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ABSTRACT

A proposal is made for what may well be the most elementary Riemannian spaces which are
homogeneous but not isotropic. In other words: a proposal is made for what may well be the
nicest symmetric spaces beyond the real space forms, that is, beyond the Riemannian spaces which
are homogeneous and isotropic. The above qualification of ‘’nicest symmetric spaces” finds a
justification in that, together with the real space forms, these spaces are most natural with respect to
the importance in human vision of our ability to readily recognise conformal things and in that these
spaces are most natural with respect to what in Weyl’s view is symmetry in Riemannian geometry.
Following his suggestion to remove the real space forms’ isotropy condition, the quasi space forms
thus introduced do offer a metrical, local geometrical solution to the geometrical space form problem
as posed by Thurston in his 1979 Princeton Lecture Notes on ‘’The Geometry and Topology of 3-
manifolds”. Roughly speaking, quasi space forms are the Riemannian manifolds of dimension
greater than or equal to 3, which are not real space forms but which admit two orthogonally
complementary distributions such that at all points all the 2-planes that in the tangent spaces there
are situated in a same position relative to these distributions do have the same sectional curvatures.
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Introduction

This article is to be classified in the category ‘’Local Riemannian Geometry” within the field of ‘’Classical
Differential Geometry”. It consists of the following sections: (1) Definition of quasi space forms; (2) On the
symmetric spaces of Deszcz; (2) Definition of quasi Einstein spaces; (4) The conformally Euclidean Deszcz
symmetric spaces.

As usual, this paper ends with a list of references of which, for what comes next, in particular the lecture of
the two following general articles might be not without interest: S. Haesen and L. Verstraelen, ‘’Natural Intrinsic
Geometrical Symmetries”, (in SIGMA 5 - Special Issue ‘’Elie Cartan and Differential Geometry”; 2009), and,
L. Verstraelen, ‘’Submanifold theory - A contemplation of submanifolds”, (in the AMS series Contemporary
Mathematics, book 756, from the ‘’AMS Special Session on Geometry of Submanifolds in honor of Bang-Yen
Chen”; 2020). And, as basic reference for the fundamentals of differential geometry in general and for some classical
theorems concerning the contents of the present paper in particular, we recommend to consult Kühnel’s Lecture Notes:
W. Kühnel, ‘’Differentialgeometrie. Kurven - Flächen - Mannigfaltigkeiten”, (4. Auflage, Vieweg Studium; 2008), in
English translation: ‘’Differential Geometry: Curves - Surfaces - Manifolds”, (AMS Student Mathematical Library,
volume 16; 2005).
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1. Definition of quasi space forms

A Riemannian manifold (Mn, g) of dimension n ≥ 3 is said to be a real space form if it is a space of constant
curvature, for short, a CC space, that is, if for all its tangent 2-planes π̃ at all of its points its Riemannian sectional
curvatures K(π̃) are the same, that is, if for all π̃ at all points K(π̃) = c for one and the same real number c = 0, c > 0 or
c < 0, and such spaces are denoted by Mn(c). For basic information on real space forms, see [33].

A Riemannian manifold (Mn, g) of dimension n ≥ 3 will be said to be a quasi space form or a space of quasi
constant curvature, for short, a QCC space, or more specifically, for some q, (1 ≤ q ≤ k; according to n being even,
n = 2k, or n being odd, n = 2k + 1), (Mn, g) is said to be a (q) quasi space form or a space of (q) quasi constant
curvature, for short, a (q) QCC space, if (Mn, g) admits two orthogonally complementary distributions D and D⊥, of
fixed dimensions q and q⊥ = n− q ≥ q respectively, and if its Riemannian sectional curvatures K(π̃) do depend on the
positions of the tangent 2-planes π̃ with respect to the direct sum decomposition TM = D ⊕D⊥ in the way that hereafter
will be stated separately for the cases q = 1 and q > 1.
In case q = 1: for all orthonormalX ∈ D andX⊥, Y ⊥ ∈ D⊥ and for all θ ∈ [0, π/2], the curvatureK(π̃) for all planes
π̃ = (X cos θ +X⊥ sin θ) ∧ Y ⊥ is given by

K(π̃) = K cos2 θ +K⊥ sin2 θ , (1.1)

whereby K and K⊥ are everywhere distinct real functions on Mn.
In case q > 1: for all orthonormal X,Y ∈ D and X⊥, Y ⊥ ∈ D⊥ and for all θ, φ ∈ [0, π/2], the curvature K(π̃) for all
planes π̃ = (X cos θ +X⊥ sin θ) ∧ (Y cosφ+ Y ⊥ sinφ) is given by

K(π̃) = K cos2 θ cos2 φ+K⊥ sin2 θ sin2 φ+K(cos2 θ sin2 φ+ sin2 θ cos2 φ) , (1.2)

whereby K and K⊥ are everywhere distinct real functions on Mn and K = (K +K⊥)/2.
Concerning (1) QCC spaces next follow some specifications of the so to say three different possible kinds of tangent

2-planes π̃, according to their positions with respect to the distributions D and D⊥. In the present situation, D is
1-dimensional, say, D is generated by a unit vector X , D = [X], and D⊥ is of dimension q⊥ = n− 1 ≥ 2, and
X⊥, Y ⊥ denote arbitrary orthonormal vectors in D⊥. For θ = π/2, the planes π̃ = (X cos θ +X⊥ sin θ) ∧ Y ⊥ =
X⊥ ∧ Y ⊥ will be denoted by π⊥: the planes π⊥ lie in D⊥ and are perpendicular to D, or, still, ∠(π⊥, D) = π/2
and ∠(π⊥, D⊥) = 0; and (1.1) states that all planes π⊥ do have the same sectional curvature K(π⊥) = K⊥. For
θ = 0, the planes π̃ = (X cos θ +X⊥ sin θ) ∧ Y ⊥ = X ∧ Y ⊥ will be denoted by π: the planes π contain the line
[X] = D and cut D⊥, as well as project onto D⊥, in the line

[
Y ⊥], or still, ∠(π,D) = 0 and ∠(π,D⊥) = π/2;

and (1.1) states that all planes π through D do have the same sectional curvature K(π) = K ̸= K⊥. For
θ ̸= 0 and θ ̸= π/2, the vectors X̃ = X cos θ +X⊥ sin θ do properly position in between D and D⊥, and the
corresponding planes π̃ = (X cos θ +X⊥ sin θ) ∧ Y ⊥ will be denoted by πθ: planes πθ project onto D in the line
[X] = D with which line they make an angle θ and planes πθ project onto D⊥ in the plane X⊥ ∧ Y ⊥ with
which plane they make an angle θ⊥ = (π/2)− θ; (we recall that the angle ψ between two 2-planes πα = Ã1 ∧ Ã2

and πβ = B̃1 ∧ B̃2 which are given by orthonormal vectors Ã1, Ã2 and B̃1, B̃2 respectively, in an arbitrary dimensional
Euclidean space, ψ = ∠(πα, πβ), is determined by cos2 ψ = (detM)2, whereby M is the 2× 2 matrix with elements
M11 = g(Ã1, B̃1), M12 = g(Ã1, B̃2), M21 = g(Ã2, B̃1) and M22 = g(Ã2, B̃2), [41],[27]); and (1.1) states that all
planes πθ, that is, all tangent 2-planes that make an angle θ with D, do have the same sectional curvature
K(πθ) = K cos2 θ +K⊥ sin2 θ.

Concerning (q)QCC spaces for q > 1 next follow some specifications of the so to say six different possible kinds of
tangent 2-planes π̃, according to their positions with respect to the distributions D and D⊥. In the present situation,
D and D⊥ have dimensions q and q⊥ = n− q respectively, which both are ≥ 2. Every tangent 2-plane π̃ has an
orthonormal basis formed by vectors X̃ = X cos θ +X⊥ sin θ and Ỹ = Y cosφ+ Y ⊥ sinφ, for some angles θ, φ ∈
[0, π/2] and for some orthonormal X,Y ∈ D and for some orthonormal X⊥, Y ⊥ ∈ D⊥. For θ = φ = π/2, the
planes π̃ = (X cos θ +X⊥ sin θ) ∧ (Y cosφ+ Y ⊥ sinφ) = X⊥ ∧ Y ⊥ will be denoted by π⊥: the planes π⊥ lie inD⊥

and are perpendicular to D, or, still, ∠(π⊥, D) = π/2 and ∠(π⊥, D⊥) = 0; and (1.2) states that all planes π⊥ do
have the same sectional curvature K(π⊥) = K⊥. For θ = φ = 0, the planes π̃ = (X cos θ +X⊥ sin θ) ∧ (Y cosφ+
Y ⊥ sinφ) = X ∧ Y will be denoted by π: the planes π lie in D and are perpendicular to D⊥, or, still, ∠(π,D) = 0
and ∠(π,D⊥) = π/2; and (1.2) states that all planes π do have the same sectional curvatureK(π) = K ̸= K⊥. For
(i) θ = 0 and φ = π/2, and, similarly, for (ii) θ = π/2 and φ = 0, the planes π̃ = (X cos θ +X⊥ sin θ) ∧ (Y cosφ+
Y ⊥ sinφ) are either given by (i) π̃ = X ∧ Y ⊥ or by (ii) π̃ = X⊥ ∧ Y , and such planes will be denoted by π: both
onto D and onto D⊥, planes π project in a line, and ∠(π,D) = ∠(π,D⊥) = π/2; and (1.2) states that all planes
π do have the same sectional curvature K = (K +K⊥)/2. Further, we consider the situations (i) 0 < θ < π/2
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and φ = π/2, and, (ii) θ = π/2 and 0 < φ < π/2; geometrically they amount to the same and so we will confine
here only to the case (i), whereby the vectors X̃ = X cos θ +X⊥ sin θ do properly position in between D and
D⊥, and the planes π̃ = (X cos θ +X⊥ sin θ) ∧ (Y cosφ+ Y ⊥ sinφ) = (X cos θ +X⊥ sin θ) ∧ Y ⊥ will be denoted
by πθ: planes πθ project onto D in the line [X] with which they make an angle θ and planes πθ project onto D⊥

in the plane X⊥ ∧ Y ⊥ with which they make an angle θ⊥ = π/2− θ; and (1.2) states that all planes πθ do have
the same sectional curvature Kθ = K cos2 θ +K⊥ sin2 θ. Still further, we consider the situations (i’) 0 < θ < π/2
and φ = 0, and, (ii’) θ = 0 and 0 < φ < π/2; geometrically they amount to the same and so we will confine here
only to do the case (i’), whereby the vectors X̃ = X cos θ +X⊥ sin θ do properly position in between D and
D⊥, and the planes π̃ = (X cos θ +X⊥ sin θ) ∧ (Y cosφ+ Y ⊥ sinφ) = (X cos θ +X⊥ sin θ) ∧ Y will be denoted
by π⊥

θ⊥ : planes π⊥
θ⊥ project onto D⊥ in the line

[
X⊥] with which they make an angle θ⊥ and planes π⊥

θ⊥ project
onto D in the plane X ∧ Y with which they make an angle θ; and (1.2) states that all planes π⊥

θ⊥ do have
the same sectional curvature K(π⊥

θ⊥) = K sin2 θ +K cos2 θ(= K cos2 θ⊥ +K sin2 θ⊥). Finally, for 0 < θ, φ < π/2,
the planes π̃ = (X cos θ +X⊥ sin θ) ∧ (Y cosφ+ Y ⊥ sinφ), whereby both vectors X̃ = X cos θ +X⊥ sin θ and
Ỹ = Y cosφ+ Y ⊥ sinφ do properly position in between D and D⊥ will be denoted by πθ,φ or by π⊥

θ⊥,φ⊥ ,
whereby θ⊥ = π/2− θ and φ⊥ = π/2− φ, (using one or other notation as it may feel to match better with
the occasion at hand or just like that): planes πθ,φ = π⊥

θ⊥,φ⊥ project onto D in the plane X ∧ Y with which
they make an angle arccos(cos θ cosφ) and planes π⊥

θ⊥,φ⊥ = πθ,φ project onto D⊥ in the plane X⊥ ∧ Y ⊥ with
which they make an angle arccos(cos θ⊥ cosφ⊥); and (1.2) states that all planes πθ,φ = π⊥

θ⊥,φ⊥ do have the same
sectional curvature

K(πθ,φ) = K(π⊥
θ⊥,φ⊥) = K cos2 θ cos2 φ+K⊥ cos2 θ⊥ cos2 φ⊥ +K(cos2 θ cos2 φ⊥ + cos2 θ⊥ cos2 φ) .

Corresponding to the notation Mn(c) for the n-dimensional CC spaces of curvature c, in view of the above
definition, the n-dimensional QCC spaces of curvatures K and K⊥ and K = 2K −K⊥ ̸= K⊥ might well be denoted by
Mn(K,K⊥). Also, (q) quasi constant curvature spaces or (q) QCC spaces may sometimes simply be called quasi constant
curvature spaces or QCC spaces, and, then the actual dimensions q ≥ 1 and q⊥ = n− q ≥ q of their distributions
D and D⊥ will only be specified when needed.

As far as we know, first purposefull studies of the (1)QCC spaces were done in the early 1970ties by B.-Y.
Chen and K. Yano and C.-S. Houh [10, 11, 53], and, from the later studies that we know of, here we would like
to mention in particular those by V. Boju and M. Popescu [6] and by G. Ganchev and V. Mihova [25, 26].

2. On the symmetric spaces of Deszcz

A geometrical symmetry of a Riemannian space (Mn, g) concerns the invariance of some measure of ‘’some
geometrical beings that live on the manifold Mn”, under the performance of some kind of transformations
[52]. The transformations of Riemannian spaces (Mn, g) that we will consider hereafter are the parallel transports
fully around infinitesimal co-ordinate parallelograms on the manifold Mn; (as described in some detail in [29], these
transformations do show utmost respect both for the differential structure and for the metrical structure
of Riemannian spaces). And then various corresponding geometrical symmetries may be studied on spaces
(Mn, g) depending on which measures are taken of which beings.

In [42] Schouten showed that at all points p of all Riemannian manifolds, the changes of the directions of their
tangent vectors under their parallel transport fully around the infinitesimal co-ordinate parallelograms cornered at p are
measured by the Riemann-Christoffel curvature tensor R of these spaces, and thus he obtained the following.

Theorem A. The Riemannian spaces for which all tangent vectors at all points remain invariant under the
parallel transport fully around all infinitesimal co-ordinate parallelograms are the locally Euclidean spaces, or,
still, the locally flat spaces.

The locally Euclidean spaces are the Riemannian spaces (Mn, g) with vanishing curvature tensor R, R = 0, or, still, it
are the Riemannian spaces (Mn, g) with vanishing sectional curvatures K(p, π̃), K(p, π̃) = 0, for all points p ∈Mn

and for all 2-planes π̃ ⊂ TpM
n; it are the CC spaces Mn(0). And, next follows a well known Theorem of Beltrami,

as reference for which we suggest Vladimir Matveev’s article [38].

Theorem B. The real space forms constitute the projective class of the locally Euclidean spaces: by applying
geodesic transformations to CC spaces Mn(0) one obtains CC spaces Mn(c) of constant curvature c = 0 or
c > 0 or c < 0 and the class of all CC spaces Mn(c) is closed under geodesic transformations.
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The Riemannian sectional curvatures K(p, π̃) at points p ∈Mn and for tangent 2-planes π̃ ⊂ TpM
n are the

main metrical invariants of Riemannian manifolds (Mn, g), (cfr. [3, 4]). By the parallel transports of any 2-plane
π̃ ⊂ TpM

n at any point p ∈Mn fully around the infinitesimal co-ordinate parallelograms cornered at p one
obtains 2-planes π̃⋆ ⊂ TpM

n whereby, in general, π̃⋆ ̸= π̃. In [28] it was shown that at all points p of all Riemannian
manifolds and for all tangent 2-planes π̃ there, the changes of their sectional curvatures under such parallel transports,
that is, the changesK(p, π̃⋆)−K(p, π̃), are measured by the curvature tensorR ·R of these spaces, (inR ·R, the second
R stands for the Riemann-Christoffel curvature tensor and the first R stands for the curvature operator which, by
the meaning of the dot · acts as a derivation on the curvature tensor R), which yields the following.

Theorem C. The Riemannian spaces for which all Riemannian sectional curvatures remain invariant under the
parallel transports fully around all infinitesimal co-ordinate parallelograms are the Szabó symmetric spaces,
or, still, the semi symmetric spaces.

The Szabó symmetric spaces are the Riemannian spaces (Mn, g) with vanishing curvature tensor R ·R, R ·R = 0;
such Riemannian spaces are also said to be semi symmetric and these spaces were classified by Zoltan Szabó
[44, 45]. The locally symmetric spaces, or, still, the Cartan symmetric spaces, are the Riemannian spaces (Mn, g)
for which the curvature tensor R is parallel, ∇R = 0, whereby ∇ denotes the Levi-Civita connection of (Mn, g), or,
still, by a Theorem of Levy [36], it are the Riemannian spaces for which all Riemannian sectional curvatures K(p, π̃)
remain invariant under the parallel transport of π̃ along all infinitesimal geodesics emanating from p on Mn. These
spaces were classified by Élie Cartan, who moreover could characterise them as the Riemannian spaces for which
the local geodesic reflections in all their points are local isometries. As far as we know, the curvature condition
R ·R = 0 did first appear in the studies of locally symmetric spaces by É. Cartan and by P.A. Shirokov, namely
as the integrability condition of ∇R = 0, and for more information on Cartan symmetric spaces and on Szabó
symmetric spaces, in particular we refer to [39, 40, 5, 37].

Given on a Riemannian manifold (Mn, g) a point p and given a tangent 2-plane π̃ at p, then the Riemannian sectional
curvature K(p, π̃) is a corresponding isometrically invariant scalar quantity, namely the Gauss curvature at p of the
surface formed in Mn around p by the geodesics of (Mn, g) through p of which the tangent line at p lies in
π̃. And, as shown by Élie Cartan, the knowledge of all the sectional curvatures K(p, π̃) of (Mn, g) is equivalent to
the knowledge of the curvature tensor R of (Mn, g). Similarly, given on a Riemannian manifold (Mn, g) a point p and
given two tangent 2-planes π̃1 and π̃2 at p, then, as some corresponding isometrically invariant scalar quantity, a double
sectional curvature L(p, π̃1, π̃2) has been defined in [28], and the knowledge of all double sectional curvatures L(p, π̃1, π̃2)
of (Mn, g) is equivalent to the knowledge of the curvature tensor R ·R of (Mn, g).
The real space forms Mn(c) essentially are defined as the Riemannian manifolds (Mn, g) for which at all points
p the sectional curvatures K(p, π̃) are independent of the 2-planes π̃ ⊂ TpM

n, or, still, for which at all points the
Riemannian sectional curvature function is isotropic, that is, equals the same value c in all 2-dimensional tangent
directions π̃. And, similarly, the Deszcz symmetric spaces Mn((L)) basically are defined as the Riemannian
manifolds (Mn, g) for which at all points p the double sectional curvatures L(p, π̃1, π̃2) are independent of
the two 2-planes π̃1, π̃2 ⊂ TpM

n, or, still, for which at all points the double sectional curvature function is isotropic,
that is, L(p, π̃1, π̃2) equals the same value L(p) of some function L : Mn → R for all tangent 2-planes π̃1 and π̃2
at p for which L(p, π̃1, π̃2) is well defined. When the sectional curvatures K(p, π̃) do not depend on the planes π̃
at p, then, by the lemma of Schur, the sectional curvatures K(p, π̃) moreover do not depend on the points p, such
that then ∀ p ∈Mn ∀ π̃ ⊂ TpM

n : K(p, π̃) = c for some fixed real number c, (cfr. [33]). However, in the situation
that the double sectional curvatures L(p, π̃1, π̃2) do not depend on the planes π̃1 and π̃2 at p, then there is no
such kind of lemma: in general, the double sectional curvature of a Deszcz symmetric space is a non-constant function
L : Mn → R. And the very special particular Deszcz symmetric spaces for which L is a constant function, following
Kowalski and Sekizawa [34, 35] are said to be Deszcz symmetric spaces of constant type. The Szabó symmetric spaces
are the Riemannian spaces with vanishing curvature tensor R ·R, R ·R = 0, or, still, it are the Deszcz symmetric
spaces Mn((0)) of constant type 0; 0 is hereby the zero function on Mn, namely 0 : Mn → R : p 7→ 0(p) = 0. And,
in analogy with the above Theorem of Beltrami, due to Sinyukov, Mikeš, Venzi, Defever and Deszcz [13, 39, 40],
one has the following.

Theorem D. The Deszcz symmetric spaces Mn((L)) constitute the projective class of the Szabó symmetric
spaces: by applying geodesic transformations to Szabó symmetric spaces Mn((0)) one obtains Deszcz
symmetric spaces Mn((L)) of any double sectional curvature function L : Mn → R, and the class of all Deszcz
symmetric spaces Mn((L)) is closed under geodesic mappings.

In the following, by X̃, Ỹ , Ṽ , W̃ , Ṽ1, Ṽ2, Ṽ3, Ṽ4 will be denoted arbitrary tangent vector fields on a Riemannian
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manifold (Mn, g). The curvature operators R(X̃, Ỹ ) = ∇X̃∇Ỹ −∇Ỹ ∇X̃ −∇[X̃,Ỹ ] do determine the (0, 4) Riemann-

Christoffel curvature tensor R as follows: R(X̃, Ỹ , Ṽ , W̃ ) = g(R(X̃, Ỹ )Ṽ , W̃ ). Similarly, the metrical endomorphisms
X̃ ∧g Ỹ defined by (X̃ ∧g Ỹ )Ṽ = g(Ỹ , Ṽ )X̃ − g(X̃, Ṽ )Ỹ do determine the (0, 4) tensor G(X̃, Ỹ , Ṽ , W̃ ) = g((X̃ ∧g

Ỹ )Ṽ , W̃ ), which likely is the simplest (0, 4) generalised curvature tensor on (Mn, g), (cfr. [33]); (the metrical
endomorphisms x⃗ ∧g y⃗, whereby x⃗, y⃗ ∈ TpM

n, do measure the changes of the tangent vectors v⃗ at the points p under
their infinitesimal rotations with respect to the tangent 2-planes x⃗ ∧ y⃗ at p; see [28, 29]). And, the sectional curvatures
K(p, π̃) for tangent 2-planes π̃ = v⃗ ∧ w⃗ at points p are defined by

K(p, π̃) =
R(v⃗, w⃗, w⃗, v⃗)

G(v⃗, w⃗, w⃗, v⃗)
,

and thus can be considered as kind of calibrations of the action of the curvature operators of Riemannian
manifolds (Mn, g) on tangent vectors by means of the action of the metrical endomorphisms of these manifolds
(Mn, g) on the same tangent vectors. On Riemannian manifolds (Mn, g), that is, for definite metrics g, the
above definition holds perfectly well for all possible tangent 2-planes v⃗ ∧ w⃗ at all points p, whereas, for
instance on semi-Riemannian manifolds (Mn, g#), that is, on spaces with indefinite metrics g#, the definition of
the sectional curvature of course only works well for the non-degenerate 2-planes v⃗ ∧ w⃗, i.e., only works in case
G(v⃗, w⃗, w⃗, v⃗) = g#(v⃗, v⃗)g#(w⃗, w⃗)− g#(v⃗, w⃗)2 ̸= 0. A geometrical interpretation for the adapted definition of the
null sectional curvature in a Lorentzian manifold was given in [1].

On a Riemannian manifold (Mn, g), by their action as a derivation on the (0, 4) curvature tensor R, the curvature
operators do determine the (0, 6) curvature tensor R ·R as follows:

(R ·R)(Ṽ1, Ṽ2, Ṽ3, Ṽ4; X̃, Ỹ ) = −R(R(X̃, Ỹ )Ṽ1, Ṽ2, Ṽ3, Ṽ4)−R(Ṽ1, R(X̃, Ỹ )Ṽ2, Ṽ3, Ṽ4)

−R(Ṽ1, Ṽ2, R(X̃, Ỹ )Ṽ3, Ṽ4)−R(Ṽ1, Ṽ2, Ṽ3, R(X̃, Ỹ )Ṽ4) .

Similarly, by their action as a derivation on the (0, 4) curvature tensor R, the metrical endomorphisms do determine
the (0, 6) so-called Tachibana tensor ∧g ·R. The Tachibana tensor ∧g ·R measures the changes of the sectional curvatures
K(p, π̃2) of all tangent 2-planes π̃2 = v⃗ ∧ w⃗ at all points p under the infinitesimal rotations of these planes π̃2 with respect
to tangent 2-planes π̃1 = x⃗ ∧ y⃗ at p, [28], and the Tachibana tensor of a Riemannian manifold (Mn, g), n ≥ 3, vanishes,
∧g ·R = 0, if and only if (Mn, g) is a real space form Mn(c), [23]. And, the double sectional curvatures L(p, π̃1, π̃2) for
tangent 2-planes π̃1 = x⃗ ∧ y⃗ and π̃2 = v⃗ ∧ w⃗ at points p are defined by

L(p, π̃1, π̃2) =
(R ·R)(v⃗, w⃗, w⃗, v⃗; x⃗, y⃗)
(∧g ·R)(v⃗, w⃗, w⃗, v⃗; x⃗, y⃗)

,

and thus can be considered as kind of calibrations of the action of the curvature operators on the Riemann-
Christoffel curvature R by the action of the metrical endomorphisms on this same tensor R. Such double
sectional curvatures L(p, π̃1, π̃2) however, of course, are only well defined in case (∧g ·R)(v⃗, w⃗, w⃗, v⃗; x⃗, y⃗) ̸= 0,
in which case the tangent 2-planes π̃1 and π̃2 are said to be curvature-dependent; this phenomenon corresponds to
sectional curvatures K(p, π̃) on indefinite spaces (Mn, g#) only being well defined for non-degenerate tangent
2-planes π̃. And, in particular, like a Riemannian manifold (Mn, g) is algebraically characterised to be a real space form
Mn(c) by the constant scalar valued proportionality of its curvature tensor R with the curvature-like tensor G, R = cG,
similarly, a Riemannian manifold (Mn, g) is algebraically characterised to be a Deszcz symmetric space Mn((L)) by
the functional proportionality of its curvature tensor R ·R with its Tachibana tensor ∧g ·R, R ·R = L ∧g ·R for some
function L : Mn → R.

As far as we know, it was via the curvature condition R ·R = L ∧g ·R, L : Mn → R, that the pseudo symmetry
of (semi) Riemannian spaces initially started to be studied. This condition as such appeared e.g. in studies by
Wieslaw Grycak on semi symmetric warped product spaces and e.g. in studies by Sinyukov and Mikeš and
Venzi concerning geodesic mappings on semi symmetric spaces, while the term ‘’pseudo symmetric spaces” for
the (semi) Riemannian manifolds which satisfy this curvature condition, as far as we know, did first appear in
an article by Deszcz and Grycak. In any case, in the 1970ties and 1980ties, the relevance of this intrinsically pseudo
symmetric spaces became more clear through some investigations in the geometry of submanifolds, beginning with the
studies by Ryszard Deszcz on the extrinsic spheres in the Szabó symmetric spaces, as extensions of the studies of B.-Y.
Chen and by Z. Olszak on the totally umbilical submanifolds of the Cartan symmetric spaces. On the origins
and first publications concerning what later became to be known as the Deszcz symmetric spaces, and also on
related curvature conditions involving various other curvature tensors, and also on the rôles played by pseudo
symmetry in the theory of general relativity, and for a first announcement about the study of extrinsically pseudo
symmetric or pseudo parallel submanifolds, which later a.o. resulted in the papers [21, 48], we refer to [17, 49, 30, 20].
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3. Definition of quasi Einstein spaces

The (0, 2) Ricci curvature tensor S of a Riemannian manifold (Mn, g), n ≥ 3, is defined by S(X̃, Ỹ ) =∑
tR(X̃, Ẽt, Ẽt, Ỹ ), whereby X̃ and Ỹ are arbitrary tangent vector fields and (ε̃) =

{
Ẽ1, Ẽ2, . . . , Ẽn

}
, (t, s ∈

{1, 2, . . . , n}), is any orthonormal tangent frame field on (Mn, g), and the (1, 1) Ricci tensor S is defined by
g(S(X̃), Ỹ ) = S(X̃, Ỹ ). For a unit tangent vector Ũ , the scalar

ρ(Ũ) = S(Ũ , Ũ) =
∑
t

R(Ũ , Ẽt, Ẽt, Ũ) =
∑
t

K(Ũ ∧ Ẽt)

is called the Ricci curvature of (Mn, g) in the direction Ũ . The critical values of ρ(Ũ) and the directions in which
they are attained are called the Ricci principal curvatures or the principal Ricci curvatures and the Ricci principal
directions or the principal Ricci directions of (Mn, g); it are the eigenvalues and the eigendirections of the Ricci
tensor S.

Einstein spaces are the Riemannian manifolds (Mn, g), n ≥ 3, of which the (0, 2) Ricci tensor S is proportional to the
metric tensor g, S = ρ g, or, still, for which at every point the Ricci curvature function is isotropic, that is, for which,
the Ricci curvature ρ(Ũ) is the same in all directions Ũ , or, still, Einstein spaces are the Riemannian manifolds which
at every point have only one principal Ricci curvature ρ, this ρ then having multiplicity n as sole eigenvalue of S at
the concerned point. As is well known: for all Einstein spaces (Mn, g), n ≥ 3, this unique Ricci principal curvature
is constant on Mn, (cfr. [33]). And, sometimes, for short, Einstein spaces may be called E spaces and be denoted
as such.

(q) Quasi Einstein spaces, or, for short, (q) QE spaces, are defined as the Riemannian manifolds (Mn, g), n ≥ 3,
with precisely two distinct principal Ricci curvatures, say ρ and ρ⊥ ̸= ρ, with fixed multiplicities, say q ≥ 1 and
q⊥ = n− q ≥ q. Such spaces do admit two differentiable and orthogonally complementary distributions, say D and
D⊥, with fixed dimensions q and q⊥, namely, the eigenspaces of the Ricci tensor corresponding to its two distinct
eigenvalues ρ and ρ⊥. And, furtheron, (q) quasi Einstein spaces or (q) QE spaces may sometimes simply be
called quasi Einstein spaces or quasi E spaces, and, then the actual multiplicities q and q⊥ of the two distinct Ricci
principal curvatures ρ and ρ⊥, or, equivalently, the actual dimensions q and q⊥ of the two corresponding Ricci
distributions D and D⊥, will be specified only when needed.

As far as we know, in case q = 1, (q) quasi Einstein spaces have been studied for a long time and by many
people and in these studies (1) quasi Einstein spaces were called ‘’quasi or pseudo or so Einstein spaces” and
in case q > 1, as far as we know (q) quasi Einstein spaces so far did only occur in the literature sporadically and
then they were called ‘’half and half Einstein spaces” or ‘’partially Einstein spaces”.

At this stage, the following small aside might not be too much out of place here, we hope. Before the work of
Ricci on his tensor and on his principal curvatures and principal directions, a significant first step on this way
was made by Souvorov in his 1871 master thesis at Kazan, shortly after the first publications on Riemannian
geometry, by Riemann and Helmholtz. Souvorov showed that at any point of a 3-dimensional Riemannian space
(M3, g) the critical values of the Riemannian sectional curvatures there are attained in three mutually orthogonal 2-
planes; (in retrospect, one can hardly avoid herein to see the origin of the theory on the Ricci curvatures for
arbitrary Riemannian manifolds). And, as Marcel Berger wrote in his contribution to the book ‘’Chern - A
Great Geometer of the Twentieth Century”: ‘’... knowing K is knowing R (...). But the relations between K and R are
subtle and still not completely understood (e.g. what the critical planes of K are, and how they are distributed)”. Having
originated in his answer to Shiing-Shen Chern’s 1968 Kansas Lecture Notes’ question to determine intrinsic
geometric conditions on Riemannian manifolds (Mn, g) that would prevent their minimal isometric immersibility in
Euclidean spaces En+m, (with arbitrary codimension m; and the only known such condition at that time being
to have a non-negative definite Ricci tensor), Bang-Yen Chen’s δ-curvatures theory [8] moreover has indeed been
effectively contributing so much to this understanding the lack of which had been drawn attention to by Berger. And,
concerning the hereby occuring interplay between the extrinsic and the intrinsic geometries of submanifolds,
here we confine to recall that the δ(2) Chen ideal submanifolds Mn in En+m precisely do assume the very
particular shapes for which the corresponding surface tension is as small as possible, that their mean curvature
vector field does determine a first principal Casorati normal vector field and that their intrinsic principal Ricci
directions do co-incide with their extrinsic tangent principal Jordan directions [15, 14].

From Thurston’s [47] comes the following quote: ‘’What is geometry? Up till now, we have discussed three kinds of
three-dimensional geometry: hyperbolic, Euclidean and spherical. They have in common the property of being as uniform
as possible: their isometries can move any point to any other point (homogeneity), and can take any orthonormal frame
in the tangent space at a point to any other orthonormal frame at that point (isotropy). There are more possibilities if we
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remove the isotropy condition, allowing the spaces to have a grain, so to speak, so that certain directions are geometrically
distinguished from others.

An enumeration of additional three-dimensional geometries depends on what spaces we wish to consider and what
structures we use to define and distinguish the spaces. For instance, do we think of a geometry as a space equiped with
such notions as lines and planes, or as a space equiped with a notion of congruence, or as a space equiped with either
a metric or a Riemannian metric? (...) For logical purposes, we must pick only one definition. We choose to represent a
geometry as a space equiped with a group of congruences, that is, a (G,X)-space.

Definition A model geometry (G,X) is a manifold X together with a Lie group G of diffeomorphisms of X ,
such that: (a)X is connected and simply connected; (b)G acts transitively onX , with compact point stabilizers;
(c) G is not contained in any larger group of diffeomorphisms of X with compact stabilizers of points; (d) there
exists at least one compact manifold modeled on (G,X)”.

And, in the following Theorem 3.8.4, then Thurston lists up his eight 3-dimensional model geometries: the Euclidean
geometry E3 and the classical non-Euclidean spherical and hyperbolical geometries S3 and H3, (which, in this order,
are the model real space forms M3(0), M3(1) and M3(−1), respectively), and, then the five Thurston model geometries
which are non-isotropic, namely: S2 × E1, H2 × E1, S̃L(2,R), H3 (nilgeometry) and Sol (solvgeometry).

Thurston’s non-isotropic 3-dimensional model geometries are quasi Einstein spaces: they have two distinct principal
Ricci curvatures ρ and ρ⊥, with respective multiplicities 1 and 2; so, at everyone of their points, their tangent
spaces essentially split up in the 1-dimensional and in the 2-dimensional mutually orthogonal eigenspaces
D and D⊥ of their Ricci tensor, and, for tangent directions moving so to say from D to D⊥ their Ricci
curvatures accordingly change nicely from ρ to ρ⊥. In some way, one could consider this situation as a kind
of ‘’mild anisotropy”. On the other hand, for the Riemannian spaces (M3, g) of which the Ricci tensor has three
mutually distinct principal curvatures ρ1 and ρ2 and ρ3, each having multiplicity 1, at every point of (M3, g),
depending on their position in the 3-dimensional tangent space there, all different tangent directions basically
do have different Ricci curvatures. From this point of view, such generic Riemannian spaces (M3, g) are ‘’wildly
anisotropic”, in that, roughly speaking, all their tangent directions are geometrically distinguished from all the
other tangent directions. And, so, also from this point of view, Thurston’s extension from the real space forms E3

and S3 and H3 to his eight 3-dimensional model geometries by removing the real space forms’ isotropy quality does very
well realise this goal.

In Thurston’s words ‘’when thinking of a geometry as a space equiped with a Riemannian metric”, the main
isometrically invariant geometrically defined scalar value associated with a tangent direction of a Riemannian manifold
(Mn, g) is its Ricci curvature. And, the Riemannian spaces which are isotropic in the sense of Riemannian geometry, that
is, the Riemannian spaces for which all tangent directions do have the same Ricci curvature, are the Einstein
spaces. Next, taking into consideration that the real space forms in a way are ‘’ the most perfect Einstein spaces”,
one may well imagine that, for some geometers when wanting to remove from the real space forms their isotropy
condition in the above sense of Riemannian geometry, in their mind, a most natural option might be to replace it by the
condition for Riemannian manifolds (Mn, g), n ≥ 3, to be quasi Einstein spaces.

The folllowing is a classical result of Schouten and Struik, (cfr. [33]).
Theorem E. A 3-dimensional Riemannian manifold is an Einstein space if and only if it is a real space form.
When restricting to the Riemannian manifolds (M3, g) on which the multiplicities of the principal Ricci curvatures are
constant, in [18, 19] this result was extended as follows.
Theorem F. A 3-dimensional Riemannian manifold is Deszcz symmetric if and only if it is an Einstein space or
it is a quasi Einstein space.
Thus, in particular, all eight 3-dimensional Thurston model geometric spaces are Deszcz symmetric spaces, and, as
a matter of fact, it all are Deszcz symmetric spaces of constant type: more specifically, E3 and S3 and H3 and S2 × E1

and H2 × E1 are Cartan symmetric spaces, and so, as particular Szabó symmetric spaces, it are Deszcz symmetric
spaces M3((0)); on the other hand, S̃L(2,R) and H3 are Deszcz symmetric spaces M3((I)) and Sol is a Deszcz
symmetric space M3((−I)), [2, 29], (whereby I and −I denote the functions I : Mn → R : p 7→ I(p) = 1 and
−I : Mn → R : (−I)(p) = −1, respectively).

However, when going through the list of the nineteen or so 4-dimensional Thurston model geometries, (for instance
in [51]), then, beyond the Riemannian isotropic real space forms E4 and S4 and H4, further one may encounter model
spaces which are Riemannian anisotropic of all kinds, going from the mildest possible anisotropy - quasi Einstein
spaces - to the wildest possible anisotropy - Riemannian spaces of dimension 4 with 4 mutually distinct Ricci
principal curvatures -.

Next follows another small aside, this one about two of the multiple uses of the term ‘’isotropy” in geometry.
In Riemannian geometry, isotropy of 1D directions pretty naturally refers to the property that at all points
the Ricci curvature is the same in all such directions. In the above quotation from Thurston concerning his model
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geometries, the ‘’isotropy of orthonormal tangent frames” together with the there mentioned ‘’1-point-homogeneity”
may readily be thought of in connection with ‘’the axiom of free mobility”, going back to Helmholtz and Riemann.
Almost a century later, Jacques Tits may well have arrived at the latter’s ‘’ultimately abstract version” when
characterising the real space forms as the ‘’3-point homogeneous spaces”, while, still going the step further to the
‘’2-point homogeneous spaces”, one basically arrived at the rank 1 symmetric spaces of Hsien-Chung Wang, (cfr. the
section ‘’The Space Problems” in [24], and, in addition to the references given therein, see also [46]).

4. On the conformally Euclidean Deszcz symmetric spaces

The studies of Gauss on the extension of the cartographers’ stereographic and Mercator projections from round spheres
on Euclidean planes to infinitesimally conformal maps between any two surfaces in E3, were at the origin of complex
analysis and brought along the proof of the theorema egregium in isothermal co-ordinates. And, in the context of
these studies, Gauss did express his opnion that, for spaces to resemble each other well, the essential condition is
that these spaces be similar in their smallest parts, (cfr. [22]). This condition may equivalently be formulated as that
these spaces be locally conformal to each other, or, for short, as that these spaces be conformal to each other. Besides
the natural ability in human vision to readily recognise similar things despite their eventually rather different actual
sizes and the fact that Euclidean geometry did originate as the science of human vision, (cfr.[32, 50]), the above may
help to see the significance of the class of Riemannian manifolds which are conformal to Euclidean spaces, or, still, the
class of the conformally Euclidean spaces.

In this respect, for Riemannian manifolds (Mn, g), n ≥ 3, we recall the definition of Weyl’s (0, 4) conformal
curvature tensor C:

C(Ṽ1, Ṽ2, Ṽ3, Ṽ4) = R(Ṽ1, Ṽ2, Ṽ3, Ṽ4)− {g(Ṽ1, Ṽ4)S(Ṽ2, Ṽ3)− g(Ṽ1, Ṽ3)S(Ṽ2, Ṽ4)

+g(Ṽ2, Ṽ3)S(Ṽ1, Ṽ4)− g(Ṽ2, Ṽ4)S(Ṽ1, Ṽ3)}/(n− 2) (4.1)
+τ{g(Ṽ1, Ṽ4)g(Ṽ2, Ṽ3)− g(Ṽ1, Ṽ3)g(Ṽ2, Ṽ4)}/(n− 1)(n− 2) ,

whereby

τ =
∑
t

S(Ẽt, Ẽt) =
∑
t,s

R(Ẽt, Ẽs, Ẽs, Ẽt) =
∑
t,s

K(Ẽt ∧ Ẽs) , t ̸= s ,

is the scalar curvature of (Mn, g). And the following classical results are due to Jan Schouten and Hermann Weyl,
(cfr. [33]).
Theorem G. For every 3-dimensional Riemannian manifold C = 0, just like that.
Theorem H. For a Riemannian manifold (Mn, g) of dimension n ≥ 4,C = 0 if and only if (Mn, g) is a conformally
Euclidean space.

In relation with Theorems G and H, and when restricting to Riemannian manifolds on which the multiplicities of
the principal Ricci curvatures are constant, like in Theorem F, from [16] we recall the following.
Theorem I. A conformally Euclidean Riemannian manifold (Mn, g), n ≥ 4, is Deszcz symmetric if and only if it
is an Einstein space or it is a quasi Einstein space.
And in relation with Theorem E, the following classical result is due to Jan Schouten and Dirk Jan Struik, (cfr. [33]).
Theorem J. A Riemannian manifold (Mn, g), n ≥ 4, is a conformally Euclidean Einstein space if and only if it is
a real space form.

The new results of the present paper are the following.

Theorem 4.1. A Riemannian manifold of dimension n ≥ 4 is a conformally Euclidean quasi Einstein space if and only
if it is a quasi space form.

Theorem 4.2. A 3-dimensional Riemannian manifold is a quasi Einstein space if and only if it is a quasi space form.

Theorem 4.3. A 3-dimensional Riemannian manifold is Deszcz symmetric if and only if it is a real space form or it is a
quasi space form.

Theorem 4.4. A conformally Euclidean Riemannian manifold of dimension n ≥ 4 is Deszcz symmetric if and only if it
is a real space form or it is a quasi space form.
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Proofs

Clearly it suffices to prove the following statement: for a Riemannian manifold (Mn, g) of dimension n ≥ 3, C = 0
and (Mn, g) is a (q) quasi Einstein space if and only if (Mn, g) is a (q) quasi constant curvature space.

First of all we take note of the fact that, as readily follows from (4.1), on all Riemannian manifolds (Mn, g),
n ≥ 3, the sectional curvatures KC(π̃) and K(π̃) of the curvature tensors C and R for tangent 2-planes spanned by
orthonormal vectors X̃ and Ỹ , π̃ = X̃ ∧ Ỹ , are related as follows, (cfr. also [12]):

KC(X̃ ∧ Ỹ ) = K(X̃ ∧ Ỹ )−
{
ρ(X̃) + ρ(Ỹ )

}
/(n− 2) + τ/(n− 1)(n− 2) . (4.2)

Now, we assume that (Mn, g), n ≥ 3, is a (q) QE space for which C = 0. In particular, (Mn, g) being a (q) QE space, let
(ε, ε⊥) = {E1, . . . , Eq, E

⊥
1⊥ , . . . , E

⊥
(q⊥)⊥} be any orthonormal tangent frame consisting of principal Ricci vectors such

that the q-dimensional and q⊥-dimensional Ricci eigenspaces D and D⊥ corresponding with the two distinct
principal Ricci curvatures ρ and ρ⊥ are given by D = E1 ∧ . . . ∧ Eq and D⊥ = E⊥

1⊥ ∧ . . . ∧ E⊥
(q⊥)⊥ , respectively,

or, still, such that S(Ei, Ei) = ρ ̸= ρ⊥ = S(E⊥
i⊥ , E

⊥
i⊥), S(Ei) = ρEi, S(E⊥

i⊥) = ρ⊥E⊥
i⊥ , S(Ei, Ej) = S(E⊥

i⊥ , E
⊥
j⊥) =

S(Ei, E
⊥
i⊥) = 0, whereby i, j ∈ {1, 2, . . . , q} and i⊥, j⊥ ∈ {1⊥, . . . , (q⊥)⊥} and i ̸= j, i⊥ ̸= j⊥. To the following we

will hereafter refer to as to the Lemma.

Lemma 4.1. When applying (4.1) to any four vectors from (ε, ε⊥) of which at least three of these four are mutually
distinct, then from C = 0 it follows that R( . , . , . , . ) = 0 for such four vectors.

Next, in case q = 1, by (4.2) it follows that

∀i, i⊥ : K(Ei ∧ E⊥
i⊥) = {ρ+ ρ⊥}/(n− 2)− τ . (4.3)

And thus, for any unit vector X ∈ D and any unit vector X⊥ ∈ D⊥, denoting their tangent 2-plane by π,
π = X ∧X⊥, and, denoting the Riemannian sectional curvature of this plane by K,

K = K(π) = {ρ+ ρ⊥}/(n− 2)− τ . (4.4)

Similarly, by (4.2) it follows that

∀i⊥ ̸= j⊥ : K(E⊥
i⊥ ∧ E⊥

j⊥) = {ρ⊥ + ρ⊥}/(n− 2)− τ . (4.5)

And thus, for any orthonormal vectors X⊥, Y ⊥ ∈ D⊥, denoting their tangent 2-plane by π⊥, π⊥ = X⊥ ∧ Y ⊥,
and, denoting the Riemannian sectional curvature of this plane π⊥ by K⊥, and, also since ρ ̸= ρ⊥,

K⊥ = K(π⊥) = {2ρ⊥}/(n− 2)− τ ̸= K . (4.6)

And so, for any tangent 2-plane π̃ = (X cos θ +X⊥ sin θ) ∧ Y ⊥, whereby X ∈ D and X⊥, Y ⊥ ∈ D⊥ are
orthonormal and whereby θ ∈

[
0, π2

]
, making use of the above Lemma and of (4.4) and (4.6), we get that

K(π̃) = K cos2 θ +K⊥ sin2 θ , (4.7)

which shows that (Mn, g) is a (1) QCC space.
And next, in case q > 1, in addition to (4.4) and (4.6), by (4.2) it moreover follows that

∀i ̸= j : K(Ei ∧ Ej) = {ρ+ ρ}/(n− 2)− τ . (4.8)

And thus, for any orthonormal X,Y ∈ D, denoting their tangent 2-plane by π, π = X ∧ Y , and, denoting the
Riemannian sectional curvature of this plane π by K, and, also since ρ ̸= ρ⊥,

K = K(π) = {2ρ}/(n− 2)− τ ̸= K⊥ . (4.9)

And so, for any tangent 2-plane π̃ = (X cos θ +X⊥ sin θ) ∧ (Y cosφ ∧ Y ⊥ sinφ), whereby X,Y ∈ D and
X⊥, Y ⊥ ∈ D⊥ are orthonormal and whereby θ, φ ∈ [0, π/2], making use of the above Lemma and of (4.4) and
(4.6) and (4.9), we get that

K(π̃) = K cos2 θ cos2 φ+K⊥ sin2 θ sin2 φ+K(cos2 θ sin2 φ+ sin2 θ cos2 φ) , K = (K +K⊥)/2 , (4.10)

which shows that (Mn, g) is a (q) QCC space.
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Conversely, now we assume that (Mn, g), n ≥ 3, is a (q) QCC space. To begin with, D and D⊥ being the
orthogonally complementary q- and q⊥ = (n− q)-dimensional distributions of the given (q) QCC space, let
(ε, ε⊥) = {E1, . . . , Eq, E

⊥
1⊥ , . . . , E

⊥
(q⊥)⊥} be an orthonormal tangent frame such that ∀ i : Ei ∈ D and ∀ i⊥ : E⊥

i⊥ ∈
D⊥. Then, making use of (4.7) and (4.10), we calculate the Ricci curvatures of the vectors Ei and E⊥

i⊥ :

ρ(Ei) =
∑
j ̸=i

K(Ei ∧ Ej) +
∑
i⊥

K(Ei ∧ E⊥
i⊥)

= (q − 1)K + q⊥K , (4.11)

ρ(E⊥
i⊥) =

∑
i

K(E⊥
i⊥ ∧ Ei) +

∑
j⊥ ̸=i⊥

K(E⊥
i⊥ ∧ E⊥

j⊥)

= qK + (q⊥ − 1)K⊥ . (4.12)

Thus, for all unit vectors U ∈ D and U⊥ ∈ D⊥:

ρ(U) = ρ ̸= ρ⊥ = ρ(U⊥) , (4.13)

while the precise relations between these Ricci curvatures ρ and ρ⊥ in the distributions D and D⊥ of a (q)
QCC space and its sectional curvatures K and K⊥ and K are given in (4.11) and (4.12). Next we calculate
the Ricci curvature ρ(ψ) = S(Ũ , Ũ) in the direction of any unit tangent vector Ũ = U cosψ + U⊥ sinψ whereby
ψ ∈ [0, π/2]. In order to do so, we consider an orthonormal frame (ε̃, ε̃⊥) = {Ũ = U cosψ + U⊥ sinψ = Ũ1, Ũ

⊥ =
−U sinψ + U⊥ cosψ = Ũ⊥

1⊥ , U2, . . . , Uq, U
⊥
2⊥ , . . . , U

⊥
(q⊥)⊥}, whereby U2, . . . , Uq ∈ D are perpendicular to U and

whereby U⊥
2⊥ , . . . , U

⊥
(q⊥)⊥ ∈ D⊥ are perpendicular to U⊥. Then,

ρ(ψ) = ρ(Ũ) = K(Ũ ∧ Ũ⊥) +
∑
i̸=1

K(Ũ ∧ Ui) +
∑

i⊥ ̸=1⊥

K(Ũ ∧ U⊥
i⊥) .

In case q = 1, using (4.7) this gives that

ρ(ψ) = K + (n− 2)(K cos2 ψ +K⊥ sin2 ψ) , (4.14)

and, in case q > 1, using (4.10) this gives that

ρ(ψ) = K + (q − 1)(K cos2 ψ +K sin2 ψ) + (n− q − 1)(K⊥ sin2 ψ +K cos2 ψ) . (4.15)

From (4.14) and (4.15), respectively we get the following:

dρ(ψ)
dψ

= 2(n− 2) cosψ sinψ(K⊥ −K) (4.16)

and

dρ(ψ)
dψ

= (n− 2) cosψ sinψ(K⊥ −K) . (4.17)

Given that on a (q) QCC spaceK ̸= K⊥ ̸= K, (4.16) and (4.17) imply that in both cases, q = 1 and q > 1, the Ricci
principal curvatures are attained in the directions Ũ = U cosψ + U⊥ sinψ for which ψ = 0 or ψ = π

2 . This shows that a
(q) QCC space is a (q) QE space, with ρ and ρ⊥ ̸= ρ as its two distinct principal Ricci curvatures and with D and
D⊥ as its corresponding q- and q⊥ = (n− q)-dimensional principal Ricci distributions.

It further remains to be shown that C = 0. And this can be done by straightforward verification as follows.
On a (q) QCC space, for all their tangent 2-planes the Riemannian sectional curvatures are given by (4.7) in
case q = 1 and by (4.10) in case q > 1. By (4.11) and (4.12), rewritten hereafter as (4.18) and (4.19),

ρ = (q − 1)K + q⊥K , (4.18)
ρ⊥ = qK + (q⊥ − 1)K⊥ , (4.19)
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the correspondences between ρ, ρ⊥ on the one hand and K, K⊥ and K on the other hand are clear, and,
moreover we have that

τ = trS = qρ+ q⊥ρ⊥ . (4.20)

Inserting these data into (4.2) for all possible tangent 2-planes π̃ of a (q) QCC space, it results that all the Weyl
sectional curvatures KC(π̃) do vanish, ∀ π̃ : KC(π̃) = 0. And, since the conformal curvature tensor C of Weyl is a
generalised curvature tensor, this is equivalent with the vanishing of this curvature tensor itself, and, thus, C = 0, (cfr.
[33]). (Q.E.D.)

The real space forms of dimension ≥ 3, or, still, the CC spaces Mn(c), n ≥ 3, in a trivial way, are Deszcz symmetric
spaces, (R ·R = L ∧g ·R, L : Mn → R), with vanishing conformal curvature tensor of Weyl, (C = 0). In a way, the
real space forms are the most symmetric of all Deszcz symmetric spaces, and, in particular, it already are very
special Cartan symmetric spaces, (∇R = 0), and, thus, even more special Szabó symmetric spaces, (R ·R = 0).
In any case, for the real space forms the double sectional curvature vanishes, L = 0, or, still, the real space forms
are very special Deszcz symmetric spaces Mn((0)), (whereby 0 : Mn → R : p 7→ 0(p) = 0 is the null function on
Mn). As asserted in Theorems 4.3 and 4.4, besides the real space forms or the CC spaces, the quasi space forms, or,
still, the QCC spaces Mn(K,K⊥), n ≥ 3, are the other Deszcz symmetric spaces with vanishing conformal curvature
tensor of Weyl. Among all Deszcz symmetric spaces, also the quasi space forms do form a particularly special subclass
of extremely symmetric spaces, of which we now determine the double sectional curvature L. In order to do so, let
us consider two tangent 2-planes π̃1 and π̃2 given by π̃1 = X ∧X⊥ and π̃2 = X̃ ∧ Y ⊥, whereby X ∈ D and
X⊥, Y ⊥ ∈ D⊥ are orthonormal, and, D and D⊥ are the two Ricci principal distributions of the quasi Einstein
spaces Mn(K,K⊥), in short notation: S(D) = ρD and S(D⊥) = ρ⊥D⊥, and whereby X̃ = (X +X⊥)/

√
2. Then,

a.o. making use of the above Lemma mentioned in the proofs, we find that

(∧g ·R)(X̃, Y ⊥, Y ⊥, X̃;X,X⊥) = K⊥ −K , (4.21)

(showing in particular, since K⊥ ̸= K, that such 2-planes π̃1 and π̃2 are curvature-dependent), and that

(R ·R)(X̃, Y ⊥, Y ⊥, X̃;X,X⊥) = K (K⊥ −K) . (4.22)

From (4.21) and (4.22) it follows that L = K, which fact, for the record, will be formulated in the following.

Proposition 4.1. The QCC spaces Mn(K,K⊥) are Deszcz symmetric spaces Mn((K)).

In case K = K(π) = K(X ∧X⊥) = 0, the (q) QCC spaces under consideration are Szabó symmetric, for either
q = 1 or q > 1, whereby in the latter situation K⊥ = −K, and so, together with a later comment, one may
recover the following classification result of K. Sekigawa and H. Takagi [43].
Theorem K. The Szabó symmetric spaces Mn((0)), n ≥ 3, with C = 0 locally are (i) real space forms Mn(c),
or, (ii) product spaces Mq(c)×Mn−q(−c), c ̸= 0, that is, products of real space forms with non-zero opposite
curvatures, or, (iii) product spaces of real space forms Mn−1(c), c ̸= 0, with curves M1.

The just mentioned comment refers to the following result from [16].
Theorem L. Let (Mn, g), n ≥ 3, be a Riemannian manifold with vanishing conformal curvature tensor of
Weyl. Then (Mn, g) is Deszcz symmetric, R ·R = L ∧g ·R, if and only if (Mn, g) is Ricci Deszcz symmetric,
R · S = L ∧g ·S.
A Riemannian manifold (Mn, g), n ≥ 3, is said to be Ricci Deszcz symmetric if it satisfies the curvature condition
R · S = L ∧g ·S for some function L : Mn → R. Theorem L states that, whenever C = 0, this condition is
equivalent to the curvature condition R ·R = L ∧g ·R to be Deszcz symmetric. And, in particular, Theorem
L states that, whenever C = 0, Riemannian manifolds (Mn, g), n ≥ 3, are semi symmetric, R ·R = 0, if and
only if they are Ricci semi symmetric, R · S = 0, and the former Theorem K of Sekigawa-Takagi originally was
formulated in this latter way. Geometrically the conditonR · S = 0 means the following [31]: after parallel transports
fully around infinitesimal co-ordinate parallelograms cornered at points p, tangent vectors v⃗ at p in general are
transformed to tangent vectors v⃗⋆ ̸= v⃗ at p, and R · S = 0 if and only if for all vectors v⃗ at all points p after all
such parallel transports ρ(v⃗⋆) = ρ(v⃗), that is, if and only if, although in general tangent directions may change under
such parallel transports, on Ricci semi symmetric spaces, their Ricci curvatures do remain invariant.

For quasi Einstein spaces, in passing, in Section 3 was mentioned the gradual change of the values of the Ricci
curvatures from the value ρ for directions in the distribution D to the value ρ⊥ ̸= ρ for directions in the distribution D⊥.
More precisely this means the following. Let X̃ = X cos θ +X⊥ sin θ, θ ∈ [0, π/2], be an arbitrary tangent unit
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vector on a QE space, given in its canonical decomposition according to the direct sum TM = D ⊕D⊥. Then,
the Ricci curvature ρ(X̃) in the direction X̃ is given by

ρ(θ) = ρ(X̃) = S(X̃, X̃) = S(X cos θ +X⊥ sin θ, X cos θ +X⊥ sin θ)

= S(X,X) cos2 θ + S(X⊥, X⊥) sin2 θ

= ρ cos2 θ + ρ⊥ sin2 θ .

We finish by referring to Bang-Yen Chen’s book ‘Geometry of Submanifolds’ [7] of half a century ago for the
start of the journey which is described in the present paper and to the Foreword of Bang-Yen Chen’s recent
book [9] on the geometry of warped products concerning the original rôle played herein by the (1)QCC spaces
and for its discussion of Thurston’s geometrical space form problem.

Funding
There is no funding for this work.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final
manuscript.

References

[1] Albujer, A. and Haesen, S.: A geometrical interpretation of the null sectional curvature. J. Geom. Phys. 60, 471-476(2010).
[2] Belkhelfa, M., Deszcz, R. and Verstraelen, L.: Symmetry properties of 3-dimensional d’Atri spaces. Kyungpook Math. J. 46, 367-376 (2006).
[3] Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2003).
[4] Berger, M.: La géométrie métrique de variétés riemanniennes (...), in “Élie Cartan et les mathématiques d’ aujourd’hui”, Astérisque, Paris, 9-

66(1985).
[5] Boeckx, E., Kowalski, O. and Vanhecke, L.: Riemannian manifolds of conullity two. World Scientific, Singapore (1996).
[6] Boju, B. and Popescu, M.: Espaces à courbure quasi-constante. J. Diff. Geom. 13, 373-383(1978).
[7] Chen, B.-Y.: Geometry of Submanifolds, Marcel Dekker, New York (1973).
[8] Chen, B.-Y.: Pseudo-Riemannian Geometry, δ-Invariants and Applications. World Scientific, Singapore (2011).
[9] Chen, B.-Y.: Differential Geometry of Warped Product Manifolds and Submanifolds, World Scientific, Singapore (2017).

[10] Chen, B.-Y. and Yano, K.: Hypersurfaces of a conformally flat space. Tensor N.S. 26, 318-322 (1972).
[11] Chen, B.-Y. and Yano, K.:Special conformally flat spaces and canal hypersurfaces. Tôhoku Math. J. 25, 177-184(1973).
[12] Chen, B.-Y., Dillen, F., Verstraelen, L. and Vrancken, L.: Characterizations of Riemannian space forms, Einstein spaces and conformally flat spaces.

Proc. AMS 128, 589-598 (1999).
[13] Defever, F. and Deszcz, R.: A note on geodesic mappings of pseudosymmetric Riemannian manifolds. Colloq. Math. 62, 313-319(1991).
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[15] Decu, S., Pantić, A., Petrović-Torgǎsev, M. and Verstraelen, L.: Ricci and Casorati principal directions of δ(2) Chen ideal submanifolds.

Kragujevac Math. J. 37, 25-31 (2013).
[16] Deprez, J., Deszcz, R. and Verstraelen,L.: Examples of pseudo-symmetric conformally flat warped products. Chinese J. Math. 17, 51-65 (1989).
[17] Deszcz, R.: On pseudosymmetric spaces. Bull. Soc. Math. Belg. A 44, 1-34(1992).
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[31] Jahanara, B., Haesen, S., Şentürk, Z. and Verstraelen, L.: On the parallel transport of the Ricci curvatures. J. Geom. Phys. 57, 1771-1777 (2007).
[32] Klein, F.: Elementary mathematics from an advanced standpoint - Geometry, Dover, New York (1939).
[33] Kühnel, W.: Differentialgeometrie. Kurven - Flächen - Mannigfaltigheiten. Vieweg, Wiesbaden (2008); English translation: Differential

Geometry. Curves - Surfaces - Manifolds. AMS Student Mathematical Library 16 (2006).
[34] Kowalski, O. and Sekizawa, M.: Pseudo-symmetric spaces of constant type in dimension three - elliptic case. Rend. Mat. Appl. 17(7), 477-512(

1997).
[35] Kowalski, O. and Sekizawa, M.: Pseudo-symmetric spaces of constant type in dimension three - non-elliptic case. Bull. Tokyo Gakugei Univ.

50(4), 1-28(1998).
[36] Levy, H.: Tensors determined by a hypersurface in Riemannian space. Trans. AMS 28, 671-694(1926).
[37] Lumiste, Ü.: Semi-parallel submanifolds in real space forms. Springer, Berlin (2009).
[38] Matveev, V.S.: Geometric explanation of the Beltrami theorem. Int. J. Methods Mod. Phys. 3, 623-629(2006).
[39] Mikeš, J., Kiosak, V. and Vanžurová, A.: Geodesic mappings of manifolds with affine connection. Palacký University, Olomouc (2008).
[40] Mikeš, J., Vanžurová, A. and Hinterleitner, I.: Geodesic mappings and some generalizations. Palacký University, Olomouc (2009).
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