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Abstract − Given a ring R, we study its right subinjective profile siP(R) to be the collection
of subinjectivity domains of its right R-modules. We deal with the lattice structure of the
class siP(R). We show that the poset (siP(R), ⊆) forms a complete lattice, and an indigent
R-module exists if siP(R) is a set. In particular, if R is a generalized uniserial ring with
J2(R) = 0, then the lattice (siP(R), ⊆, ∧, ∨) is Boolean.
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1. Introduction

Throughout this paper, every ring R is associative with unity, and all modules are unitary. Mod − R

stands for the category of right R-modules. Flat modules, injective modules, and projective modules
are among the most studied structures of module and ring theory, and they occur naturally in many
algebra fields, such as homological algebra, category theory, representation theory, and algebraic
geometry. Researchers conduct numerous studies on projective, injective, and flat modules. Many of
these studies explore ideas based on relative projectivity, injectivity, and flatness. Recently, instead
of simply categorizing modules as having a specific homological property, each module is allocated a
relative domain that gauges the degree to which it possesses that particular property. In particular,
several research papers have been devoted to the study of the injectivity, flatness, and projectivity
level of modules [1–11].

Subinjectivity domain of a module (Definition 2.2) was originally introduced in [12] in order to study
in a way the degree of injectivity of modules. In this article, we shift our focus from the subjective
domain of modules to examining the collection of these domains using a fresh approach. This collection
is called the (right) subinjective profile (si-profile, for short) of R, and is denoted by siP(R). siP(R) =
{Mod−R} if and only if R is a semisimple Artinian ring if and only if there exists an injective indigent
right (or left) R-module. Semisimple Artinian rings stand out as the most straightforward type of
rings regarding their subinjective characteristics. Another straightforward case arises from rings that
are not semisimple Artinian; these rings exhibit only two possible domains of subinjectivity: injective
modules and all modules. Such rings have no subinjective middle class [12,13].
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We organize the paper as subsequent. In Section 2, we provide brief definitions and properties. In
Section 3, we study the class siP(R) under the condition that it is a set. We show that if siP(R) is a
set, then the class IN of injective modules is an si-portfolio and siP(R) is closed under intersections.
R has no subinjective middle class if and only |siP(R)| = 2. We show that the poset (siP(R), ⊆)
forms a complete lattice if siP(R) is a set (Theorem 3.6). In particular, if R is a generalized uniserial
ring with J2(R) = 0, then the lattice (siP(R), ⊆, ∧, ∨) is Boolean (Theorem 3.9).

2. Preliminaries

This section provides some basic notions to be required for the following section. The paper uses the
books [14–16] for the basic definitions. The references [7, 8, 12,17] cover various aspects of this topic.

Definition 2.1. A module E is injective if for any morphism f : A → E and any monomorphism
q : A → B, f factors through q by some morphism B → E.

By fixing the module A, the notion of A-subinjective module is introduced in [12].

Definition 2.2. A module X is called B-subinjective if for every monomorphism h : B → K and
every homomorphism f : B → X, there exists a homomorphism g : K → X such that gh = f .

Definition 2.3. For an R-module X, the subinjectivity domain of X, denoted as In−1(X), encom-
passes all modules with respect to which X exhibits subinjective properties, i.e.,

In−1(X) = {N ∈ Mod − R : X is N -subinjective}

Every subinjectivity domain contains the class IN of injective modules. Therefore, the class IN
serves as a minimum benchmark for the subinjectivity domains of R-modules. The following result
follows from Lemma 2.2 in [12].

Proposition 2.4. An R-module X is injective if and only if In−1(X) = Mod − R if and only if X is
X-subinjective.

Proposition 2.4 naturally leads to considering the degree to which a specific module exhibits injective-
ness, as injective modules epitomize the highest level of injectiveness. The notion of indigent modules
was introduced by Aydoğdu and López-Permouth [12].

Definition 2.5. A module M is called indigent if In−1(M) = IN .

The existence of indigent modules within any arbitrary ring remains uncertain, although an affirmative
answer is established for certain rings, such as Noetherian rings (for more details, see Proposition 3.4
in [2]). When considering the degree of injectivity in modules, we encounter two extremes: at one
end, we find injective modules, and at the other, we have what are known as indigent modules.

Example 2.6. This example exhibits an indigent module. Let R be a commutative hereditary Noethe-
rian ring. Let U be the direct sum of a representative set of all (nonprojective) simple modules. U is
indigent module by [18, Proposition 2.12].

In this article, we focus on the study of the class of subinjectivity domains.

Definition 2.7. [19] A class A of R-modules is called si-portfolio if there exists an R-module M such
that A = In−1(M).

Definition 2.8. [19] The class {A ⊆ Mod−R : A is an sp-portfolio} is called the (right) subinjective
profile (si-profile, for short) of R and is denoted by siP(R).

The class Mod − R is an obvious example of an si-portfolio. Note that it is still unknown whether IN
is an si-portfolio on non-Noetherian rings.
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For a module T , we denote its injective hull, singular submodule, and radical by E(T ), Z(T ), and
Rad(T ), respectively. The Jacobson radical of a ring R is denoted by J(R). We use the notations ≤
and ⊆ in order to indicate submodules and set inclusion, respectively.

3. Lattice Structure

The poset of si-portfolios is denoted by (siP(R), ⊆) where the partial order is given by containment
⊆. Note that siP(R) need not actually form a set but we still use the term poset by abuse of language
when siP(R) is a class. The poset (siP(R), ⊆) always contains a unique maximal element, the class
of all the modules Mod − R. It is unknown whether IN is an si-portfolio. Moreover, it is unknown
whether siP(R) is closed under intersections.

Theorem 3.1. If siP(R) is a set, then IN is an si-portfolio and siP(R) is closed under intersections.

Proof. Assume that siP(R) is a set. Consider the function In−1 : Mod−R → siP(R), A → In−1(A).
The function In−1 is onto. Since siP(R) is a set, there is a set I of R-modules such that In−1

|I is
one-to-one and onto. We show that the R-module

O := ⊕
M∈I

M

is indigent. Let C be an R-module from In−1(O). Then, by Proposition 2.4 [12],

C ∈
⋂

M∈I
In−1(M)

Moreover, since
In−1(C) ∈ siP(R)

and
In−1(C) = In−1(X)

for a module X ∈ I. Then, C ∈ In−1(C), and thus C is injective R-module. This implies that O is
indigent.

Let M be a family of si-portfolios. Since siP(R) is a set, M is a set. Let I be a complete set of
non-isomorphic modules whose subprojectivity domains are in M. Set

O := ⊕
M∈I

M

Then, ⋂
A∈M

A = In−1(O)

by Proposition 2.4 in [12].

In [13], the authors investigate rings for which the si-profile consists of IN and Mod − R. They called
these rings as having no subinjective middle class. By Theorem 3.1, we have the following result.

Corollary 3.2. R has no subinjective middle class if and only |siP(R)| = 2.

The subprojectivity domains of two non-isomorphic modules may be the same. For example,

In−1(0) = In−1(R) = Mod − R

For the remaining discussions, let δ be a complete set of representatives of non-isomorphic non-injective
simple modules.
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Proposition 3.3. Let I and J be subsets of δ. Then,

In−1
(

⊕
S∈I

S

)
= In−1

(
⊕

S∈J
S

)
if and only if I = J

Proof. To show the necessity, assume that

In−1
(

⊕
S∈I

S

)
= In−1

(
⊕

S∈J
S

)
and I ≠ J

Without loss of generality, we may assume that a simple R-module A exists in I \ J . Then, since
A /∈ J , Hom(A, S) = 0, for all S ∈ J . Thus,

A ∈
⋂

S∈J
In−1(S) = In−1

(
⊕

S∈J
S

)
Then, by assumption,

A ∈ In−1
(

⊕
S∈I

S

)
=

⋂
Si∈I

In−1(S)

Since A ∈ I, A ∈ In−1(A), and thus A is injective, a contradiction. The sufficiency is clear.

A ring R is called a semilocal ring if R/J(R) is semisimple Artinian. Note that any semilocal ring has
only finitely many simple R-modules up to isomorphism [14]. Define

siP(δ) :=
{
In−1

(
⊕

Si∈I
Si

)
: I ⊆ δ

}

Corollary 3.4. If R is a semilocal ring, then |siP(δ)| = 2|δ|.

Proof. Since R is a semilocal ring, R has only finitely many simple R-modules up to isomorphism.
Put δ := {S1, S2, . . . , Sn} and let

siP(δ) :=
{
In−1

(
⊕

Si∈I
Si

)
: I ⊆ δ

}
Since |δ|= n, |siP(δ)| = 2n by Proposition 3.3.

Note that R is a generalized uniserial ring with J2(R) = 0 if and only if every right (or left) R-module
is a direct sum of a semisimple module and an injective module [20].

Lemma 3.5. Let R be a generalized uniserial ring with J2(R) = 0. Then,

siP(R) =
{
In−1

(
⊕

S∈I
S

)
: I ⊆ δ

}
and |siP(R)| = 2|δ|

Proof. Since R is a semilocal ring, R has only finitely many simple R-modules up to isomorphism.
Put δ := {S1, S2, . . . , Sn}. By Corollary 3.4,

siP(δ) =
{
In−1

(
⊕

Si∈I
Si

)
: I ⊆ δ

}
and |siP(δ)| = 2n. We claim that siP(δ) = siP(R). Clearly, siP(δ) ⊆ siP(R). Note that, for I = ∅,

In−1
(

⊕
Si∈I

Si

)
= In−1({0}) = Mod − R ∈ siP(δ)

Let M be any R-module. If M is injective, then In−1(M) = Mod−R, and thus In−1(M) is in siP(δ).
If M is not injective, then, by [20], M = A ⊕ E, where A is semisimple and E is injective. Without
loss of generality, we may assume that A has no injective direct summands. Further, we have that

In−1(M) = In−1(A) ∩ In−1(E) = In−1(A) ∩ Mod − R = In−1(A)
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Let C be a complete set of non-isomorphic simple submodules of A. Since

In−1(A) = In−1
(

⊕
Ci∈C

Ci

)
and each Ci ∈ C is isomorphic to one of Sγ in δ, In−1(M) = In−1(A) must be in siP(δ). Thus,
siP(δ) = siP(R), as claimed.

A partially ordered set P is called a lattice if every pair of elements a and b in P has both a supremum
a ∨ b (called join) and an infimum a ∧ b (called meet). A partially ordered set P is called a complete
lattice if its subsets have a join and a meet. A lattice P is said to be bounded if it has the greatest
element and the least element [21].

Theorem 3.6. Assume that siP(R) is a set. The poset (siP(R), ⊆) forms a complete lattice under
the following meet and join operations:

i. The meet ∧ is defined by P1 ∧ P2 = P1 ∩ P2.

ii. The join ∨ is defined by P1 ∨ P2 =
⋂

{P ∈ siP(R) : P1 ⊆ P and P2 ⊆ P}.

Proof. (siP(R), ⊆, ∧) is a meet-semilattice by Proposition 2.4 in [12]. Using the same technique
in Theorem 3.1, it can be easily seen that (siP(R), ⊆, ∨) is a join-semilattice. By Theorem 3.1,
every subset of siP(R) has a meet. Again, by the same idea used in Theorem 3.1, it can be seen
that every subset of siP(R) has a join. Hence, (siP(R), ⊆, ∨) is a complete lattice. The class IN
is the minimal element of siP(R) by Theorem 3.1. On the other hand, for any injective module E,
In−1(E) = Mod − R, and thus Mod − R is the maximal element of siP(R).

Let P be a lattice with 0, 1, and t ∈ P . An element t′ ∈ P is called a complement of t if t ∧ t′ = 0
and t ∨ t′ = 1. P is called complemented if each element in P has at least one complement. A
complemented lattice is called Boolean if it is distributive. We claim that (siP(R), ⊆) is Boolean if R

is a generalized uniserial ring with J2(R) = 0.

Lemma 3.7. Let R be a generalized uniserial ring with J2(R) = 0. Let I and J be any two subsets
of δ. Then,

In−1
(

⊕
S∈I

S

)
∨ In−1

(
⊕

S∈J
S

)
= In−1

(
⊕

S∈I∩J
S

)
Proof. If

In−1
(

⊕
S∈I

S

)
⊆ In−1(T )

for a non-injective simple T , then T ∼= S, for some S ∈ I, since otherwise, Hom(T, S) = 0, for every
S ∈ I, and hence

T ∈
⋂

S∈I
In−1(S) = In−1

(
⊕

S∈I
S

)
⊆ In−1(T )

which implies T is injective, a contradiction. Therefore,

In−1
(

⊕
S∈I

S

)
∨ In−1

(
⊕

S∈J
Sγ

)
⊆ In−1

(
⊕

S∈I∩J
S

)
Suppose that

In−1
(

⊕
S∈I

S

)
∨ In−1

(
⊕

S∈J
Sγ

)
= In−1(X)

for a module X. As noted in the proof of Lemma 3.5,

In−1(X) = In−1
(

⊕
S∈T

S

)
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where T ⊆ δ. The containment
In−1(X) ⊂ In−1

(
⊕

S∈I∩J
S

)
follows by the definition of ∨. Repeating the first paragraph, it can be shown that I ∩ J ⊆ T ⊆ I
and I ∩ J ⊆ T ⊆ J . Then, I ∩ J = T , which proves the assertion.

For the sake of completeness, we provide the following result.

Corollary 3.8. [12, Theorem 4.2] If R is right-left hereditary Artinan serial ring, then

In−1
(

⊕
S∈δ

S

)
= IN

Theorem 3.9. If R is a generalized uniserial ring with J2(R) = 0, then the lattice (siP(R), ⊆, ∧, ∨)
is Boolean.

Proof. Recall that siP(R) is a set by Lemma 3.5. We first show that (siP(R), ⊆, ∧, ∨) is comple-
mented. Let P ∈ siP(R). If either P = IN or P = Mod − R, then the proof is completed. Assume
that neither P = IN nor P = Mod−R. Then, a non-injective module H exists, such as In−1(H) = P.
Since R is a generalized uniserial ring with J2(R) = 0, we get H = A ⊕ B where A is a direct sum of
non-injective simple modules, and B is an injective module by [20]. Then,

In−1(H) = In−1(A) ∩ In−1(P ) = In−1(A) ∩ Mod − R = In−1(A)

Let C be an exact set of non-isomorphic simple direct summands of A. Define a subset

I := {S ∈ δ : S ∼= C, C ∈ C} ⊆ δ

Then,
In−1(A) = In−1

(
⊕

C∈C
C

)
= In−1

(
⊕

S∈I
S

)
We note that J := δ − I ≠ ∅, since otherwise, we would have

In−1(H) = In−1
(

⊕
S∈I

S

)
= IN

by Corollary 3.8, a contradiction. By Proposition 2.4 in [12] and Corollary 3.8,

In−1(H) ∧ In−1
(

⊕
S∈J

S

)
= In−1

(
⊕

S∈δ
S

)
= IN

To show that
In−1(H) ∨ In−1

(
⊕

S∈J
S

)
= Mod − R

we assume that
In−1(H) ∨ In−1

(
⊕

S∈J
S

)
= In−1(X)

for some module X. If X is injective, then we are done. Assume that X is not injective. Since R is a
generalized uniserial ring with J2(R) = 0, by [20], X has a non-injective simple direct summand, say
T . Since

In−1
(

⊕
S∈I

S

)
= In−1(H) ⊆ In−1(T )

and
In−1

(
⊕

S∈J
S

)
⊆ In−1(T )

T ∈ J ∩ I. But J ∩ I = ∅, and this means that X has no non-injective simple direct summand, and
so it is injective by [20].
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For the distributive property, we only need to show that(
In−1(A) ∨ In−1(V )

)
∧ In−1(Z) =

(
In−1(A) ∧ In−1(Z)

)
∨

(
In−1(V ) ∧ In−1(Z)

)
for any modules A, V , and Z. Without lost of generality we may assume that A, V , and Z have no
projective simple direct summands. Since R is a generalized uniserial ring with J2(R) = 0,

In−1(A) = In−1
(

⊕
S∈IA

S

)

In−1(V ) = In−1
(

⊕
S∈IV

S

)
and

In−1(Z) = In−1
(

⊕
S∈IZ

S

)
by Lemma 3.5 where IA, IV , and IZ are subsets of δ. By Proposition 2.4 in [12] and Lemma 3.7,(

In−1(A) ∨ In−1(V )
)

∧ In−1(Z) = In−1
(

⊕
S∈J1

S

)
where

J1 = (IA ∩ IV ) ∪ IZ

Similarly, (
In−1(A) ∧ In−1(Z)

)
∨

(
In−1(V ) ∧ In−1(Z)

)
= In−1

(
⊕

S∈J2
S

)
where

J2 = (IA ∪ IZ) ∩ (IV ∪ IZ)

Obviously, J1 = J2, which proves the assertion.

Example 3.10. Let K be any field. Let R = T3(K) denote the ring of all upper triangular 3 × 3
matrices with entries in K and let S denote the left socle of R. R/S is a generalized uniserial ring
with J2(R/S) = 0 by Example 13.6 in [20]. Then, (siP(R/S), ⊆) is a Boolean lattice by Theorem 3.9.

4. Conclusion

The objective of this paper is to commence exploration into an alternative viewpoint regarding the
subinjective profile of rings. Differing from recent examinations focusing on the subinjective profile of
rings, our approach delves into the lattice theoretical perspective of this concept. In future studies,
researchers can consider how profile properties may determine the rings’ structure. Specifically, they
can investigate the necessary and sufficient conditions for rings to exhibit distributive and modular
properties within this profile.
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