\frac{\gamma}{2} \phi U . \tag{4.5}
\end{equation*}
$$

The scalar product of (4.1) and ξ gives

$$
\begin{equation*}
g(\phi S X, S Y)-\alpha g(\phi S X, Y)=g(\phi S Y, S X)-\alpha g(\phi S Y, X) \tag{4.6}
\end{equation*}
$$

for any $X, Y \in \mathcal{C}$. Take $X=U, Y=\phi U$ in (4.6). We obtain $2 g(\phi S U, S \phi U)-\alpha g(S U, U)=\alpha g(S \phi U, \phi U)$, that is, $-\gamma^{2}-\alpha \gamma=-\frac{\alpha \gamma}{2}$, or $\gamma\left(\gamma+\frac{\alpha}{2}\right)=0$. Therefore, either $\gamma=0$ or $\gamma=-\frac{\alpha}{2}$.

Now we take $X, Y \in \mathcal{C}_{U}=\{Z \in \mathcal{C} \mid g(Z, U)=g(Z, \phi U)=0\}$ in (4.4) and, as $\beta \neq 0$, we get $g(\phi S X, Y)=$ $g(\phi S Y, X)$ for any $X, Y \in \mathcal{C}_{U}$. From (4.3) and (4.5) this yields

$$
\begin{equation*}
S \phi X+\phi S X=0 \tag{4.7}
\end{equation*}
$$

for any $X \in \mathcal{C}_{U}$. Suppose $X \in \mathcal{C}_{U}$ is unit and satisfies $S X=\lambda X$, then from (4.7), $S \phi X=-\lambda \phi X$. Moreover, from (4.6) $S \phi S X-\alpha \phi S X=-S \phi S X+\alpha S \phi X$. That is, $2 S \phi S X=\alpha(\phi S+S \phi) X=0$. Therefore, $-2 \lambda^{2}=0$. Thus the unique principal curvature on \mathcal{C}_{U} is 0 . Then if $\gamma=0, M$ is a ruled real hypersurface.
If $\gamma=-\frac{\alpha}{2}$ we have $S \xi=\alpha \xi+\beta U, S U=\beta \xi-\frac{\alpha}{2} U, S \phi U=\frac{\alpha}{4} \phi U$ and $S X=0$ for any $X \in \mathcal{C}_{U}$. In this case, if $\alpha=0, M$ is ruled and minimal. If $\alpha \neq 0, M$ is a non Hopf, no ruled real hypersurface with four distinct principal curvatures, 0 with multiplicity $2 m-4, \frac{\alpha}{4}$, with multiplicity $1, \frac{\alpha}{4}+\sqrt{\beta^{2}+\frac{9 \alpha^{2}}{16}}$ and $\frac{\alpha}{4}-\sqrt{\beta^{2}+\frac{9 \alpha^{2}}{16}}$, each with multiplicity 1 , finishing the proof.

5. Proof of Theorem 1.2

Suppose now that $S_{F}^{(k)}(\xi, Y)=S_{F}^{(k)}(Y, \xi)$ for any $Y \in \mathcal{C}$. therefore

$$
\begin{align*}
& g(\phi S \xi, S Y) \xi-\eta(S Y) \phi S \xi-k \phi S Y-g(\phi S \xi, Y) S \xi \\
& +k S \phi Y=g(\phi S Y, S \xi) \xi-\eta(S \xi) \phi S Y+S \phi S Y \tag{5.1}
\end{align*}
$$

for any $Y \in \mathcal{C}$. Suppose first that M is Hopf with $S \xi=\alpha \xi$. From (5.1) we have $-k \phi S Y+k S \phi Y=-\alpha \phi S Y+$ $S \phi S Y$ for any $Y \in \mathcal{C}$. Thus

$$
\begin{equation*}
S \phi S Y=\alpha \phi S Y+k(S \phi-\phi S) Y \tag{5.2}
\end{equation*}
$$

for any $Y \in \mathcal{C}$. If we take the scalar product of (5.2) and $X \in \mathcal{C}$ and change X and Y we obtain

$$
\begin{equation*}
-S \phi S Y=-\alpha S \phi Y+k(S \phi-\phi S) Y \tag{5.3}
\end{equation*}
$$

for any $Y \in \mathcal{C}$.
If we substract (5.3) from (5.2) we get $2 S \phi S Y=\alpha(\phi S+S \phi) Y$ for any $Y \in \mathcal{C}$ and, as in previous Theorem, we arrive to a contradiction. Therefore, M must be non Hopf.

We write as above $S \xi=\alpha \xi+\beta U$. Then (5.1) becomes

$$
\begin{gather*}
\beta g S(\phi U, Y) \xi-\beta^{2} g(U, Y) \phi U-k \phi S Y-\beta g(\phi U, Y) S \xi \tag{5.4}\\
+k S \phi Y=-\beta g(S \phi U, Y) \xi-\alpha \phi S Y+S \phi S Y
\end{gather*}
$$

for any $Y \in \mathcal{C}$. The scalar product of (5.4) with ξ, bearing in mind that $\beta \neq 0$, gives $g(S \phi U, Y)-(\alpha+$ $k) g(\phi U, Y)=-2 g(S \phi U, Y)$ for any $Y \in \mathcal{C}$. Thus $3 S \phi U=(\alpha+k) \phi U$, that is

$$
\begin{equation*}
S \phi U=\frac{\alpha+k}{3} \phi U . \tag{5.5}
\end{equation*}
$$

Taking $Y=\phi U$ in (5.4) we obtain $\beta g(S \phi U, \phi U) \xi-k \phi S \phi U-\beta S \xi-k S U=\beta g(\phi S \phi U, U) \xi-\alpha \phi S \phi U+S \phi S U$. From (5.5) this gives $\beta\left(\frac{\alpha+k}{3}\right) \xi+k\left(\frac{\alpha+k}{3}\right) U-\alpha \beta \xi-\beta^{2} U-k S U=-\beta\left(\frac{\alpha+k}{3}\right) \xi+\alpha\left(\frac{\alpha+k}{3}\right) U-\left(\frac{\alpha+k}{3}\right) S U$, that is, $(2 k-\alpha) S U=\beta(2 k-\alpha) \xi+\left(k^{2}-\alpha^{2}-3 \beta^{2}\right) U$. If $\alpha=2 k$, we get $-3 k^{2}-3 \beta^{2}=0$, which is impossible. Thus $\alpha \neq 2 k$ and

$$
\begin{equation*}
S U=\beta \xi+\frac{k^{2}-\alpha^{2}-3 \beta^{2}}{2 k-\alpha} U \tag{5.6}
\end{equation*}
$$

Taking $Y=U$ in (5.4) we get $\beta^{2} \phi U-k \phi S U+k S \phi U=-\alpha \phi S U+S \phi S U$. From (5.5) and (5.6) we obtain

$$
\begin{equation*}
3 \beta^{2}-k^{2}+2 \alpha^{2}+\alpha k=0 \tag{5.7}
\end{equation*}
$$

From (5.7), $k^{2}-\alpha^{2}-3 \beta^{2}=\alpha^{2}+\alpha k$ and we can write (5.6) as

$$
\begin{equation*}
S U=\beta \xi+\frac{\alpha^{2}+\alpha k}{2 k-\alpha} U \tag{5.8}
\end{equation*}
$$

We also have obtained that \mathcal{C}_{U} is S-invariant. Take $Y \in \mathcal{C}_{U}$ in (5.4). Then we get

$$
\begin{equation*}
-k \phi S Y+k S \phi Y=-\alpha \phi S Y+S \phi S Y \tag{5.9}
\end{equation*}
$$

for any $Y \in \mathcal{C}_{U}$. Suppose $S Y=\lambda Y$. From (5.9) we have $-k \lambda \phi Y+k S \phi Y=-\alpha \lambda \phi Y+\lambda S \phi Y$. That is, $(\lambda-$ $k) S \phi Y=\lambda(\alpha-k) \phi Y$. If $\lambda=k$ we get $k(\alpha-k)=0$, and as $k \neq 0, \alpha=k$. From (5.7) $3 \beta^{2}+2 k^{2}=0$, which is impossible. Thus $\lambda \neq k$ and

$$
\begin{equation*}
S \phi Y=\lambda\left(\frac{\alpha-k}{\lambda-k}\right) \phi Y \tag{5.10}
\end{equation*}
$$

for any $Y \in \mathcal{C}_{U}$ such that $S Y=\lambda Y$.
If we take ϕY instead of Y in (5.9) we obtain $-k \phi S \phi Y-k S Y=-\alpha \phi S \phi Y+S \phi S Y$. As $\lambda \neq k$ this yields $k \lambda(\alpha-\lambda)=(\alpha-k) \lambda(\alpha-\lambda)$. Therefore we can have

- $\alpha=\lambda$. In this case $S \phi Y=\alpha \phi Y$.
- $\alpha \neq \lambda$. As $2 k-\alpha \neq 0$, then $\lambda=0$ and $S \phi Y=0$.
- $\alpha \neq \lambda, \lambda \neq 0$. Then $\alpha=2 k$, which is impossible.

Moreover, if $\alpha=-k$, from (5.7), $3 \beta^{2}-k^{2}+2 \alpha^{2}+\alpha k=3 \beta^{2}=0$, which is impossible. This yields that our real hypersurface is not ruled, finishing the proof.

Remark

The real hypersurfaces appearing in Theorem 1.2 are not the ones appearing in Theorem 1.1, because if $\frac{\alpha}{4}=\frac{\alpha+k}{3}$, we have $\alpha=-4 k$. Then from (5.7) we obtain $3 \beta^{2}+27 k^{2}=0$, which is impossible, proving the first
Corollary.

6. Proof of Theorem 1.3

Let now M be a real hypersurface satisfying $S_{F}^{(k)}(X, Y)=-S_{F}^{(k)}(Y, X)$ for any $X, Y \in \mathcal{C}$. Then we have

$$
\begin{equation*}
-\eta(S Y) \phi S X-g(\phi S X, Y) S \xi-\eta(S X) \phi S Y-g(\phi S Y, X) S \xi=0 \tag{6.1}
\end{equation*}
$$

for any $X, Y \in \mathcal{C}$. Suppose first that M is Hopf and write $S \xi=\alpha \xi$. The scalar product of (6.1) and ξ gives $\alpha g(\phi S X, Y) \xi+\alpha g(\phi S Y, X) \xi=0$. That is, $\alpha(\phi S-S \phi) X=0$ for any $X \in \mathcal{C}$. Therefore either $\alpha \neq 0$ and then $\phi S=$ $S \phi$, thus M is locally congruent to a tube around $\mathbb{C} P^{l}, m=2 l$, or $\alpha=0$. In this case take $X \in \mathcal{C}$ such that $S X=$ λX. Codazzi equation yields $\left(\nabla_{X} S\right) \xi-\left(\nabla_{\xi} S\right) X=-S \phi S X-\nabla_{\xi} \lambda X+S \nabla_{\xi} X$. If we take its scalar product with ξ we obtain $-g\left(\nabla_{\xi} \lambda X, \xi\right)=g(\lambda X, \phi S \xi)=0=g(X, A N) g(A \xi, \xi)-g(\xi, A N) g(A X, \xi)+g(X, A \xi) g(J A \xi, \xi)-$ $g(\xi, A N) g(J A X, \xi)=2 g(X, A N) g(A \xi, \xi)$. Thus either $g(A \xi, \xi)=0$ and N is \mathfrak{A}-isotropic or $g(A N, X)=0$ for any $X \in \mathcal{C}$ and N is \mathfrak{A}-principal. In this case M is locally congruent to a tube of radius $r<\frac{\pi}{2 \sqrt{2}}$ around S^{m}. But as $\alpha=0, \cot (\sqrt{2} r)=0$ and this yields $r=\frac{\pi}{2 \sqrt{2}}$, which is impossible. Therefore N is \mathfrak{A}-isotropic.
Suppose now that M is non Hopf and write again $S \xi=\alpha \xi+\beta U$. The scalar product of (6.1) and ϕU implies

$$
\begin{equation*}
-\eta(S Y) g(S X, U)-\eta(S X) g(S Y, U)=0 \tag{6.2}
\end{equation*}
$$

for any $X, Y \in \mathcal{C}$. Let $Y \in \mathcal{C}$ be orthogonal to U and $X=U$. Then from (6.2) we have $-\beta g(S U, Y)=0$ for any $Y \in \mathcal{C}$ orthogonal to U. Thus

$$
\begin{equation*}
S U=\beta \xi+\gamma U \tag{6.3}
\end{equation*}
$$

for a certain function γ.
Taking $Y=U$ in (6.1) it follows $-\beta \phi S X-g(\phi S X, U) S \xi-\eta(S X) \phi S U-g(\phi S U, X) S \xi=0$ for any $X \in \mathcal{C}$. Its scalar product with U yields $2 \beta g(S \phi U, X)-\beta g(\phi S U, X)=0$ for any $X \in \mathcal{C}$. As $\beta \neq 0$, this gives $2 S \phi U=\phi S U=$ $\gamma \phi U$. Therefore

$$
\begin{equation*}
S \phi U=\frac{\gamma}{2} \phi U . \tag{6.4}
\end{equation*}
$$

The scalar product of (6.1) and ξ implies $-\alpha g(\phi S X, Y)-\alpha g(\phi S Y, X)=0$, for any $X, Y \in \mathcal{C}$. If $\alpha \neq 0$ we have $g(\phi S X, Y)+g(\phi S Y, X)=0$ for any $X, Y \in \mathcal{C}$. Taking $X=U, Y=\phi U$, we get $g(\phi S U, \phi U)+g(\phi S \phi U, U)=0$. That is, $g(S U, U)-g(S \phi U, \phi U)=\gamma-\frac{\gamma}{2}=\frac{\gamma}{2}=0$. Therefore $\gamma=0$, and $S U=\beta \xi, S \phi U=0$. Take now $X \in \mathcal{C}_{U}, Y=U$ in (6.1) and obtain $-\beta \phi S X=0$. As $\beta \neq 0, S X=0$ for any $X \in \mathfrak{C}_{U}$ and M is ruled.
The other possibility is to have $\alpha=0$. Then $S \xi=\beta U$. Taking $Y=U, X \in \mathcal{C}_{U}$ in (6.1) we also obtain $-\beta \phi S X=$ 0 . That is, $S X=0$ for any $X \in \mathfrak{C}_{U}$. Therefore if $\gamma=0$, we have a minimal ruled real hypersurface. If $\gamma \neq 0$, take $X=Y \in \mathcal{C}$ in (6.2). Then $\eta(S X) g(S X, U)=0$ for any $X \in \mathcal{C}$. Taking $X=U$ we get $\beta g(S U, U)=0$. Thus $\gamma=0$ and we arrive at a contradiction, finishing the proof.

7. Proof of Theorem 1.4

If M is a real hypersurface such that $S_{F}^{(k)}(\xi, Y)=-S_{F}^{(k)}(Y, \xi)$ for any $Y \in \mathcal{C}$ we get

$$
\begin{equation*}
-\eta(S Y) \phi S \xi-k \phi S Y-g(\phi S \xi, Y) S \xi+k S \phi Y-\eta(S \xi) \phi S Y+S \phi S Y=0 \tag{7.1}
\end{equation*}
$$

for any $Y \in \mathcal{C}$. If we suppose that M is Hopf and write $S \xi=\alpha \xi$, from (7.1) we get $-k \phi S Y+k S \phi Y-\alpha \phi S Y+$ $S \phi S Y=0$ for any $Y \in \mathcal{C}$. That is

$$
\begin{equation*}
-(k+\alpha) \phi S Y+k S \phi Y+S \phi S Y=0 \tag{7.2}
\end{equation*}
$$

for any $Y \in \mathcal{C}$. If we take the scalar product of (7.2) and $X \in \mathcal{C}$ and change X by Y and Y by X we have

$$
\begin{equation*}
(k+\alpha) S \phi Y-k \phi S Y-S \phi S Y=0 \tag{7.3}
\end{equation*}
$$

for any $Y \in \mathcal{C}$. Substracting (7.3) from (7.2) we obtain

$$
\begin{equation*}
2 S \phi S Y-\alpha(\phi S+S \phi) Y=0 \tag{7.4}
\end{equation*}
$$

for any $Y \in \mathcal{C}$. As we have seen above, this yields $m=2$ and it is impossible.
Therefore we suppose M is non Hopf and write $S \xi=\alpha \xi+\beta U$. Then (7.1) yields

$$
\begin{equation*}
-\beta \eta(S Y) \phi U-k \phi S Y-\beta g(\phi U, Y) S \xi+k S \phi Y-\alpha \phi S Y+S \phi S Y=0 \tag{7.5}
\end{equation*}
$$

for any $Y \in \mathcal{C}$. The scalar product of (7.5) and ξ gives $-\alpha \beta g(\phi U, Y)+k \beta g(\phi Y, U)+\beta g(\phi S Y, U)=0$ for any $Y \in \mathcal{C}$ and as $\beta \neq 0$ we get $-(\alpha+k) g(\phi U, Y)-g(S \phi U, Y)=0$ for any $Y \in \mathcal{C}$. Then

$$
\begin{equation*}
S \phi U=-(\alpha+k) \phi U \tag{7.6}
\end{equation*}
$$

The scalar product of (7.1) and ϕU gives $-\beta \eta(S Y)-(k+\alpha) g(S Y, U)+k g(\phi Y, S \phi U)+g(\phi S Y, S \phi U)=0$ for any $Y \in \mathcal{C}$, and bearing in mind (7.6) we get $-\beta^{2} g(Y, U)-2(\alpha+k) g(S U, Y)-k(\alpha+k) g(Y, U)=0$ for any $Y \in \mathcal{C}$. If $\alpha+k=0$, we should have $\beta=0$, which is impossible. Therefore

$$
\begin{equation*}
\alpha+k \neq 0 \tag{7.7}
\end{equation*}
$$

Moreover, if $Y \in \mathcal{C}_{U}$ we have $(\alpha+k) g(S U, Y)=0$ and from (7.7), $g(S U, Y)=0$ for any $Y \in \mathcal{C}_{U}$. If $Y=U$, it follows $2(\alpha+k) g(S U, U)=-k(\alpha+k)-\beta^{2}$. Thus

$$
\begin{equation*}
S U=\beta \xi-\left(\frac{k}{2}+\frac{\beta^{2}}{2(\alpha+k)}\right) U \tag{7.8}
\end{equation*}
$$

If we take $Y=\phi U$ in (7.5) we get $-k \phi S \phi U-\beta S \xi-k S U-\alpha \phi S \phi U+S \phi S \phi U=0$, that is, $-(k+\alpha) \phi S \phi U-$ $\beta S \xi-k S U+(\alpha+k) S U=0$. Then, $-(k+\alpha)^{2} U-\beta S \xi+\alpha S U=0$ and its scalar product with U gives $-(k+$ $\alpha)^{2}-\beta^{2}+\alpha g(S U, U)=0$. If $\alpha=0$ we obtain $-k^{2}-\beta^{2}=0$, which is impossible. Therefore

$$
\begin{equation*}
\alpha \neq 0 \tag{7.9}
\end{equation*}
$$

and

$$
\begin{equation*}
S U=\beta \xi+\frac{(k+\alpha)^{2}+\beta^{2}}{\alpha} U \tag{7.10}
\end{equation*}
$$

From (7.8) and (7.10), $-\frac{k}{2}-\frac{\beta^{2}}{2(\alpha+k)}=\frac{(k+\alpha)^{2}+\beta^{2}}{\alpha}$ and this yields $-k(\alpha+k) \alpha-\alpha \beta^{2}=2(k+\alpha)^{3}+2(\alpha+$ $k) \beta^{2}$. Therefore

$$
\begin{equation*}
(\alpha+k)\left(-\alpha k-2(\alpha+k)^{2}\right)=(3 \alpha+2 k) \beta^{2} \tag{7.11}
\end{equation*}
$$

If $3 \alpha+2 k=0, k=-\frac{3}{2} \alpha$ and from (7.11), $\left(\alpha-\frac{3 \alpha}{2}\right)\left(\frac{3 \alpha^{2}}{2}-2\left(-\frac{3 \alpha}{2}+\alpha\right)^{2}\right)=0$. Then $-\frac{\alpha}{2}\left(\frac{3 \alpha^{2}}{2}-\frac{2 \alpha^{2}}{4}\right)=-\frac{\alpha^{3}}{2}=$ 0 . Then $\alpha=0$, a contradiction with (7.9). Therefore,

$$
\begin{equation*}
3 \alpha+2 k \neq 0 \tag{7.12}
\end{equation*}
$$

We also know that \mathcal{C}_{U} is S-invariant. Let $Y \in \mathcal{C}_{U}$. From (7.5) we obtain

$$
\begin{equation*}
-k \phi S Y+k \phi Y-\alpha \phi S Y+S \phi S Y=0 \tag{7.13}
\end{equation*}
$$

As \mathcal{C}_{U} is S-invariant, if we take the scalar product of (7.13) and $X \in \mathcal{C}_{U}$ and change X by Y we obtain

$$
\begin{equation*}
k S \phi Y-k \phi S Y+\alpha S \phi Y-S \phi S Y=0 \tag{7.14}
\end{equation*}
$$

Substracting (7.14) from (7.13) we get

$$
\begin{equation*}
-\alpha(\phi S+S \phi) Y+2 S \phi S Y=0 \tag{7.15}
\end{equation*}
$$

for any $Y \in \mathcal{C}_{U}$ and adding (7.13) and (7.14) we have

$$
\begin{equation*}
(2 k+\alpha)(S \phi Y-\phi S Y)=0 \tag{7.16}
\end{equation*}
$$

for any $Y \in \mathcal{C}_{U}$. If we suppose $2 k+\alpha=0$, from (7.11) we have $-k\left(2 k^{2}-2(-k)^{2}\right)=0=-4 \beta^{2}$, which is impossible. Then

$$
\begin{equation*}
2 k+\alpha \neq 0 \tag{7.17}
\end{equation*}
$$

and

$$
\begin{equation*}
S \phi Y=\phi S Y \tag{7.18}
\end{equation*}
$$

for any $Y \in \mathcal{C}_{U}$. Let us suppose that $Y \in \mathcal{C}_{U}$ satisfies $S Y=\lambda Y$. Then (7.18) yields $S \phi Y=\lambda \phi Y$ and from (7.15) $-2 \alpha \lambda \phi Y+2 \lambda^{2} \phi Y=0$. Thus $\lambda(\lambda-\alpha)=0$ and either $\lambda=0$ or $\lambda=\alpha$. Therefore on \mathcal{C}_{U} we have at most two distinct principal curvatures, α and 0 . From (7.7) our real hypersurface is not ruled and the proof is finished.

Funding

First author is supported by Projects PID 2020-11 6126GB-I00 from MICINN and PY20-01391 from Junta de Andalucía.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

[1] Berndt, J. and Suh, Y. J.: On the geometry of homogeneous real hypersurfaces in the complex quadric. In: Proceedings of the 16th International Workshop on Differential Geometry and the 5th KNUGRG-OCAMI Differential Geometry Workshop 16, 1-9 (2012).
[2] Berndt, J. and Suh, Y. J.: Real hypersurfaces with isometric Reeb flow in complex quadric. Internat. J. Math. 24, 1350050 (18pp) (2013).
[3] Cho, J.T.: CR-structures on real hypersurfaces of a complex space form. Publ. Math. Debr. 54, 473-487(1999).
[4] Kimura, M.,Lee, H., Pérez, J.D. and Suh, Y.J.: Ruled real hypersurfaces in the complex quadric., J. Geom. Anal., 31 (2021), 7989-8012.
[5] Klein, S. : Totally geodesic submanifolds of the complex quadric and the quaternionic 2-Grassmannians. Trans. Amer. Math. Soc. 361, 49274967(2009).
[6] Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry, Vol. II, A Wiley-Interscience Publ., Wiley Classics Library Ed., 1996.
[7] Lee, H. and Suh, Y.J.: Commuting Jacobi operators on real hypersurfaces of type B in the complex quadric. Math. Phys. Analysis and Geom. 23, 44 (2020).
[8] Pérez, J.D. and Suh, Y.J.: Derivatives of the shape operator of real hypersurfaces in the complex quadric. Results Math. 73, 126(2018).
[9] Reckziegel, H.: On the geometry of the complex quadric, in Geometry and Topology of Submanifolds VIII. World Scientific Publishing, Brussels/Nordfjordeid, River Edge, 302-315(1995).
[10] Smyth, B.: Differential geometry of complex hypersurfaces. Ann. of Math. 85, 246-266(1967).
[11] Suh, Y.J.: Real hypersurfaces in the complex quadric with Reeb parallel shape operator. International J. Math. 25, 1450059 17pp (2014).
[12] Suh, Y.J.:Real hypersurfaces in the complex quadric with parallel Ricci tensor. Adv. in Math. 281, 886-905(2015) .
[13] Suh, Y.J.: Real hypersurfaces in complex quadric with harmonic curvature. J. Math. Pures Appl. 106, 393-410(2016).

Affiliations

Juan de Dios Pérez
Address: Departamento de Geometría y Topología and IMAG Universidad de Granada, 18071 Granada Spain
E-MAIL: jdperez@ugr.es
ORCID ID:0000-0001-8450-1790

DAVID PÉREZ-LÓPEZ
Address: Fundación I+D del Software Libre (FIDESOL), Avda, de la Innovación, 1-Ed. BIC CEEI (PTS), Armilla, 18016 Granada - Spain
E-MAIL: davidpl109@correo.ugr.es
ORCID ID:0000-0002-4503-9764

[^0]: Received: 12-01-2024, Accepted : 15-02-2024

 * Corresponding author

