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ABSTRACT 

The possibility to distribute the traction power in Hybrid Electric Vehicles powertrain over different prime movers and energy 

recoverability via recuperative braking as well as buffering the energy on rechargeable batteries, lead to the question of how 

electrical, mechanical or chemical energy should flow among various hybrid components of the powertrain. This optimization 

problem, mostly called energy management of hybrid electric vehicles aims to find the minimum consumed fuel energy flow, in 

other words fuel consumption over the entire trip. This study describes the application of theoretical global optimization method 

called Dynamic Programming (DP) and a practical approach substitute, namely Equivalent Consumption Minimization Strategy 

(ECMS) to a parallel hybrid powertrain energy management problem and their virtual tests in various drive-cycles. The 

computational burden of DP has been relaxed by ECMS approach and sub-optimal behaviour is rather comparable to global 

optimal behaviour. Finally, ECMS is enhanced by novel method based on predictive information to anticipate upcoming road 

topology in order to fully benefit either the free recuperation energy over long downhill road sections or via pre-charging strategy 

against uphill road sections.  

Keywords: Hybrid electric vehicle energy management, Vehicle and powertrain modelling, optimization, predictive 

energy management  

Paralel Hibrit Elektrikli Aracın, Optimal Reküperatif 

Frenleme için Öngörülü- Eşdeğer Yakit Tüketimi 

Minimizasyonu Startejisi ile Enerji Yöntemi  

ÖZ 

The cost of routing vehicles represents an important component of many transportation and distribution costs in a logistics 

system. The typical vehicle routing problem involves in designing a set of minimumcost routes for a fleet of vehicle. The vehicle 

routing problem with time windows is a generalization of the vehicle routing problem where the service of a customer can begin 

within the time window defined by the earliest and the latest times when the customer will permit the start of service.  

In this study, The Vehicle Routing problem that root of the logistic systems is handled as Time Window Vehicle Routing 

Problem to obtain the routes of the vehicles that are used by the Arçelik Authorized Service. These vehicles distribute the 

products which were sold to Sincan and Etimesgut Regions in Ankara.  Recommended model was structured and solved with real 

datas using Mix Integer Programming. With respect to the results the improvings are shown and the optimal routes are obtained. 

By the matematical model, the customers’ demands, that authorized service provided with 761.399 km, could be also provided. 

The situation which the total distance could be reduced as 67.90% was demonstrated. The routes which could be provided on 

time and costed minimum was revealed. 

Keywords: Logistic Systems, Vehicle Routing Problem, Vehicle Routing Problem with Time Windows 

1. INTRODUCTION (GİRİŞ) 

Legislative limits for pollutant exhaust emissions, CO2 

targets and increasing market demand for higher fuel 

economy in passenger cars motivate automotive 

industry to develop alternative powertrain such as 

Hybrid Electric Vehicle (HEV) and their innovative 

control technologies [1]. Today, many studies indicate 

the available diversity of these cars on the market which 

is a positive sign of rapidly increasing electro-mobility 

trends and their quick market penetration [2]. Moreover, 

economical potential of HEV and Plug-in-HEV for end-

users is already demonstrated by many studies for their 

tremendous benefit in terms of greenhouse gas 

reduction and improved efficiency [3].  

HEVs essentially store two different energy sources on 

board:  electrical energy in battery and chemical energy 

in fuel tank. The traction power is obtained from these 

energy sources in powertrain consisting of combustion 

engine and electrical motors which is also able to 

recover electrically the braking energy via recuperative 

braking. Having these various back and forth energy 
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flow, necessitates an optimal distribution and 

management of energy flows in HEV powertrain.  

This optimization of energy management has been 

addressed by many studies in literature and various 

methods have been proposed to find the optimal 

behaviour of the energy flows [4-5]. As a benchmark 

method, having the complete topology and speed profile 

of a driving scenario, Dynamic Programming (DP) 

method, numerically solves the problem to find global 

optimal behaviour [6]. This computationally highly 

demanding theoretical approach, does not promise a 

real-time implementation, however it gives very useful 

hints about the optimal behaviour of the complete 

system in entire trip which can also be approximated by 

heuristic algorithms [7]. Moreover, the optimality is a 

reference behaviour which can be exploited as a 

benchmark method to compare more practical methods 

[8]. Other approaches are also proposed based on 

numerical search algorithms like genetic algorithms [9]. 

Analytical optimization methods are also utilized where 

the optimization problem of HEV energy management 

is mapped to an optimal control problem and 

conventional optimal control techniques such as 

Pontyriagin Minimum Principle (PMP) are used [10]. 

Similarly in [11], a method that approximates the PMP 

is developed for real-time implementation purposes. 

Another analytical method based on “extremum 

seeking” is developed in [12] to optimize the energy 

management of a parallel hybrid and comparable results 

are achieved with respect to benchmark method based 

on DP.  

On the other hand, real-time capable, less 

computationally demanding algorithms exist and 

already providing comparable results in simulation and 

real applications. Equivalent Consumption 

Minimization Strategy (ECMS) is one of them, which 

basically offers an equivalency factor between electrical 

(battery) and chemical (fuel) energy consumption 

characteristics [13]. Variants of this method proposes 

map based approaches to ease the implementation and 

fast computation [14].  

On the other hand, ECMS necessitates an overwhelming 

calibration procedure in order to keep the battery state 

of charge (SOC) between high and low SOC band as 

well as sustaining the battery charge over the trip. 

Therefore, some studies enhanced the ECMS by using 

some additional SOC control factor in order to keep the 

SOC within the required battery operation ranges, with 

some additional cost due to the control effort which 

cause deviations from optimal behaviour. In [15] 

various SOC control approaches based on ECMS are 

compared.  

Finally a recent focus point of active research topics is 

to utilize prediction based algorithms supported by 

various information sources such as GPS, digital map 

information or traffic flow data through advanced 

navigation systems [16].  This allows to optimize the 

energy flow not instantaneously but also over the route 

using future road and driving conditions.  

A similar approach is applied in this paper to 

predictively control battery SOC, especially under real-

world driving condition considering road topology and 

anticipation of recuperation zones along the route. 

Especially very long downhill route segments are 

offering high potential for recuperation by using e-

braking via electrical motors in generator mode. While 

using state of the art methodology, such as ECMS that 

can only optimize the energy flow by using 

instantaneous information, this kind of free energy 

recovery zones cannot be fully exploited. Similarly 

upcoming uphill routes will cause an excessive torque 

demand for the engine, hence a higher fuel consumption 

if the battery charge is not prepared previously to drive 

this hill.  

This paper demonstrates respectively the DP, ECMS 

and an extension to the ECMS approaches developed 

for a parallel HEV powertrain. The novel predictive 

ECMS method pre-emptively utilizes the road altitude 

information in energy management system to improve 

the overall recuperation and fuel consumption 

behaviour. The results are demonstrated using 

simulation models based on mathematical 

representation of vehicle and powertrain components as 

well as the road and speed conditions.  

The rest of the paper is outlined as follows: Second 

chapter introduces the vehicle and powertrain model 

and key vehicle parameters used in the study. Third 

chapter explains respectively, DP, ECMS and ECMS 

with SOC control method. Four chapter is devoted to 

the novel predictive ECMS method and final chapter 

concludes the study with key simulation results.  

 

2. POWERTRAIN AND VEHICLE MODEL FOR 

A PARALLEL HEV TOPOLOGY  (PARALEL 

BIR HEA TOPOLOJİSİ İÇİN GÜÇ AKTARMA 

ORGANLARI  VE ARAÇ MODELİ) 

A quasi-static modelling approach is used to model the 

vehicle and powertrain behaviour. This approach is 

based on an assumption of a perfect speed tracking of 

the vehicle for a given drive-cycle. The traction forces 

and powertrain rotational speeds are calculated 

accordingly using the speed profile hence the electrical 

and fuel consumption via component efficiency 

behaviour models.  

The vehicle, in most general road condition, is subjected 

to the resistance and inertial forces depicted in Figure 1. 

Fd, being the inertial force, Fa aerodynamic resistance 

force acting on the vehicle, Fr, rolling resistance force, 

Fg, force action due to road inclination and Ft, traction 

force are calculated by Eqs. (1-5). 
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Figure 1: Generalized Force Equilibrium on the Vehicle 

(Araç Üzerindeki Genelleştirilmş Kuvvet Eşitliği) 

 

 𝐹𝑑(𝑡) = 𝑚𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎(𝑡) (1) 

 
𝐹𝑎(𝑡) =

1

2
𝜌𝐴𝑓𝐶𝑑𝑉

2(𝑡) 
(2) 

 𝐹𝑔(𝑡) = 𝑚𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑔 𝑠𝑖𝑛𝜃(𝑡) (3) 

 𝐹𝑟(𝑡) =  𝑚𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑔𝑐𝑜𝑠𝜃(𝑡)𝜂𝑟𝑜𝑙𝑙.𝑟𝑒𝑠𝑠 (4) 

 𝐹𝑡(𝑡) = 𝐹𝑑(𝑡) + 𝐹𝑎(𝑡) + 𝐹𝑟(𝑡) + 𝐹𝑔(𝑡) (5) 

Here mvehicle represents the vehicle mass, 𝑎(t) 

longitudinal vehicle acceleration, 𝜌 is the air density,  

𝐴𝑓 is front cross section area of the car,  𝐶𝑑 is the 

aerodynamical resistance constant, 𝜃 is the inclination 

angle of the route, and 𝜂𝑟𝑜𝑙𝑙.𝑟𝑒𝑠𝑠 is the tire rolling 

resistance factor.  

A front wheel driven, parallel hybrid powertrain 

topology used in this study as depicted in Figure 2 with 

mechanical and electrical energy flows over the 

powertrain components. As seen in the figure, the stored 

electrical energy in the battery is used to power electric 

motors (EM). Based on the split factor, the mechanical 

energy of EM can be combined with Internal 

Combustion Engine (ICE) torque and propels the 

wheels over a 5-speed Automatic Transmission (AT) 

and differential. In case of zero torque of EM or ICE 

this topology allows both pure EM driving (ICE is off) 

or pure thermal mode (only ICE).  

As seen in the figure, an additional mode allows to 

charge the battery during traction over EM which runs 

in generator (GEN) mode where ICE torque is split 

between wheel load and GEN torque to charge the 

battery. 

One final operation mode available with this powertrain 

is the recuperative braking where EM is contributing the 

necessary braking torque to charge the battery, 

depending on the available maximum torque. 

 

Figure 2: Parallel Hybrid Electric Vehicle Topology (Paralel  

Hibrit Elektrikli Araç Topolojisi) 

A 25 kW permanent magnet brushless DC electric 

motor model together with a 75 kW diesel engine is 

modelled as a powertrain model. AT is a 5 speed 

automatic transmission and the torque converter 

behaviour is neglected in this study. Other key data 

about the simulated vehicle and powertrain are 

summarized in Table 1. 

 
Table 1: Key Vehicle and Powertrain Parameters (Temel Araç 

ve Güç Aktarma Organları Parametreleri) 

Parameter Unit Value 

Max. Bat. Capacity Ah 6.2 

Nominal Bat. Voltage V 310 

Bat. Internal Resistance Ω 2.5 

Max. EM Torque Nm 155 

Max. EM Power kW 25 

Max. ICE Power kW 75 

Gear [-] - 5 Speed AT 

Vehicle Mass kg 1600 

To overcome the resistance force defined in Eq. (5), the 

net torque at wheel level can be found by: 

𝑇𝑛𝑒𝑡@𝑤ℎ𝑒𝑒𝑙(𝑡) = 𝐹𝑡(𝑡)𝑅𝑒𝑓𝑓 (6) 

while 𝑅𝑒𝑓𝑓 is the effective tire radius.  

This Tnet@wheel(t), as explained above, is provided by 

𝑇𝐼𝐶𝐸(𝑡)and EM/GEN torque, 𝑇𝐸𝑀(𝑡) split by a factor 

u(t). Hence, u(t)=1 implies pure thermal mode, whereas 

u(t)=0 indicates pure electric mode.  

𝑇𝐼𝐶𝐸(𝑡) =
 𝑇𝑛𝑒𝑡@𝑤ℎ𝑒𝑒𝑙(𝑡). 𝑢(𝑡)

 𝑖𝑡𝑟(𝑁). 𝑖𝑑𝑖𝑓𝑓 . 𝜂𝑡𝑟(𝑁). 𝜂𝑑𝑖𝑓
 

(7) 

𝑇𝐸𝑀(𝑡) =
 𝑇𝑛𝑒𝑡@𝑤ℎ𝑒𝑒𝑙(𝑡). (1 − 𝑢(𝑡))

 𝑖𝑡𝑟(𝑁). 𝑖𝑑𝑖𝑓𝑓 . 𝜂𝑡𝑟(𝑁). 𝜂𝑑𝑖𝑓
 

(8) 
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The split factor u(t) is dynamically adjusted by the 

Energy Management system based on efficiency 

conditions of overall vehicle and powertrain systems as 

it will be explained in following section. It should be 

noted that the values of u(t)>1 correspond to parallel 

charging mode where traction is only provided by 

engine power which is partly used to charge the battery 

over electric motor operating in GEN mode. 

Transmission efficiency, ηtr depending on the selected 

gear, N and being and differential efficiency ηdif are 

considered. ICE and EM efficiency behaviours depends 

on output torque and rotational speed. In Figure 3, the 

overall EM efficiency behaviour is mapped for EM 

speed and positive (traction) and negative (generator) 

torque.  

 
Figure 3: Electric Motor and Generator Efficiency and 

Maximum Torque Curve (Elektrik Motoru ve 

Jeneratör Verim ve Maksimum Tork Eğrisi) 

 

As briefly mentioned above, ICE efficiency is similarly 

represented dependent on engine torque and speed, in 

other words, operating points of the engine. This 

behaviour that is statically mapped can be expressed by 

Eq. (9), where �̇�𝑓𝑢𝑒𝑙 depicts the fuel consumption per 

second and 𝜔𝐼𝐶𝐸  and 𝑇𝐼𝐶𝐸  are engine speed and torque 

respectively. 

 
�̇�𝑓𝑢𝑒𝑙(𝑡) = 𝑓(𝜔𝐼𝐶𝐸 , 𝑇𝐼𝐶𝐸) (9) 

Battery behaviour is modelled by an equivalent circuit 

of an Open Circuit Voltage as depicted in Figure 4. 

With this model, the battery internal resistance, 

represented by Ri and UOC are additionally functions of 

state of charge (SOC). The equivalent circuit, can be 

represented by Eq. (10) . 

 

Figure 4: Open Circuit Voltage Circuit of HEV Battery 

System (HEA Batarya Sistemi Açık Gerilim 

Devresi)  

 𝐼𝑐ℎ/𝑑𝑐(𝑡)

=
𝑈𝑜𝑐(𝑡) − √(( 𝑈𝑂𝐶

2 (𝑡)) − 4𝑃𝑒𝑙.(𝑡) ·  𝑅𝑖)

2 · 𝑅𝑖
 

(10) 

Being Pel(t) battery power and  𝐼𝑐ℎ/𝑑𝑐  is charging or 

discharging current depending on the sign of Pel(t). 

The unique dynamical of all model is used for SOC 

description  

 
𝑆𝑂𝐶(𝑡) = −

1

𝑄𝑚𝑎𝑥
∫𝐼𝑐ℎ/𝑑𝑐(𝑡)𝑑𝑡 

(11) 

where 𝑄𝑚𝑎𝑥 is maximum battery capacity. The battery 

equations do not imply any SOC limit for the useful 

energy content. However, it is always preferred to 

operate the battery within a certain SOC band (e.g. 

SOClow = %40 and SOChigh = %60) for improved battery 

life. As it will be explained in next section, the battery 

SOC band will be considered inside the energy 

management system.  

 

3. ENERGY MANAGEMENT STRATEGIES FOR 

PARALLEL HEV (PARALEL HEA İÇİN ENERJİ 

YÖNETİM STRATEJİLERİ) 

As an optimization problem, a parallel HEV energy 

flow optimization is basically control the energy flow in 

most optimal way resulting with minimum fuel 

consumption. This implies the adjustment of energy 

flow from fuel tank or from/to battery being battery 

energy flow is bi-directional. This optimal adjustment, 

should not violate the main condition of providing the 

necessary traction or braking power to the wheels. In 

addition to that, operational constraints of powertrain 

and battery system should also be satisfied. These are 

mainly, physical constraints such as minim and 

maximum speed and torque of ICE and EM, as well as 

the maximum battery power, or SOC window consisting 

of SOChigh and SOClow.  

A cost function, 𝐽(𝑘) in discrete time domain is 

introduced representing the energy consumption of the 

fuel calculated by instantaneous consumption and 

Lower Heating Value 𝑄𝐿𝐻𝑉  of fuel:  

𝐽(𝑘) = ∑ �̇�𝐼𝐶𝐸(𝑘). 𝑄𝐿𝐻𝑉 + 𝜑𝑆𝑂𝐶(𝑘) + 𝜑𝑆𝑂𝐶,𝑓(𝑁)
𝑁
𝑘=0  (12) 

Two additional terms are penalty functions to force the 

SOC remained in the defined SOC window and provide 

a charge sustaining behaviour at the end of the drive 

cycle: 

 
𝜑𝑆𝑂𝐶(𝑘)

= {
0   𝑆𝑂𝐶(𝑘) ∈ [𝑆𝑂𝐶𝑚𝑖𝑛. , 𝑆𝑂𝐶𝑚𝑎𝑥.]  

∞ 𝑒𝑙𝑠𝑒 
 

(13) 

 𝜑𝑆𝑂𝐶,𝑓(𝑘) = {
0   𝑆𝑂𝐶(𝑁) = 𝑆𝑂𝐶𝑖
∞ 𝑒𝑙𝑠𝑒

 (14) 



PREDICTIVE-EQUIVALENT CONSUMPTION MINIMIZATION STRATEGY FOR ENERGY  … Politeknik Dergisi, 2015; 18 (3) : 113-124 

117 

As explained above, a unique state of the system can be 

restructured in convenient form as follows: 

 
𝑆𝑂𝐶̇ (𝑘) = −

𝐼(𝑘)

𝑄𝑚𝑎𝑥
∆𝑡 

(15) 

defining the SOC change rate in dıscrete time domain.  

Considering the operational and kinematic constraints of 

powertrain components as well as the battery 

operational range, following limits should not be 

violated as a result of the optimization:  

𝑤𝐼𝐶𝐸𝑚𝑖𝑛 ≤ 𝑤𝐼𝐶𝐸(𝑘) ≤ 𝑤𝐼𝐶𝐸𝑚𝑎𝑥 

0 ≤ 𝑤𝐸𝑀(𝑘) ≤ 𝑤𝐸𝑀𝑚𝑎𝑥 

(16) 

0 ≤ 𝑇𝐼𝐶𝐸(𝑘) ≤ 𝑇𝐼𝐶𝐸𝑚𝑎𝑥(𝑤𝐼𝐶𝐸(𝑘)) 

𝑇𝐸𝑀𝑚𝑖𝑛(𝑤𝐸𝑀(𝑘)) ≤ 𝑇𝐸𝑀(𝑘) ≤ 𝑇𝐸𝑀𝑚𝑎𝑥(𝑤𝐸𝑀(𝑘)) 

𝑃𝑒𝑙(𝑘) ≤ 𝑃𝑏𝑎𝑡.𝑚𝑎𝑥 

Having all the kinematic, dynamic equations as well as 

the state and control constraints, the optimization 

problem is to be solved with an appropriate optimization 

methodologies. In other words, the optimization 

problem aims to calculate optimal u(k), hybrid split 

factor for all instant of a driving mission specified by 

vehicle velocity and road inclination.  

a. Global Optimal Behaviour Calculation With 

Dynamic Programming Method (Dinamik 

Programlama Metodu ile Global Optimal Davranış 

Hesabı) 

To solve this non-linear dynamics characteristics of the 

vehicle-powertrain system, a well-known numerical 

optimization method, Dynamic Programming (DP) has 

been used. This method, relying on Bellman Principle of 

Optimality [17], guarantees globally the optimality of 

the problem, by solving discrete-time system starting 

from last time sequence and moving in backwards 

direction.  

As seen in Figure 5, starting from final time, t = tf, 

towards back to starting point t = 0 the cost function 

defined in Eq. (12) is calculated for each sampling time, 

k, at each discretized state value, 

𝑥𝑖 ∈ [𝑆𝑂𝐶𝑚𝑖𝑛. , 𝑆𝑂𝐶𝑚𝑖𝑛. + 𝛿𝑆𝑂𝐶,… , 𝑆𝑂𝐶𝑚𝑎𝑥.
− 𝛿𝑆𝑂𝐶, 𝑆𝑂𝐶𝑚𝑎𝑥.]1XM   

and for each split value as defined in (7) and (8),  

𝑢𝑖 ∈ [0 , 𝛿𝑢, … , 𝑢𝑚𝑎𝑥. − 𝛿𝑢, 𝑢𝑚𝑎𝑥.]1XN. 

 
Figure 5: Backwards Calculation via DP With Cost Values 

Calculation at Each Time-Step (DP ile Ters Yönde 

Her Zaman Adımında Bedel Fonksiyonu Hesabı) 

 

The minimum cost value, denoted by J∗
i
(𝑘 + 1), for a 

specific time step k that brings the system state from  

xi(𝑘)  to any other state   xi+ε(𝑘 + 1)  and the 

corresponding split factor u∗i(𝑘 + 1) are stored as 

instantaneous minimum function. According to 

optimality principle, these optimal cost values and 

corresponding optimal split factors can be summed up 

with the cost values of the next time step (calculated in 

previous step). If for discrete input values ui the new 

state at xi+ε(𝑘 + 1)  does not correspond to one of the 

pre-defined discrete values of 𝑥𝑖, a linear interpolation 

is applied to calculate the approximate cost values of 

exact state value. 

Hence at any time, the minimum cost of going to the 

final time from any state xi(𝑘)   is available. Once the 

iteration is completed until k=0, the information of all 

optimal path at each discrete state until the very end of 

driving mission is available. A set of cost-values (and 

their optimal inputs) for each discrete state, 𝑥𝑖 and 

discrete time, k are stored in a cost-to-go matrix.  The 

matrix is then be re-used to calculate the optimal split 

values when the system is at any state values. 

This backwards calculation is carried out for a given 

driving mission, specified by speed profile and road 

condition. Therefore the optimization method depends a 

priori information of road condition and speed profile. 

Furthermore, the iterative calculation routine and 

minimization process is computationally very intensive 

especially with reduced discretization factor and time-

step to improve the accuracy. This causes also 

exponentially increasing storing capacity requirements. 

Therefore, DP method is considered as a benchmark 

optimization calculation by its globally optimizing 

characteristics and hence is used to compare other 

developed sub-optimal methodologies. 

In Table 2 the overview of the hybrid modes which are 

available for the parallel hybrid vehicle topology is 

seen. In Figure 6, the selected operating modes as a 
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result of DP calculation and SOC profile over the drive-

cycle NEDC can be seen. The road profile is assumed to 

be flat over the cycle. Figure 7 illustrates the 𝑇𝐼𝐶𝐸(𝑡), 
𝑇𝐸𝑀(𝑡) and selected gear.  

 

Table 2:  Operating Modes of Parallel Hybrid Electric Vehicle 

Topology (Paralel Hibrit Elektrikli Araç Topolojisi 

Çalışma Modları) 

Operation Modes Description 

Mode 1 Split Mode 

Mode 2 Parallel Charge 

Mode 3 Recuperative Braking 

Mode 4 Pure ICE 

Mode 5 Pure EM 

Mode 6 Standstill 

 

Figure 6: Vehicle Speed - Hybrid Operating Modes and SOC 

Over NEDC (NEDC Boyunca Araç Hızı,  Hibrit 

Çalışma Modları ve Batarya Şarjı) 

 

Figure 7: Engine Torque, EM torque and Selected Gear Over 

NEDC (NEDC Boyunca İYM Torku, EM Torku 

ve Seçili olan Vites) 

 

b. Equivalent Consumption Minimization Strategy 

(Eşdeğer Yakıt Tüketimi Minimizasyonu Stratejisi) 

Drawbacks of DP method in terms of computational 

effort and prior information of drive cycle and road 

information brings the necessity of developing a method 

based on instantaneous road and vehicle information. 

The Equivalent Consumption Minimization Strategy 

(ECMS) introduces an equivalence factor that balances 

the electrical energy consumption drawn from battery 

with respect to fuel consumption.  In other words the 

total consumption of electrical energy and fuel energy 

can be combined in single parameter which is called 

equivalent fuel consumption computed by  

�̇�𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 = �̇�𝐼𝐶𝐸 + �̇�𝐵𝐴𝑇,𝑒𝑞. =

�̇�𝐼𝐶𝐸(𝜔𝐼𝐶𝐸(𝑡), 𝑇𝐼𝐶𝐸(𝑡), 𝑢(𝑡)) + 𝑠𝑜 .
𝑃𝑒𝑙.(𝑢(𝑡))

𝑄𝐿𝐻𝑉
        (17) 

Here, beside the real fuel consumption, �̇�𝐼𝐶𝐸, a virtual 

consumption value �̇�𝐵𝐴𝑇,𝑒𝑞. is used. The latter 

represents the virtual fuel consumption which is 

equivalent to the stored energy in the battery by 

charging via ICE and recuperation and discharged 

energy by traction with EM. An equivalence factor so is 

used to convert this battery energy to its chemical 

energy equivalence (or equivalent consumed fuel with 

respect to stored or consumed battery energy, �̇�𝐵𝐴𝑇,𝑒𝑞.). 

Before introducing the calculation method of 

equivalence factor so, a physical analogy is introduced 

to refer how �̇�𝐵𝐴𝑇,𝑒𝑞. is obtained in two different modes 

of hybrid strategy. Firstly, for the split mode, the 

�̇�𝐵𝐴𝑇,𝑒𝑞. represents the future consumed fuel amount 

that would be used to charge same amount of battery 

energy (see virtual charge and consumption in Figure 

8). Similarly, for the parallel charge mode, the saved 

energy by charging the battery, has an equivalence of 

saved fuel that would be consumed if this charged 

energy was used for traction with engine (see virtual 

discharge and fuel saving in Figure 9). 

 

Figure 8: Physical Analogy of ECMS with Virtual 
Charging and Virtual Consumption in Split Mode 

(EYTM’nin Güç Ayrımı Modunda, Sanal Şarj ve 

Sanal Tüketiminin Fiziksel Analojisi) 
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Figure 9: Physical Analogy of ECMS with Virtual 

Discharging and Virtual Consumption in Parallel 

Charging Mode (EYTM’nin Paralel Şarj 

Modunda, Sanal Deşarj ve Sanal Tüketiminin 

Fiziksel Analojisi) 

 

A key part of the ECMS method is the representation of 

the equivalence factor, so which represents the ratio of 

average electrical and chemical energy consumption (or 

equivalent fuel consumption) for this specific 

powertrain for a given drive cycle. In other words, this 

parameter represents implicitly the mean efficiency of 

charging and discharging characteristics of the vehicle.  

One important characteristics of the equivalence factor 

is its linearity for split and parallel charge modes for the 

entire drive cycle. As seen in Figure 10, over NEDC 

total fuel chemical energy and battery electrical energy 

are highly linear, for various constant split values u, 

whereas the linearity differs for parallel charging and 

split modes. Note that for u=0 there is still some 

negative energy stored in battery which corresponds to 

free recuperation energy over the drive cycle. 

Depending on this two linear characteristics, 

equivalence factor can be defined separately for 

charging and discharging cases. 

𝑠0 = {
𝑠0,𝑐ℎ𝑎𝑟𝑔𝑒    𝑃𝑒𝑙. > 0

𝑠0,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑃𝑒𝑙. < 0  
                           (18) 

 

 
Figure 10:Linear Behaviour of Fuel Chemical Energy vs. 

Battery Electrical Energy for Various u Values 

(Yakıt Kimyasal Enerjisi vs. Batarya Elektrik 

Enerjisi’nin farklı u değerleri için Lineer 

Davranışı)  

 

c. Comparison of DP and ECMS method (DP ve 

EYTM metodlarının karşılaştırılması) 

The implementation of ECMS method is 

straightforward and computationally much less 

demanding compared to DP algorithm. Once the 

calibration of the equivalence factor is carried out, the 

equivalence consumption in Eq. (17) is calculated at 

each sampling time for all split values u. Hence, the 

equivalent consumption equation is acted like a cost 

function to be minimized instantaneously: 

𝑢 = 𝑎𝑟𝑔𝑚𝑖𝑛 (�̇�𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡) =

 𝑎𝑟𝑔𝑚𝑖𝑛 {�̇�𝐼𝐶𝐸(𝜔𝐼𝐶𝐸(𝑡), 𝑇𝐼𝐶𝐸(𝑡), 𝑢(𝑡)) + 𝑠𝑜.
𝑃𝑒𝑙.(𝑢(𝑡))

𝑄𝐿𝐻𝑉
}   (19) 

Therefore, the real-time implementation consists of the 

minimization of one single equation calculated at each 

sampling time. Therefore ECMS application is viable in 

terms of real implementation. However, as stated above, 

the problem has been approached with average 

behaviour which makes the method is sub-optimal by 

definition.  

The sub-optimality is highly dependent on the 

calibration of so factor which differs for each speed 

profile as well as road condition. However, once it is 

tuned for specific drive cycle the behaviour is closed to 

global optimal results. In Figure 11 to Figure 14, two 

different cycles, NEDC and FTP75 are simulated to 

compare the achieved behaviour of ECMS compared to 

DP.  

 

Figure 11: NEDC: Vehicle Speed and SOC Profile for DP 

and ECMS (NEDC: DP ve EYTM için Araç Hızı 

ve Batarya Şarj Profili) 
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Figure 12:  NEDC: TICE, TEM , Selected Gear for DP and 

ECMS (NEDC: DP ve EYTM için İYM ve EM 

Torkları, Seçili Olan Vites) 

 

Figure 13: FTP Cycle: Speed and SOC Profile for DP and 

ECMS (FTP Çevrimi: DP ve EYTM için Araç 

Hızı ve Batarya Şarj Profili) 

 
Figure 14: FTP Cycle: TICE, TEM , Selected Gear for DP and 

ECMS (FTP Çevrimi: DP ve EYTM için İYM ve 

EM Torkları, Seçili Olan Vites) 

As seen in SOC profiles as well as, TICE and 

TEM ECMS approaches the DP behaviour. 

Fuel Consumption values over these 2 cycles 

are summarized in Table 3 and  

Table 4.  

Table 3:Cumulative Fuel Consumption Obtained with DP and 

ECMS Over Different Drive Cycles (DP ve EYTM 

ile Farklı Sürüş Çevrimlerinde Elde Edilmiş Toplam 

Yakıt Tüketimleri) 

Total Consumed Fuel 

[L] 

 

DP ECMS 

NEDC 520 524 

FTP 761 766 

 

Table 4: Average Fuel Consumption Obtained with DP and 

ECMS over Different Drivve Cycles  (DP ve EYTM 

ile Farklı Sürüş Çevrimlerinde Elde Edilmiş 

Ortalama Yakıt Tüketimleri) 

Average Fuel Consumption  

[L/100 km] 

  DP ECMS 

NEDC 4.75 4.79 

FTP 4.28 4.31 

 

4. SOC BALANCE FACTOR FOR CHARGE 

SUSTAINING and ANTICIPATED ROAD 

GRADIENT (ŞARJ DENGELEME İÇİN ŞARJ 

DURUMU FAKTÖRÜ VE YOL EĞİMİ 

KESTİRİMİ) 

Although ECMS provides good-match of optimality in 

terms of fuel consumption and ease of implementation 

with intensively reduced computational burden, a 

prerequisite of SOC balance between initial and end of 

cycle SOC(t0) = SOC(tf) has to be guaranteed. This is 

essential in order to prevent excessive charge or 

discharge states at the end of cycle to be able to make a 

fair comparison. Eq. (19) misses such SOC balance 

factor. Therefore as stated in previous section such 

behaviour is provided by a well-calibration s0 parameter 

which implies again a priori-known of speed profile. 

However this causes a problem for the real 

implementation where the implementation operates 

under unknown speed conditions. Therefore ECMS 

method is included a penalty function s1 to guarantee 

the SOC balance between initial and terminal 

conditions:  

�̇�𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 = 

�̇�𝐼𝐶𝐸(𝑡, 𝜔(𝑡), 𝑇𝐼𝐶𝐸(𝑡), 𝑢(𝑡)) + 𝑠𝑜 .
𝑃𝑒𝑙.(𝑡,𝑢(𝑡))

𝑄𝐿𝐻𝑉
∙

𝑠1(SOC)                                                                              (20) 

where 
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𝑠1(𝑆𝑂𝐶) =

{
 
 

 
 (1 + (

𝑆𝑂𝐶𝑓−𝑆𝑂𝐶(𝑡)

𝑆𝑂𝐶𝑓−𝑆𝑂𝐶𝑚𝑖𝑛
)
2𝑛+1

)   𝑖𝑓 𝑆𝑂𝐶(𝑡) < 𝑆𝑂𝐶𝑓 

(1 − (
𝑆𝑂𝐶(𝑡)−𝑆𝑂𝐶𝑓

𝑆𝑂𝐶𝑚𝑎𝑥−𝑆𝑂𝐶𝑓
)
2𝑚+1

)   𝑖𝑓 𝑆𝑂𝐶(𝑡) ≥ 𝑆𝑂𝐶𝑓

     (21) 

Eq. (21) implies a multiplicative correction factor to 

original ECMS equation as in Eq. (21), where SOCmin 

and SOCmax are admissible battery SOC values, while n 

and m are integer numbers. The shape of the s1 function 

motivates a more aggressive impact when the SOC 

approaches to the boundaries. 

 
Figure 15: s1 Penalty Function vs. SOC for SOCmin = 40%, 

SOCmax = 60%,  SOCf = 40%, n = 1 and m = 1 

(SOCmin = 40%, SOCmax = 60%,  SOCf = 40%, n 

= 1 ve m = 1 için s1 Ceza Fonksiyonu vs. SOC ) 

 

Eq. (21) implies a multiplicative correction factor to 

original ECMS equation as in Eq. (21), where SOCmin 

and SOCmax are admissible battery SOC values, while n 

and m are integer numbers. The shape of s1 function 

motivates a more aggressive impact when the SOC 

approaches to the SOC window boundaries. 

On one hand, SOC balancing penalty function allows a 

charge sustaining behaviour over the cycle, on the other 

hand it increases the control effort over the complete 

ECMS equation that would deviate the optimal 

character. In this section, this additional stress is 

reduced by anticipating charging section over the route 

and utilizing this preparing the charge level against this 

free-charging recuperation energy. Then the method is 

further extended to deal with uphill road conditions by 

pre-charging strategy. 

As seen in Figure 16, in most general case, in the 

absence of SOC control factor, s1, a downhill route 

section followed by a flat road possesses a high 

recuperation energy potential. Since, by definition SOC 

will be limited by SOCmax level, some of the braking 

energy will be dissipated in friction brakes. To 

overcome this problem, a-priori knowledge of these 

potential recuperation zones, allows the pre-emptive 

control of SOC so that, a full recuperation can be 

achieved over the downhill section. Today’s navigation 

systems permit the utilization of such road profile ahead 

by means of advanced digital map stored on-board in a 

structured format called e-horizon. Furthermore, an 

accurate prediction of the speed profile is assumed to be 

obtained over the same route horizon with statistical and 

online traffic data as well as the traffic sign information 

of the route. 

 
Figure 16: Top: Downhill Section Starting at do Bottom: SOC 

Profile for Non-predictive (red) and Predictive 

(green) on Downhill Section  (Üst: do’dan 

Başlayan Aşağı Yönde Yokuş, Alt: Aşağı Yönde 

Yokuş Sırasında Öngörüsüz (kırmızı) ve Öngörülü 

(yeşil) Batarya Şarj Profili ) 

 

By still using the standard form of ECMS, SOC profile 

preparation to upcoming downhill section is possible by 

allowing ECMS to use or borrow some part of 

upcoming free recuperation energy in advance. For 

instance, the case depicted in Figure 16, for non-

predictive ECMS, on the flat road section, SOC tends to 

increase by a result of parallel charging which is 

obviously a result of the instantaneous minimization of 

ECMS equation under these operational conditions. An 

additional term is implemented on the ECMS equation 

to change its characteristics such that ECMS function 

motivates more electric drive (e.g. split mode). 

Mathematically expressing the original ECMS Eq.(17) 

is modified by an additional term �̇�𝑟𝑒𝑐𝑢𝑝. as follows: 

�̇�𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 = �̇�𝐼𝐶𝐸 + �̇�𝐵𝐴𝑇,𝑒𝑞. + �̇�𝑟𝑒𝑐𝑢𝑝. = �̇�𝐼𝐶𝐸 +

𝑠𝑜 . (
𝑃𝑒𝑙.(𝑢(𝑡))

𝑄𝐿𝐻𝑉
+ 

𝑃 𝑏𝑜𝑟𝑟𝑜𝑤𝑒𝑑

𝑄𝐿𝐻𝑉
)                                    (22) 

�̇�𝑟𝑒𝑐𝑢𝑝. represents the equivalent fuel consumption of 

the borrowed recuperation energy. As seen again in 

Figure 16, this energy is calculated by remaining energy 

to fully charge the battery, Emax,0 , remaining energy to 

fully charge the battery at the start of downhill (d0), 

Emax,f  and total recuperation energy, Erecup. Recuperation 

energy can be calculated with vehicle longitudinal 

dynamics and estimated vehicle speed over the route 

section as in Eqs (1-5).  

𝐸𝑟𝑒𝑐𝑢𝑝. = 𝐸𝑟𝑜𝑎𝑑 . 𝜆𝑟𝑒𝑐𝑢𝑝. = 𝐹𝑡(�̅�, 𝜃) ∙ (𝑑𝑓 − 𝑑0). 𝜆𝑟𝑒𝑐𝑢𝑝.  

                 (23) 

𝜆𝑟𝑒𝑐𝑢𝑝. represents the average recuperation efficiency of 

the generator and all driveline while the brake energy is 

stored in battery. As depicted in Figure 16, borrowed 

energy to be drawn from battery is found by: 

𝐸𝑏𝑜𝑟𝑟𝑜𝑤𝑒𝑑 = 𝐸𝑟𝑒𝑐𝑢𝑝. − 𝐸𝑚𝑎𝑥,𝑓                                    (24) 
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where 𝐸𝑚𝑎𝑥,𝑓 is estimated by the following linear 

equation: 

𝐸𝑚𝑎𝑥,𝑓(𝑡)  = 𝜅(𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶(𝑡)) + 𝐸𝑚𝑎𝑥,0          (25) 

This calculated borrowed energy constitutes of total 

energy that has to be drawn from battery until vehicle 

reaches d0. Therefore Eq. (25) is calculated 

continuously at each instant while the vehicle 

approaches to start of downhill and hence the �̇�𝑟𝑒𝑐𝑢𝑝. In 

other words, equivalent fuel consumption of the 

borrowed energy corresponding to each covered 

distance is calculated and implemented in Eq. (22) by 

using: 

�̇�𝑟𝑒𝑐𝑢𝑝. = 𝑠𝑜 .
𝑃 𝑏𝑜𝑟𝑟𝑜𝑤𝑒𝑑

𝑄𝐿𝐻𝑉
= 𝑠𝑜 .

𝐸𝑏𝑜𝑟𝑟𝑜𝑤𝑒𝑑

𝑄𝐿𝐻𝑉∙(𝑑0−𝑑)
                  (26) 

A similar approach is applied for the upcoming uphill 

sections of the road to pre-charge the battery in order to 

use more battery energy for higher load sections of the 

route. As seen in Figure 16, the pre-charge energy is 

used during uphill where non-predictive control uses 

engine power for both charging the battery and 

propelling the vehicle to sustain the charge. This 

borrowed pre-charged energy taken from fuel is 

equivalent to: 

𝐸𝑏𝑜𝑟𝑟𝑜𝑤𝑒𝑑 = 𝐸𝑢𝑝ℎ𝑖𝑙𝑙 − 𝐸𝑚𝑖𝑛,𝑓               (27) 

where 𝐸𝑢𝑝ℎ𝑖𝑙𝑙 is the best-case battery energy necessary 

to drive the uphill electrically and 𝐸𝑚𝑖𝑛,𝑓 is the energy 

that would be remained if non-predictive strategy is 

used. This borrowed energy is similarly put in first 

equation (26) and then (22) to store the necessary 

energy to drive the uphill more electrically.  

 
Figure 17:  Top: Uphill Section Starting at 𝒅𝟎 Bottom: SOC 

Profile for Non-predictive (red) and Predictive 

(green) on Uphill Section (Üst: do’dan Başlayan 

Yukarı Yönde Yokuş, Alt: Yukarı Yönde Yokuş 

Sırasında Öngörüsüz (kırmızı) ve Öngörülü 

(yeşil) Batarya Şarj Profili ) 

 

The performance of this enhanced predictive ECMS is 

tested under similar scenarios illustrated in Figure 16 

and Figure 17. Firstly a pure downhill scenario is 

presented with two different constant speed cases where 

the predictive ECMS is tested for both parallel charge 

and power split modes. Then a second scenario is 

created for a mixed road profile with uphill, downhill 

and flat sections. All road sections and their key 

parameters are summarized in Table 5. 

Table 5: Road Sections and Speed Properties Used in 

Simulations (Simülasyonlarda Kullanılan Yol 

Bölümler ve Hız Profilleri) 

 

Route Sections 

Scenario Properties Sec.1 Sec.2 Sec.3 Sec.4 Sec.5 

  

Scenario 1   

Case 1 

Speed [km/h] 50 50 - - - 

Length [km] 3 1.5 - - - 

Incl. [%] 0 -5 - - - 

Scenario 1  

Case 2  

Speed [km/h] 60 50 - - - 

Length [km] 3 1.5 - - - 

Incl. [%] 0 -5 - - - 

Scenario 2 

Speed [km/h] 50 60 60 60 50 

Length [km] 1 1.5 6.5 3.8 2.8 

Incl. [%] 0 5 0 -5 0 

 

The first Scenario starts at the point where the 

upcoming downhill section is anticipated which 

corresponds also to the moment where standard ECMS 

is abandoned (Eq. 17) and predictive ECMS (Eq. 22) is 

triggered. 

Scenario 1 is varied for two different initial conditions 

where at the beginning of the scenario ECMS is 

operating the powertrain in split mode (Case 1) and 

parallel charge mode (Case 2). It is obvious that the 

predictive ECMS gain would be higher for the case 

where SOC tends to increase in Case 2 since the SOC 

would reach max charge limit earlier although 

predictive ECMS does at the end of the scenario. 

Vehicle speed is assumed to be 50 km/h in Case 1 and 

60 km/h in Case 2. 

 
Figure 18: Case 1: SOC(to) = 0.56, V = 50 km/h, SOC vs. 

Time (Durum 1: SOC(to) = 0.56, V = 50 km/sa, 

SOC vs. Zaman) 

 

As seen in Figure 18, non-predictive ECMS under 

instantaneous driving conditions operates the powertrain 

in split mode which is the (sub)-optimal condition. 

However, this behaviour causes a deficiency of 

recuperation energy by the end of the downhill section. 

Whereas this drawback is prevented by pre-discharge 
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with higher EM contribution to the drive torque and less 

engine torque. This pre-emptive SOC control allows to 

fully charge again the battery by the end of the downhill 

section. 

In Case 2, as seen in Figure 19, same route is covered 

this time with higher speed. This motivates the parallel 

charge mode for the non-predictive ECMS again only 

due to the instantaneous condition which are 

independent from future road conditions. However, 

predictive ECMS, due to its predictive behaviour pre-

discharge the battery similar to Case 1. Please note the 

difference in SOC profile of predictive ECMS in both 

cases which are the consequence of different road 

condition and efficiency behaviour of the powertrain for 

different vehicle speed.  

 
Figure 19: Case 2: SOC(to) = 0.56, V = 60 km/h, SOC vs. 

Time (Durum 2: SOC(to) = 0.56, V = 60 km/sa, 

SOC vs. Zaman) 

 

The Scenario 2 includes as previously discussed both 

uphill and downhill road and also different speed 

values. The scenario starts with an upcoming uphill 

section where the non-predictive classical ECMS 

operates in split mode and hence the SOC level 

decreases in mainly in Section 1. As SOC balance is 

required, as soon as the battery is depleted, hybrid 

strategy switches to charging mode where the SOC 

starts to increase. When this charging load   is combined 

with relatively high road load at uphill section, non-

predictive ECMS starts to consume more fuel. However 

this is compensated via predictive ECMS, since the pre-

charge allows to get over the uphill section with more 

electric power which consequently results with fuel 

consumption improvement. This phenomenon can be 

observed in Figure 20 in Section 1 and 2 as well as in 

fuel consumption values in Figure 21. The excessive 

consumption at Section 1 and 2 is due to the surplus 

torque for pre-charge which is then compensated at the 

rest of the manoeuver.  

Second part of the Scenario 2 is similar to Scenario 

1/Case 2 where the long downhill section is anticipated 

earlier therefore a pre-discharge mode is triggered that 

allows to fully discharge the battery which will be 

charged during the downhill section while the non-

predictive ECMS algorithm will not be fully exploit the 

recuperation energy due to early filled battery capacity. 

Scenario 2 concludes with last flat road section (Section 

5) where the SOC values of predictive and non-

predictive ECMS algorithms are equal. This allows to 

make a fair comparison of fuel consumption of both 

cases since the fuel would not be used to charge one of 

the cases for a higher SOC level. 

 
Figure 20: Scenario 2: Road Sections, SOC, EM Torque and 

Battery Energy (Senaryo 2: Yol Bölümleri, SOC, 

EM Torku ve Batarya Enerjisi) 

 

 
Figure 21: Scenario 2: Instantaneous and Cumulative 

Fuel Consumption (Senaryo 2: Anlık ve 

Toplam Yakıt Tüketimleri) 

 

Improvements achieved by the predictive ECMS 

approach for the specified scenarios are summarized in  

Table 6. As cited above, Case 2 has higher 

improvements consumption value due to early charge 

saturation of non-predictive ECMS.  

In Scenario 2 a combined improvement of 6% is 

obtained over a long route model including the uphill 

and downhill sections.  
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Table 6:  Fuel Consumption Improvements with Predictive 

ECMS (Öngörülü EYTM ile Yakıt Tüketimi 

Tasarrufları) 

SCENARIOS 

FC  

Non-

Predictive  

ECMS [g] 

FC  

Predictive  

ECMS [g] 

Improvement 

[%] 

Scenario 1 

Case 1 150.8 143.8 4.6% 

Scenario 1 

Case 2 175 151.1 13.7% 

Scenario 2 648 609 6.0% 

 

5. CONCLUSION (SONUÇ) 

This study summarizes the development of a predictive 

energy management strategy for a parallel hybrid 

powertrain of a mid-sized passenger car. Firstly a 

theoretical optimization methodology based on 

Dynamic Programming (DP) is introduced to achieve 

the theoretical optimal limits of the studied vehicle and 

powertrain. Although the approach allows investigating 

the global optimal behaviour, it lacks the real-time 

capability due to its highly overwhelming computational 

burden. Therefore an alternative sub-optimal method 

called Equivalent Consumption Minimization Strategy 

(ECMS) is studied and benchmarked to DP. This 

computationally less complex and real-time feasible 

alternative is tested under various driving conditions 

which results comparable sub-optimal behaviour with 

respect to global optimum. However its lack of 

predictive nature prevents this ECMS approach to fully 

benefit from long recuperation condition because of 

downhill and uphill road conditions. This drawback is 

overcome thanks to newly developed predictive ECMS 

approach based on anticipation of uphill and downhill 

road conditions and modify the classical ECMS to either 

by pre-charging the batter or fully recuperate free 

braking energy. 
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