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 The interferometric Shuttle Radar Topography Mission (SRTM) satellite’s digital elevation 
model (DEM) is an important tool for studying topographic features on a medium-spacing 
scale. Data were collected and processed using the satellite’s orbital and navigation 
parameters with selected global GPS stations for verification. Distortion may be expressed by 
surveying measurements, such as position, distance, area, and shape. This study focuses on 
this distortion and proposes a new registration method to reduce its effect. Because of 
generality, the purpose shapes were excluded from this study. The proposed registration 
method depends on precise GPS control points that act as the ground truth for describing the 
considered surveying measurements. The processing was carried out using deep artificial 
neural networks (DANN) to produce a new registered DEM. A comparison was made between 
the original DEM and the new one, focusing on the selected surveying measurements. Another 
comparison was made between the GPS coordinates and SRTM polynomials to determine the 
potential of the proposed system. Some statistical investigations were applied to determine 
the level of significance of the distortion in each surveying measurement. The study shows 
that the distortion is highly significant; therefore, the proposed registration method is 
recommended to fix the distortion. An important finding is the enhancement in local 
coordinates scope. 
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1. Introduction  
 

Remote sensing is a technology used to reduce costs 
and time by adopting automation [1]. The Radar Shuttle 
Radar Topography Mission (SRTM) collects 
interferometric radar data to produce near-global 
topographic products [2]. SRTM data are the main source 
of global topographic data, which depend on orbital 
navigation parameters to compute the space coordinates 
of the ground surface in addition to predefined ground 
control points (GCPs) for verification. The accuracy of the 
SRTM data varies from place to place, owing to the 
difference between the system reference properties and 
the proposed local reference properties. The accuracy of 
the SRTM DEM has been thoroughly investigated allover 
of the world in many countries [3]. Many trials have been 
conducted to achieve the best performance of the SRTM 
DEM for use in engineering applications, for example, not 
for exclusion of the following research works. Su and Guo 

[4] developed a practical way to correct the SRTM DEM 
in vegetated areas based on light detection and ranging 
(LiDAR) data. A similar investigation was conducted by 
Su et al. [5] but optical satellite images were added as a 
source for validation. Ochoa et al. [6] developed a 
methodology for the correction of digital elevation 
models for plain topography based on ground control 
points using a traditional methodology. Zhou et al. [7] 
investigated an adaptive terrain-dependent 
methodology for SRTM DEM correction for hard 
topography based on the M-estimator. Julzarika, 
Harintaka and Kartika [8] fused multiple DEM data 
sources, including SRTM DEM, to reach the optimum 
representation of vegetation areas. The use of artificial 
intelligence (AI) in remote sensing is an important 
modern aspect [9]. Deep artificial neural networks 
(DANN) provide good results in the processing and 
optimization of remote sensing data [10]. In addition to 
the previous literature, some research handle DEM from 
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different point of view, such as: Altunel [11] who studied 
the effect of DEM resolution on topographic wetness 
index. Bildirici and Abbak [12] studied the accuracy of 
SRTM DEM in comparison to local data within Turkey. 
Çubukçu et. al., [13] studied digital elevation modeling 
using artificial neural networks from the side of 
deterministic and geostatistical interpolation methods. 
Yakar [14] who studied Digital elevation model 
generation using robotic total station. Yalçın [15] studied 
DEM and GIS-based assessment of structural elements in 
the collision zone with a case study. Yılmaz and Erdogan 
[16] studied Designing high resolution countrywide DEM 
for Turkey. Yakar [17] investigated the effect of the grid 
resolution on the description of the surface. While 
Sarıturk [18] study on object detection and classification 
are among the most popular topics in Photogrammetry 
and Remote Sensing studies. Yakar et. al., [19] studied the 
performance of photogrammetric and terrestrial laser 
scanning methods in volume computing of excavation 
and filling sites. non-invasive, and inexpensive data 
collection technique [20] Yılmaz  studied  on examination  
the role of erosion of the surrounding soil by using  
Digital Elevation Model (DEM) [21]. 

This study attempts to find a practical approach to 
refine and register the SRTM DEM to the global reference 
to produce a corrected local one. To accomplish this 
research objective, one must understand the source of 
the SRTM DEM error. The error sources may vary in 
effect and value; therefore, we mention only the most 
effective and sensible sources according to the common 
literature. “conclusion” and they should be written in 10 
font size, justify, bold and capital letters.  

 
2. SRTM DEM error sources 

 
SRTM DEM error sources can be abstracted to the 

baseline roll, phase, beam differential, timing, and 
position of the platform [2]. Figure 1 shows the SERTM 
error sources in abstracted form. The errors in 
interferometric measurements can be divided into two 
types: static and dynamic (time-varying) errors. The 
static errors were constant over the data collection 
period.  

Because of their behavior, they can be calibrated 
using GCPs. Dynamic errors result from the motion of the 
interferometric mast and changes in the beam steering. 
Owing to their nature, dynamic errors can be partially 
waged by dynamic calibration and mosaicking. The 
SRTM error sources can be explained as follows. Baseline 
Roll Errors: These errors are caused by a lack of 
knowledge of the baseline roll angle, which induces a 
cross-track slope error in the proposed topography; 

therefore, its magnitude is equal to the roll error. Phase 
Errors: These errors are caused by both thermal or 
differential speckle noise and systematic phase changes 
owing to antenna pattern mismatches of the instrument 
electronics. Beam Differential Errors: Systematic phase 
differences between the SRTM beams induce height 
differences at beam overlaps. This difference can be time 
dynamic because the beam steering angles vary 
according to the topography to maintain the swath 
constant. Timing and Position Errors: These are caused 
by uncompensated delays in the system or errors in the 
estimated baseline position, resulting in geolocation 
errors. These errors were treated using targets with 
known positions that can be identified in the radar image 
or topography. Figure 2 shows the SRTM Measurement 
Geometry used to emphasize the nature and behavior of 
the interferometric data acquisition system. 

To clarify the source of errors in SRTM data, one 
needs to understand the geometry of the interferometric 
measurement and attitude and orbit determination 
avionics (AODA). The main measurement vectors are B, 
the vector of the interferometric baseline; P, the vector 
from the origin of the WGS84-fixed origin to the phase 
center of the inboard antenna; V, the platform velocity 
vector; PG, the vector from the WGS84-fixed origin to the 
GPS antenna in the outboard frame; G, the vector from 
the outboard origin to the GPS antenna; Po, the vector 
from the outboard origin to the outboard phase center 
GPS antenna; A, the vector from the  inboard origin to the 
outboard origin; and Pi, the vector from the inboard 
origin to the phase center of the inboard. The 
interferometric baseline B and the position of the 
inboard antenna phase center P can be determined by 
Equation 1-2. 

 
B = A − Pi + Po (1) 

  
P = PG − (G+ A − Pi) (2) 

 
Where: 
A: the vector measured from the origin of the inboard 

system to the origin of the outboard system. 
Pi: the vector measured from the origin of the inboard 

system to the phase center of the inboard antenna. 
Po: the vector measured from the origin of the 

outboard system to the phase center of the outboard 
antenna. 

PG: the vector measured from the Earth-fixed frame to 
a GPS receiver in the outboard antenna. 

G: the vector measured from the origin of the 
outboard system to the GPS receiver. 

 
 

 
Figure 1. SRTM error sources. 
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Figure 2. SRTM measurement geometry. 

 
The error propagation of the interferometry can be 

deduced from the two Equations (1 and 2).  Each error 
source has its own behavior and effect on the overall 
accuracy of the final DEM. Therefore, each error source 
had its own correction formulation. This study proposes 
an agglomerative methodology to express all error 
sources and their correction by applying a DANN in its 
supervised form. SRTM DEM correction can be carried 
out using many approaches, according to the literature. 
The most common general approach is mentioned in the 
previous section. 

 
3. Method  

 
This research is a trial to achieve a better 

representation of the SRTM DEM by applying 
registration using DANN. The methodology depends on 
using well-defined ground control points (GCPs) as a 
target for the DANN. While the SRTM DEM points are the 
input to the DANN, optimization can be carried out to 
achieve an output near the target GCPs. A selected group 
of points was chosen in both the SRTM DEM and the 
output DEM to verify the registration performance. 
Software is used to perform the tasks necessary to 
achieve the research objective. ENVI (by L3HARRIS) and 
DANNDO, which were developed by Serwa in [22, 23] are 

used to apply the necessary tasks in the developed 
system. A detailed description of the developed system is 
presented in the next section. 

 
3.1. System overview 

 
Figure 3 shows a systematic diagram of the proposed 

system. The system starts with the input of both the 
original SRTM DEM and a group of well-defined GPS 
points (GCPs) in the ENVI environment. Then, ENVI is 
used to perform the primitive task of determining the 
coordinates of the GCPs in the original SRTM DEM. At this 
stage, the GCPs have two coordinate values: the first 
belongs to the original SRTM DEM reference, while the 
second belongs to the GPS reference. Theoretically, both 
systems have the same reference in datum and 
projection (WGS 84), but practically, they are not the 
same because of the difference in conditions and data 
acquisition methodology. SRTM DEM depends on 
multiple sources such as KGPS distributed in large areas 
in addition to GEO-SAR and Ocean GCPs stations. The 
user depends directly on GPS in engineering applications. 
DANNDO software was then used to apply the DANN 
algorithm developed and refined by Serwa [10]. The 
result of this stage is the DANN SRTM DEM coordinates, 
which should be compared with the GPS reference 
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coordinates to adopt the accuracy assessment. To stand 
on a heavy base, other coordinates were obtained using 
the SRTM polynomials (first order) by assigning GPS 

coordinates as a destination (target) and SRTM DEM 
coordinates as the source (input). Therefore, a tri-tier 
comparison was adopted. 

 

 
Figure 3. Systematic diagram of the research work. 

 
3.2. Research data 

 
The study area is part of the Aswan government in 

southern Egypt. SRTM DEM data of the research area 
were selected as the main data. Figure 4 shows the 
research area with the SRTM coverage. Four SRTM parts 
were required to cover the study area, so a mosaic was 
created. Eleven GCPs were selected for the study area, as 
shown in Figure 5. Ten virtual lines were used from each 
point to verify the linear accuracy of the registration 
process. 

It is known that all requirements to obtain high 
measuring accuracy are taken such GCPs position 
selection, suitable measuring time 3–5 h, clear weather, 
etc. The selection of the GDOP in the GPS unit settings is 
necessary to obtain good accuracy even if there are more 
satellites.  

Post-processing was performed to guarantee high 
accuracy. The distribution of GCPs is uniform and well 
defined. The measured coordinates of the 11 GCPs on the 
SRTM DEM model are tabulated in Table 1. 

Each of the two GCPs is connected to form a virtual 
line, so we have fifty-five virtual lines 
(10+9+8+7+6+5+4+3+2+1). The tested fifty-five lines 
(L1 to L55) are tabulated as the first and second points in 
Table 2. The 1st refers to the starting point of the line and 
2nd refers to the end point of the line. All the fifty-five 
lines were required to examine the distortion of the 
SRTM DEM as relative positioning. The coordinates of the 
11 points were used to examine the distortion as 
absolute positioning. Both coordinates and lines were 
used to measure the performance level of the developed 
registration method. The values (coordinates and 
lengths) obtained from the GPS RTK devices were 
compared to the corresponding values obtained from the 
SRTM DEM (before and after registration). The values 
obtained from the GPS RTK were considered as the 
reference for this study. One must note that the tested 
lines varied in length to guarantee the generality of the 
study. The lines are used to express the relative accuracy 
of the selected GCPs and to examine the possible 
distortion of the registration process that may happen. 
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Figure 4. Study area with SRTM coverage. 

 

 
Figure 5. Distribution of GCPs in the study area. 
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Table 1. Coordinates of the GPS RTK coordinates of GCPs. 

Pt # X(m) Y(m) Z(m) 

1 4894706.557 3225058.685 2506843.692 

2 4873970.238 3179726.309 2602051.813 

3 4889028.873 3203812.701 2544410.157 

4 4876272.598 3184869.959 2591490.078 

5 4932975.348 3167873.758 2504372.125 

6 4936967.961 3139491.269 2531845.863 

7 4844461.177 3174284.116 2662790.544 

8 4924124.074 3118209.851 2582091.044 

9 4923969.782 3149010.829 2544998.351 

10 4892962.537 3124899.017 2632605.538 

11 4896745.246 3164032.431 2578557.316 

 
Table 2. List of the tested 55 lines. 

  Start 
 

 

End 

1 2 3 4 5 6 7 8 9 10 11 

1 NA L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 
2 NA NA L11 L12 L13 L14 L15 L16 L17 L18 L19 
3 NA NA NA L20 L21 L22 L23 L24 L25 L26 L27 
4 NA NA NA NA L28 L29 L30 L31 L32 L33 L34 
5 NA NA NA NA NA L35 L36 L37 L38 L39 L40 
6 NA NA NA NA NA NA L41 L42 L43 L44 L45 
7 NA NA NA NA NA NA NA L46 L47 L48 L49 
8 NA NA NA NA NA NA NA NA L50 L51 L52 
9 NA NA NA NA NA NA NA NA NA L53 L54 

10 NA NA NA NA NA NA NA NA NA NA L55 
11 NA NA NA NA NA NA NA NA NA NA NA 

 
 
3.3 DANN algorithm  

 
In this study, DANN is adopted in the architecture of a 

multilayer perceptron (MLP), which is famous for such 
applications, and the algorithm of back propagation 
neural networks (BPNN) is adopted. The final presented 
algorithm is known as the DANN. The DANNDO software 
package of DANNDO is used to apply the required 
algorithms. One must be stabilized to declare any debate 
concerning the optimization process. The architecture of 
the DANN consists of an input layer (q) which represents 
the inputs, hidden layers (t, k, etc.) that represent the 
processing points of the input data and responsible for 
delivering the final processing to the output layer, and an 
output layer (m) which is responsible for producing the 
final network output, as indicated in Figure 6. In first 
(learning stage), the input vector Xq is the raw SRTM 
DEM point. The output vector Om is the corresponding 
computed value of the network. The structure of the 
DANN was selected after many trials to achieve a stable 
structure. 

The DANN with BPNN was described by Serwa and 
Saleh [1].  

The process of deep BPNN for remote sensing 
classification problems can be explained in the following 
steps: 

Step 1: Input SRTM DEM coordinates.  
Step 2: Input GPS coordinates for the selected GCPs. 
Step 3: setting up training and testing data sets. 

Step 4: Input SRTM DEM data vector to the input unit 
in the input layer. 

Step 5: Get the output value of each neuron in the 
input layer. 

Step 6: Get the input value for each neuron in the first 
hidden layer. 

Step 7: Get the output value for each neuron in the 
first hidden layer. 

Step 8: Get the input value for each neuron in the next 
hidden layer. 

Step 9: Get the output value for each neuron in the 
current hidden layer. 

Step 10: Repeat step 8 and Step 9 for all hidden layers. 
Step11: Get the input value for each neuron in the 

output layer (the final output). 
Step 12: Get the network error value using. 
Step 13: Investigate if the error limit is exceeded or all 

pixels is entered go to step 22 otherwise continue. 
Step 14: Get the error value in the output unit using. 
Step 15: Update the weights between the output layer 

and the final hidden layer. 
Step 16: Get the error in the hidden unit. 
Step 17: Update the weights between the last hidden 

layer and the previous one. 
Step 18: Repeat Step 16 and 17 for all intermediate 

hidden layers. 
Step 19: Compute the error value in the first hidden 

layer neuron. 
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Step 20: Update the weights between the input layer 
and the first hidden layer. 

Step 21: Go to step 4. 
Step 22: Store the final weights. 
Step 23: Apply steps 4 to 11 for all SRTM DEM data 

except training dataset. 

Detailed information regarding the DANN algorithm 
is available in Serwa [10].  Figure 7 shows the main 
interface of DANNDO SW, which was used to apply the 
DANN with the BPNN algorithm. The tested network 
structure was 3,7,8 and 3 for the input, hidden, and 
output layers, respectively. 

 

 
Figure 6. DANN architecture -input layer (q), hidden layers (t and k) and output layer (m). 

 

 
Figure 7. DANNDO SW interface. 

 
4. Results  
 

After the DANN is stabilized, it can be used to obtain 
the final output of the SRTM DEM coordinates. Table 3 
shows the final errors in both DANN and SRTM DEM 
polynomials (1st order). While Table 4 lists the 
coordinates of the GCPs obtained from the GPS RTK 
Trimble device with the corresponding DANN SRTM 
DEM coordinates in addition to the SRTM DEM 
polynomials (1st order). GCPs have high precision (*. 
###) and it reaches mms. The coordinates of the GCPs 
were obtained by following the necessary requirements 
for using the GPS RTK device.  

The SRTM DEM coordinates of the selected GCPs were 
obtained by registration using the DANN on DANNDO 
SW. The SRTM DEM polynomials was obtained by 
calculation using the solver in Excel. The SRTM DEM 
coordinates are the inputs for the DANN algorithm, 
whereas the GPS RTK coordinates are the target for the 
network output.  

The results are summarized in Tables 4 and 5, for the 
X direction, σx= 21.990m with an average absolute error 
of 16.631m. For the Y direction, σy= 18.168m with an 
average absolute error of 14.129m. For the Z direction, 
σz= 28.707m with an average absolute error of 21.662m. 
For R, the space vector σR= 40.469m with an average 
absolute error of 34.217m.
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Table 3. Coordinates of DANN SRTM DEM and SRTM DEM polynomials. 
Point # 

 
Errors in DANN Coordinates Errors in Polynomials Coordinates 

X(m) Y(m) Z(m) X(m) Y(m) Z(m) 
1 -46.302 -38.720 -8.997 -13.306 -32.120 11.511 
2 -22.533 -3.023 2.251 -9.457 5.508 -10.419 
3 8.767 -10.372 -67.198 35.043 -3.938 -58.323 
4 -5.360 -11.895 22.904 9.907 -3.557 13.893 
5 -3.475 -19.319 -63.205 48.841 -28.197 -17.804 
6 -54.784 4.291 -60.991 -3.243 -8.099 -18.807 
7 -2.109 -27.894 34.791 -9.58 -11.753 -9.088 
8 -23.515 -8.025 -27.431 16.611 -18.664 -3.912 
9 -52.207 -10.607 -19.145 -8.486 -18.567 11.982 

10 -6.420 24.096 -40.972 13.15 22.655 -47.83 
11 -42.056 1.470 28.011 -15.315 2.3696 34.720 

 
 

Table 4. Coordinates of the GCPs in both GPS RTK, DANN SRTM DEM and SRTM DEM polynomials. 

Point # 
GPS RTK DANN SRTM DEM SRTM DEM Polynomials 

X(m) Y(m) Z(m) X(m) Y(m) Z(m) X(m) Y(m) Z(m) 

1 4894706.557 3225058.685 2506843.692 4894719.864 3225090.806 2506832.181 4894752.86 3225097.405 2506852.689 
2 4873970.238 3179726.309 2602051.813 4873979.695 3179720.801 2602062.232 4873992.771 3179729.332 2602049.561 
3 4889028.873 3203812.701 2544410.157 4888993.83 3203816.64 2544468.48 4889020.105 3203823.073 2544477.356 
4 4876272.598 3184869.959 2591490.078 4876262.691 3184873.516 2591476.185 4876277.958 3184881.855 2591467.173 
5 4932975.348 3167873.758 2504372.125 4932926.507 3167901.956 2504389.93 4932978.824 3167893.077 2504435.331 
6 4936967.961 3139491.269 2531845.863 4936971.205 3139499.368 2531864.671 4937022.745 3139486.977 2531906.854 
7 4844461.177 3174284.116 2662790.544 4844470.757 3174295.869 2662799.632 4844463.287 3174312.01 2662755.753 
8 4924124.074 3118209.851 2582091.044 4924107.463 3118228.515 2582094.956 4924147.589 3118217.877 2582118.475 
9 4923969.782 3149010.829 2544998.351 4923978.268 3149029.396 2544986.369 4924021.989 3149021.436 2545017.497 

10 4892962.537 3124899.017 2632605.538 4892949.387 3124876.362 2632653.368 4892968.958 3124874.92 2632646.51 
11 4896745.246 3164032.431 2578557.316 4896760.561 3164030.061 2578522.595 4896787.302 3164030.96 2578529.304 

 
Table 5. Results summary. 

 σx(m) dX Avg(m) σy(m) dY Avg(m) σz(m) dZ Avg(m) σR(m) dR Avg(m) 
DANN SRTM DEM 21.990 16.631 18.168 14.129 28.707 21.662 40.469 34.217 

SRTM DEM Polynomials 32.959 24.321 19.201 14.519 41.992 34.172 56.731 51.259 

 
 

X, Y, Z, and R express the absolute positioning of the 
space coordinates. The results for the lengths (relative 
positioning) for all 55 lines are σL = 37.263m with an 
average absolute error of 30.032m. For the SRTM 
polynomials, σx=22.763m (not better than DANN) with 
average absolute error =24.321m, σy=19.201m (worse 
than DANN) with average absolute error= 14.519m, 
σz=41.992m (better than DANN) with average absolute 
error=34.172m, and σR=56.731m (worse than DANN) 
with average absolute error=51.259m. A 2¬nd order 
polynomials is applied but it gives a worst result. To 
determine the potential of the DANN registration 
methodology, a statistical test of hypothesis was 
conducted. The performance of the DANN registration 
can be measured in many ways.  The most significant 
method was to test the hypothesis. Assuming a 95% level 
of confidence, the first hypothesis is that there is no 
significant difference between the true (reference) GPS 
RTK measurements and the resulting DANN-registered 
measurements, which indicates success. The alternative 
is that there is a significant difference between them, 
which indicates failure of the DANN registration process. 
The testing sample is 11 in the case of X, Y, Z, and R 
(absolute position) < 30, so that the degree of freedom 
for is 10 for both hypotheses. Using a 95% level of 
significance, a critical value of ±2σ can be obtained as the 
acceptance limit for all measurements. It is obvious that 
all average absolute error values for all measurements 
are less than 2σ or even less than σ (68% level of 
significance). Therefore, we must accept the hypothesis 

that there is no significant difference between GPS RTK 
measurements and DANN-registered measurements. 
The alternative hypothesis must be rejected, and 
registration using DANN is reliable. Figure 8 shows the 
final registered SRTM DEM with GCPs. 

 
5. Conclusion  
 

The results show that using DANN is feasible due to 
the enhancement in accuracy compared with the classical 
napping polynomials. Referring to the research objective, 
it can be concluded that using the DANN registration 
methodology is the most effective. The reason behind the 
effectiveness is obtaining a good (small) acceptable 
distortion in both absolute positioning (X, Y, Z, and R) and 
relative positioning (lengths). It should be noted that 
there is no need to compare the research results with any 
other registration method because of the dependence on 
high-accuracy GPS-RTK GCPs. In other words, the ground 
reference is very accurate, and the DANN registration 
results show no significant difference. Although the 
DANN algorithm is very sensitive to the initial network 
weights, it provides good results in this research because 
of the use of a high-accuracy network target (GPS RTK 
GCPs). Accordingly, it is recommended to use the DANN 
registration methodology with high-accuracy GPS-RTK 
GCPs. When using a first-order polynomials to register 
the SRTM DEM, it is obvious that it is not better at all 
because most errors in all directions are higher than 
DANN method. Even applying 2nd order polynomials, it is 
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not better than DANN. One important note concerning 
the limitations of this study is that it can be considered as 
a local system for a certain part of the earth’s surface. The 
reason is the errors and distortions that are dependent 

on the size of the area may increase. The behavior in such 
a case cannot be predicted. 

For future recommendations, one should consider 
using deep learning algorithms (e.g. convolution neural 
networks, deep belief neural networks etc.).  

 

 
Figure 8. The final registered DEM with GCPs shown. 
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