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Abstract

The process of creating univalent harmonic mappings which are not analytic is not simple or
straightforward. One efficient method for constructing desired univalent harmonic maps is
by taking the linear combination of two suitable harmonic maps. In this study, we take into
account two harmonic, univalent, and convex in the horizontal direction mappings, which
are horizontal shears of Ψm(z) = 1

2isinγm
log
(

1+zeiγm

1+ze−iγm

)
, and have dilatations ω1(z) = z,

ω2(z) = z+b
1+bz , b ∈ (−1,1). We obtain sufficient conditions for the linear combination of

these two harmonic mappings to be univalent and convex in the horizontal direction. In
addition, we provide an example to illustrate the result graphically with the help of Maple.

1. Introduction

In the open unit disk E={z ∈ C : |z|< 1} , a continuous complex-valued function f = u+ iv is harmonic for the real harmonic functions u
and v, may be expressed as f = h+g in which h and g are analytic in E. Denote by H be the class of harmonic mappings f normalized by
h(0) = g(0) = h′(0)−1 = 0, where

h(z) = z+
∞

∑
m=2

amzm and g(z) =
∞

∑
m=1

bmzm.

The Jacobian of f = h+g is given by J f = |h′|2−|g′|2. In [1], it is proved that J f > 0 in E if and only if f ∈ H is locally univalent and
sense-preserving. For every z in E, the condition J f > 0 is equal to the dilatation ω(z) = g′(z)/h′(z) satisfying |ω(z)|< 1 (see [2, 3]).

We denote by SH the class of all univalent, harmonic, and sense-preserving mappings f = h+g ∈ H. Let S0
H = { f ∈ SH : g′(0) = 0} ⊂ SH .

A domain is said to be convex in the horizontal direction (CHD) (or convex in the vertical direction), if every line parallel to the real axis (or
imaginary axis) intersects the domain either with a connected or empty intersection. If f ∈ S0

H maps E onto a CHD domain, f is said to be a
CHD mapping.
A function f ∈ SH is CHD, if

h(z)−g(z) =
1

2isinγ
log
(

1+ zeiγ

1+ ze−iγ

)
for γ ∈

[
π

2
,π
)
. (1.1)

Let SH(γ) be the class of all such mappings. Recently, Çakmak et al. [4] studied the convolutions of mappings in the class SH(γ).
Construction of univalent harmonic mappings is not a very easy and straight forward task. In 1984, Clunie and Sheil-Small introduced a
method, known as shear construction or shearing, for constructing a univalent harmonic mapping from a related conformal map. Following
method described in the result of Clunie and Sheil-Small [2] creates harmonic mappings that are convex in one direction:

Lemma 1.1. [2] A harmonic locally univalent function f = h+g maps E univalently onto a domain convex in a direction φ if and only if
an analytic univalent function h− e2iφ g maps E univalently onto a domain convex in the direction of φ .
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Taking the linear combination of two appropriate harmonic maps is another method to create additional examples of non-analytic harmonic
mappings. Recently, many researchers have studied this topic such as Dorff and Rolf [5], Long and Dorff [6], and Kumar et al. [7] investigated
the linear combination of harmonic univalent mappings which are convex in the vertical direction (CVD). Dorff and Rolf [5] provided the
conditions for the linear combination of harmonic mappings which are CVD and have same dilatation to be univalent and CVD. Long and
Dorff [6] obtained the conditions (especially conditions of dilatation) for the linear combination of harmonic mappings fm for m = 1,2
which satisfy hm +gm = 1

2isinγm
log
(

1+zeiγm

1+ze−iγm

) (
γm ∈

[
π

2 ,π
))

to be univalent and CVD. Wang et al. [8] proved the linear combinations of
harmonic right half plane mappings which satisfy hm+gm = z

1−z for m = 1,2 are CHD. Additionally, Demirçay [9], Demirçay and Yaşar [10]

examined the conditions for the linear combination of harmonic mappings fm for m = 1,2 which satisfy hm−gm = 1
2isinγm

log
(

1+zeiγm

1+ze−iγm

)
to

be univalent and CHD.
It is clear from the aforementioned publications that the dilatation functions of the corresponding harmonic functions are significant in
determining how their linear combinations behave. In this article, our primary goal is to use two harmonic mappings satisfying (1.1) with
particular dilatations ω1(z) = z, ω2(z) = z+b

1+bz , b ∈ (−1,1) to design univalent, sense-preserving, and CHD harmonic mappings. We derive
adequate requirements for the univalent and CHD nature of the linear combination of these two harmonic mappings.

2. Preliminary Results

In this section, we state three results obtained by Demirçay [9] and Demirçay and Yaşar [10] and an efficient tool which is known as Cohn’s
Rule [11].

Theorem 2.1. [9, 10] Let fm = hm +gm ∈ SH(γm), for m = 1,2 and γ1,γ2 ∈
[

π

2 ,π
)

be two harmonic CHD mappings which satisfy (1.1).
Then f3 = λ f1 +(1−λ ) f2 ∈ SH and CHD for 0≤ λ ≤ 1, if f3 is locally univalent and sense-preserving.

Lemma 2.2. [9, 10] Let fm = hm +gm ∈ SH(γm), for m = 1,2 and γ1,γ2 ∈
[

π

2 ,π
)

be two harmonic CHD mappings which satisfy (1.1). If

ωm =
g′m
h′m

are dilatations of fm, m = 1,2, respectively, then the dilatation ω of f3 = λ f1 +(1−λ ) f2 (0≤ λ ≤ 1) is given by

ω =
I
II

(2.1)

where

I = λω1 (1−ω2)
(

1+2zcosγ2 + z2
)

+(1−λ )ω2 (1−ω1)
(

1+2zcosγ1 + z2
)
,

and

II = λ (1−ω2)
(

1+2zcosγ2 + z2
)

+(1−λ )(1−ω1)
(

1+2zcosγ1 + z2
)
.

Theorem 2.3. [9, 10] Let fm = hm +gm ∈ SH(γm), for m = 1,2 and γ1,γ2 ∈
[

π

2 ,π
)

be two harmonic CHD mappings which satisfy (1.1). If
γ1 = γ2 , then f3 = t f1 +(1−λ ) f2 ∈ SH and CHD for 0≤ λ ≤ 1.

Lemma 2.4. (Cohn’s Rule, see [11]) Suppose a polynomial

r(z) = c0 + c1z+ c2z2 + · · ·+ cmzm (2.2)

of degree m, and

r∗(z) = znr
(

1
z

)
= cm + cm−1z+ cm−2z2 + · · ·+ c0zm.

Indicate the number of roots in r inside and on the unit circle, respectively, using the symbols s and t. If |c0|< |cm| , then

r1 =
cmr(z)− c0r∗(z)

z

has the number of roots inside and on the unit circle, respectively, s1 = s−1 and t1 = t.

3. Main Result

Theorem 3.1. Suppose fm = hm +gm ∈ SH(γm), for m = 1,2 and γ1,γ2 ∈
[

π

2 ,π
)

be two harmonic CHD mappings which satisfy (1.1). If
ω1(z) = z, ω2(z) = z+b

1+bz , b ∈ (−1,1), then f3 = λ f1 +(1−λ ) f2 ∈ SH (0 < λ < 1) and CHD provided b(γ1− γ2)> 0.

We require the following lemma in order to demonstrate our primary finding:

Lemma 3.2. Let b ∈ (−1,0)∪ (0,1), λ ∈ (0,1), and γ1,γ2 ∈
[

π

2 ,π
)
. If b(γ1− γ2)> 0, then

(i) |1+b(1−2λ )|> |b(1−2λ )+1+2bλ (1−λ )(cosγ1− cosγ2)| ; (3.1)

(ii) |1+b(1−2λ )+bλ (1−λ )(cosγ1− cosγ2)| (3.2)

> |(1−λ )(−bλ +1+b)cosγ1 +λ (1−bλ )cosγ2| . (3.3)
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Proof of (i). It is obvious that 1+b(1−2λ ) > 0 holds for b ∈ (−1,0)∪ (0,1) and λ ∈ (0,1). Then, following inequalities needs to be
proved

−(1+b(1−2λ ))< b(1−2λ )+1+2bλ (1−λ )(cosγ1− cosγ2) , (3.4)

b(1−2λ )+1+2bλ (1−λ )(cosγ1− cosγ2)< 1+b(1−2λ ). (3.5)

That is,

− [1+b(1−2λ )]< bλ (1−λ )(cosγ1− cosγ2)< 0.

First, because γ1,γ2 ∈
[

π

2 ,π
)
, then b(γ1− γ2)> 0 is equivalent to b(cosγ1− cosγ2)< 0. Therefore, for 0 < λ < 1 we have

bλ (1−λ )(cosγ1− cosγ2)< 0.

Now, we contemplate two cases to prove the second inequality.
Case 1: If b ∈ (0,1) and γ1,γ2 ∈

[
π

2 ,π
)
, then b(γ1− γ2)> 0 implies −1 < cosγ1− cosγ2 < 0. Thus,

bλ (1−λ )(cosγ1− cosγ2)>−bλ (1−λ )>− [1+b(1−2λ )] (3.6)

holds for λ ∈ (0,1). (3.6) holds because of b
(
λ 2−3λ +1

)
>−1 for λ ∈ (0,1) and b ∈ (0,1).

Case 2: If b ∈ (−1,0) and γ1,γ2 ∈
[

π

2 ,π
)
, then b(γ1− γ2)> 0 implies 0 < cosγ1− cosγ2 < 1. Thus,

bλ (1−λ )(cosγ1− cosγ2)> bλ (1−λ )>− [1+b(1−2λ )] (3.7)

holds for λ ∈ (0,1). (3.7) holds because of b
(
λ 2 +λ −1

)
< 1 for λ ∈ (0,1) and b ∈ (−1,0).

Proof of (ii). If b(γ1− γ2)> 0, then in view of inequality (i) we know that

[1+b(1−2λ )+bλ (1−λ )(cosγ1− cosγ2)]> 0

for b ∈ (−1,0)∪ (0,1), λ ∈ (0,1), γ1,γ2 ∈
[

π

2 ,π
)
. So inequality (ii) is equivalent to the inequalities

1+b(1−2λ )+bλ (1−λ )(cosγ1− cosγ2)

> (1−λ )(−bλ +1+b)cosγ1 +λ (1−bλ )cosγ2, (3.8)

and

(1−λ )(−bλ +1+b)cosγ1 +λ (1−bλ )cosγ2

> − [1+b(1−2λ )+bλ (1−λ )(cosγ1− cosγ2)] . (3.9)

Now, let

f (b,λ ) := 1+b(1−2λ )+bλ (1−λ )(cosγ1− cosγ2)

− [(1−λ )(−bλ +1+b)cosγ1 +λ (1−bλ )cosγ2]

= (1+b)(1− cosγ1)

+λ [(1+b(1−2λ ))(cosγ1− cosγ2)+2b(cosγ1−1)] .

Then
∂ f (b,λ )

∂b
= 1− cosγ1 +[3cosγ1− cosγ2−2]λ

+2 [cosγ2− cosγ1]λ
2,

∂ f (b,λ )
∂λ

= 4b [cosγ2− cosγ1]λ +[(3b+1)cosγ1− (b+1)cosγ2−2b] .

Let ∂ f (b,λ )
∂b = 0 and ∂ f (b,λ )

∂λ
= 0. Then we have

b = b0 =
cosγ1− cosγ2

2− cosγ1− cosγ2

and

λ = λ0 =
1
2
, and λ = λ1 =

1− cosγ1

cosγ2− cosγ1
.

Since λ1 /∈ (0,1), it is obvious that

f (b,λ )≥ f (b0,λ0) = 1− cosγ1

2
− cosγ2

2
> 0

which implies that

1+b(1−2λ )+bλ (1−λ )(cosγ1− cosγ2)

> (1−λ )(−bλ +1+b)cosγ1 +λ (1−bλ )cosγ2.
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Thus, inequality (3.8) is proved.
Next, let

I := (1−λ )(−bλ +1+b)cosγ1 +λ (1−bλ )cosγ2

+[1+b(1−2λ )+bλ (1−λ )(cosγ1− cosγ2)]

= (1+b)(1+ cosγ1)+λ [(1−b)(cosγ1 + cosγ2)−2(b+ cosγ1)] .

Let

g(b) := (1−b)(cosγ1 + cosγ2)−2(b+ cosγ1).

Since

g′(b) =−cosγ1− cosγ2−2 < 0,

g is decreasing for b ∈ (−1,0)∪ (0,1) and γ1,γ2 ∈
[

π

2 ,π
)
.

Also, g(−1) = 2cosγ2 +2 > 0 and g(1) =−2cosγ1−2 < 0.
If g(b)< 0, then

I = (1+b)(1+ cosγ1)+λ [(1−b)(cosγ1 + cosγ2)−2(b+ cosγ1)]

> (1+b)(1+ cosγ1)+ [(1−b)(cosγ1 + cosγ2)−2(b+ cosγ1)]

> (1−b)(1+ cosγ2)

> 0.

If g(b)> 0, then

I = (1+b)(1+ cosγ1)+λ [(1−b)(cosγ1 + cosγ2)−2(b+ cosγ1)]

> (1+b)(1+ cosγ1)

> 0.

Thus, the proof is complete.
Proof of Theorem 3.1. In view of Theorem 2.1, it suffices to show that |ω| < 1 in E. If b = 0, then ω2(z) = ω1(z) = z. If we substi-
tute these into (2.1), we get ω = z. If γ1 = γ2, then this case was proved in Theorem 2.3. Thus, we just need to consider the case b(γ1− γ2)> 0.

Setting ω1(z) = z and ω2(z) = z+b
1+bz in (2.1), we get

ω(z) =
λ z
(

1− z+b
1+bz

)(
1+2zcosγ2 + z2)+(1−λ )(1− z)

(
1+2zcosγ1 + z2) z+b

1+bz

λ

(
1− z+b

1+bz

)(
1+2zcosγ2 + z2

)
+(1−λ )(1− z)

(
1+2zcosγ1 + z2

)
=

λ z(1−b)
(
1+2zcosγ2 + z2)+(1−λ )

(
1+2zcosγ1 + z2)(z+b)

λ (1−b)
(
1+2zcosγ2 + z2

)
+(1−λ )

(
1+2zcosγ1 + z2

)
(1+bz)

=
r(z)
r∗(z)

,

where

r(z) = (1−bλ )z3 +[2λ (1−b)cosγ2 +2(1−λ )cosγ1 +b(1−λ )]z2

+[1−bλ +2b(1−λ )cosγ1]z+b(1−λ )

: = c3z3 + c2z2 + c1z+ c0

and

r∗(z) = b(1−λ )z3 +[1−bλ +2b(1−λ )cosγ1]z2

+[2λ (1−b)cosγ2 +2(1−λ )cosγ1 +b(1−λ )]z+(1−bλ )

= z3 p
(

1
z

)
.

Thus if z0 is a zero of r and z0 6= 0, then 1/z0 is a zero of r∗, we can rewrite

ω(z) =
(z+η)(z+ξ )(z+ζ )

(1+ηz)
(

1+ξ z
)(

1+ζ z
) .

It is known that, the function ϕ(z) = z+δ

1+δ z
for |δ | ≤ 1 maps closed unit disk E onto itself. If we show that |η | ≤ 1, |ξ | ≤ 1, |ζ | ≤ 1 has

a modulus that is strictly less than one for at least one of them, then |ω| < 1 in E. As |c3| = |1−bλ | > |c0| = |b(1−λ )| grips for all
−1 < b < 0, 0 < b < 1, and 0 < λ < 1, applying Lemma 2.4 to r, and thus it suffices to prove that all the roots of r1 lie inside or on the unit
circle where

r1(z) =
c3r(z)− c0r∗(z)

z
= (1−b)r̃1(z)
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and

r̃1(z) = [1+b(1−2λ )]z2

+[2(1−λ )(−bλ +1+b)cosγ1 +2λ (1−bλ )cosγ2]z

+[b(1−2λ )+1+2bλ (1−λ )(cosγ1− cosγ2)]

:= c̃2z2 + c̃1z+ c̃0.

By Lemma 3.2 of (i), we have |c̃2|> |c̃0| . Then applying again Lemma 2.4 on r̃1, we get

r2(z) =
b2r̃1(z)−b0r̃∗1(z)

z
=−4bλ (1−λ )(cosγ1− cosγ2) r̃2(z),

and

r̃2(z) = [1+b(1−2λ )+bλ (1−λ )(cosγ1− cosγ2)]z

+[(1−λ )(−bλ +1+b)cosγ1 +λ (1−bλ )cosγ2]

:= ˜̃c1z+ ˜̃c0.

By the Lemma 3.2 of (ii), we have
∣∣∣ ˜̃c1

∣∣∣> ∣∣∣ ˜̃c0

∣∣∣ . Hence, the zeros of r̃2, r2, r̃1, and r1 lie in |z|< 1. Thus, |ω|< 1.

Example 3.3. Let γ1 =
5π

6 , then

h1(z)−g1(z) =−i log

(
1+ zei 5π

6

1+ ze−i 5π

6

)
.

Suppose ω1(z) = z, then we get

h′1(z)−g′1(z) =
1

(1− z)
(
1+ z2−

√
3z
) .

Using

g′1(z)
h′1(z)

= z,

then integration gives

h1(z) =
1+
√

3
2

ln

(
1− z
√

3+ z2

1−2z+ z2

)
+ tan−1(2z−

√
3)+

π

3
,

and

g1(z) =
1+
√

3
2

ln

(
1− z
√

3+ z2

1−2z+ z2

)
− tan−1(2z−

√
3)− π

3
.

Also, let γ2 =
π

2 and ω2(z) = 2z+1
2+z . Then

h2(z)−g2(z) =−
i
2

log
(

1+ iz
1− iz

)
.

Thus, we yield

h2(z) =
3
4

ln
(

1+ z2

1−2z+ z2

)
+

tan−1(z)
2

,

and

g2(z) =
3
4

ln
(

1+ z2

1−2z+ z2

)
− tan−1(z)

2
.

Then using Theorem 3.1, we can conclude that f3 = λ f1 +(1−λ ) f2 ∈ SH and CHD. The images of the concentric circles which have radius
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 in the unit disk E under f3 with λ = 0, 1

2 ,1, respectively, are shown in Figures 3.1, 3.2, and 3.3.
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Figure 3.1: The image of E under f3 with λ = 0 Figure 3.2: The image of E under f3 with λ = 1/2

Figure 3.3: The image of E under f3 with λ = 1

4. Conclusion

Fluid flow issues have been studied and resolved using harmonic mapping techniques (see [12]). Specifically, while working with planner
fluid dynamical issues, the study of univalent harmonic mappings with unique geometric properties like convexity and convexity in one
direction occurs naturally for addressing dynamical planner fluid problems. On the other hand, creating univalent harmonic mappings which
are not analytic is not a very easy and straight forward task. To generate new examples of non-analytic desired univalent harmonic mappings, a
linear combination of two suitable harmonic mappings can be helpful. In this paper, we considered two harmonic mappings fm = hm +gm for

m = 1,2 which satisfy hm−gm = 1
2isinγm

log
(

1+zeiγm

1+ze−iγm

)
for γ1,γ2 ∈

[
π

2 ,π
)

and have dilatations ω1(z) = z and ω2(z) = z+b
1+bz for b ∈ (−1,1).

Our main result is if b(γ1− γ2)> 0 then the linear combination f3 = λ f1 +(1−λ ) f2 for 0 < λ < 1 is univalent and CHD. In addition, we
provided an example to illustrate the result graphically with the help of Maple.

In our forthcoming research endeavor, we intend to explore the conditions for linear combination and convolution of harmonic mappings
involving singular inner functions to be univalent and CHD.
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