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Abstract  Keywords 

This paper introduces an automatic music transcription model using Deep 

Neural Networks (DNNs), focusing on simulating the "trained ear" in music. 

It advances the field of signal processing and music technology, particularly 

in multi-instrument transcription involving traditional Turkish instruments, 

Qanun and Oud. Those instruments have unique timbral characteristics with 

early decay periods. The study involves generating basic combinations of 

multi-pitch datasets, training the DNN model on this data, and demonstrating 

its effectiveness in transcribing two-part compositions with high accuracy 

and F1 measures. The model's training involves understanding the 

fundamental characteristics of individual instruments, enabling it to identify 

and isolate complex patterns in mixed compositions. The primary goal is to 

empower the model to distinguish and analyze individual musical 

components, thereby enhancing applications in music production, audio 

engineering, and education. 
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1. INTRODUCTION 

 

End-to-end music transcription is a highly challenging subject, captivating those in signal processing 

research, musicians, and the people involved in music technology[1]. This field initially took shape with 

advancements in multi-instrument music transcription, rooted in Blind Source Separation (BSS) [2], [3] 

regarding signal processing and linear system methods like Non-Negative Matrix Factorization[4]. 

However, the landscape evolved[5] significantly with the advent of accessible processing capabilities 

and breakthroughs in Deep Neural Networks (DNN)[6]–[8]. These developments have expanded the 

interest in BSS to researchers focused on Data Learning. Beyond mere source separation, the domain 

has diversified to include various methodologies, such as extracting instruments from music 

compositions[5], segregating music and voices through 2D Fourier Transform techniques[9], and 

isolating monaural speech[10] further enriching the research literature. 

 

The human auditory system can discern distinct patterns and separate acoustic sources, such as different 

musical instruments or vocals. However, a crucial aspect of this capability is that it often requires some 

degree of familiarization or training[11]. Individuals lacking exposure to a particular musical genre or 
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unfamiliar with specific types of instruments may find it challenging to isolate and recognize distinct 

components within the music. 

 

For instance, someone with no background in classical Indian music might struggle to identify patterns 

in Indian Raga or Sargam music. These compositions, rich in their unique structure and rhythm, could 

seem intricate and elusive to an untrained ear. Similarly, Western classical music, known for its complex 

harmonies and arrangements, might appear as a series of perplexing patterns to an adolescent unfamiliar 

with this style. In another scenario, a person who has spent considerable time immersed in Western 

Classical music might find metal music overwhelming or even disturbing. Often characterized by its 

intense and heavily distorted guitar riffs, metal music starkly contrasts Western Classical music's more 

structured and melodic nature. This divergence can make it difficult for someone accustomed to the 

latter to comprehend and appreciate the former's musical themes, nuances, and even instruments. 

 

Overall, the ease with which a person can recognize and separate elements within a musical piece 

significantly depends on their prior exposure and understanding of the specific musical style. This 

highlights the importance of cultural and experiential factors in shaping our auditory perception and 

appreciation of music. The main focus in this context is the trained ear and how this phenomenon is 

modeled.  

 

The concept of a "trained ear" in music pertains to the ability to discern and identify specific instruments 

and the music played by them. This skill, often developed over time through exposure and practice, 

involves a deep understanding of the distinct characteristics of various instruments[12]. The process of 

acquiring such a nuanced auditory ability is both elaborate and complex, reflecting the intricate nature 

of musical perception and appreciation[13]. The concept of "training," particularly in the context of 

music separation, represents a significant milestone in the field of music analysis. This training refers to 

the process of developing systems that can identify specific patterns within a mixed musical piece, which 

is effectively treated as a signal in this context. Various methodologies have been explored to achieve 

this, as noted in the works of [14], [15]    

 

In the context of using models, such as Deep Neural Networks (DNNs)[16], to replicate or assist in this 

process of music separation and identification, the starting point often involves understanding the basic 

characteristics of individual instruments. By training the model with these fundamental traits, it can 

begin to recognize and isolate the complex patterns specific to each instrument. This approach involves 

feeding the model with data that encapsulates the unique acoustic signatures of different instruments. 

As the model learns these characteristics, it becomes increasingly adept at identifying these instruments 

within a mixed musical composition. 

 

The goal is to enable the model to not only recognize an instrument but also to isolate the music played 

by that instrument from a composition featuring multiple instruments. This ability to discriminate and 

analyze individual components of a musical piece is valuable for various applications, including music 

production, audio engineering, and even in enhancing music education and research. It is a testament to 

how combining human auditory skills and advanced technological models can lead to a deeper and more 

precise understanding of music. 

 

This study aims to explore the differentiation of instruments and their music within composite audio 

data, focusing on recognizing distinct, well-defined signatures of individual instruments. Specifically, 

the Turkish plucked instruments, Qanun and Oud, have been selected for analysis in this model. A DNN 

model has been developed and trained to utilize the fundamental characteristics of the amalgamated 

sounds from these instruments. The trained model is then employed to distinguish polyphonic music 

compositions involving these instruments. The outcomes of this approach have been notably 

satisfactory. 
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One of the most significant contributions of this study is the development of a system that enables the 

separation of complex musical data consisting of two or more sounds, using only the fundamental 

composite data characteristics of the acoustic instruments to be separated, independently of the 

instrument databases used in previously trained models. Moreover, it is noteworthy that this study 

successfully applies such a separation to Turkish music instruments, which have not been studied in the 

world literature before. The successful results obtained demonstrate that this approach can also be 

applied to Turkish music. 

 

The paper’s organization is structured as follows: Chapter Two presents a comprehensive description of 

the model utilized for transcribing two-part music. This chapter will detail the preparation of the dataset 

used for training, as well as the features involved. Chapter Three is devoted to an in-depth discussion of 

the results derived from this study. Conclusively, Chapter Four offers a summation and final thoughts 

of the paper. 

 

2. AUTOMATIC MUSIC TRANSCRIPTION MODEL 

 

In this detailed section, we delve into the complexities of the model architecture, the generation of 

training data, and the signal processing techniques employed for feature extraction, all of which are 

integral to our research study. The framework is given in  Figure 1.  

 
Figure 1. The framework of the two-part music transcription 

 

 

Training Data Generation: 

 

The primary objective of constructing this model is to facilitate the understanding of the mechanism 

behind the ear training phenomena by scrutinizing the fundamental instrumental combinations in music 

creation. This research employs a blend of music incorporating Turkish Qanun and Oud instruments, 

aiming to generate a multi-instrument, multi-pitch dataset. A critical step in this process is the 

disentanglement of the musical pieces, which necessitates capturing the distinct multi-timbral 

characteristics of these two instruments playing concurrently. 

The concept of a "well-trained ear" in this context signifies proficiency in precisely discerning, 

identifying, and interpreting sounds, especially within music. This ability is greatly esteemed among 

musicians, audio engineers, and music lovers. The most crucial element of such a trained ear is the 
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recognition of pitches in polyphonic music. This study investigates whether such training can be 

mimicked through the note combinations of two simultaneously played instruments. The methodology 

adopted is straightforward: while the Oud plays a single note (e.g., C3), the Qanun explores various 

notes spanning three octaves, and all possible combinations are systematically recorded. 

 

Figure 2 exemplifies the training data for the A4 note on the Qanun. In this illustration, the Qanun plays 

the A4 note while the Oud progresses in chromatic from C3 to A5. Notably, this method also can 

accommodate training for microtonal intervals. In this work, they are omitted. For each note, a 56-

second sample of mixed music is captured for training purposes. The predicted output of 56 seconds 

data truly considered as A4.  In total, thirty-seven distinct datasets were compiled for the Qanun, 

covering chromatic notes from C3 to A5. Therefore, the corpus for Qanun consists of total 2072 seconds 

long data with 37 different predicted outputs to span the notes C3 to A5. An additional dataset was added 

to the Qanun corpus to represent musical pauses, where only the Oud is audible or there is silence. This 

resulted in 37 diverse datasets dedicated to identifying Qanun phrases within the mixed music. Here 37 

different outputs are C3, C3#, D3, D3#, … A5, and Rest for Qanun, which are equally probably 

distributed. The same methodology was replicated for compiling the Oud data. This systematic approach 

ensures a thorough coverage of the musical spectrum, enabling the study to capture the intricacies of 

pitch variation and harmonic relationships between the two instruments. By focusing on the combination 

of notes from two distinct instruments, the study paves the way for advanced understanding and 

modeling of complex musical interactions. 

 

 
Figure 2. A4 training data for Qanun with Oud spanning the scale in 3 octaves. 

 

Feature Extraction 

 

The features are generated using Short Time Fourier Transform (STFT), Constant Q Transform (CQT), 

Spectral Centroid (ST) and Band Energy Ratio (BER) combinations of music signal. In music analysis, 

the STFT [17] is a key tool for tasks like pitch detection, note mapping, and timing. It is effective because 

it analyzes music in both time and frequency, providing a detailed view of musical pieces. STFT helps 

break down complex polyphonic compositions into simpler parts, making it easier to understand the 

structure of the music. However, it is important to mention that while the STFT is good for 

understanding the sound qualities of instruments, it is not the best at picking up the finer details of 

musical notes, especially in the 64 Hz to 1.5 kHz frequency range. The CQT [18] is a better tool for this 

purpose. Its bins are arranged in line with musical notes, especially useful in Western music where an 

octave is divided into 12 semitones, as denoted in Equation (1).  

  𝑓𝑚 = 𝑓𝑚𝑖𝑛2
𝑚

12∗𝑏 (1) 

   

Here 𝑓𝑚𝑖𝑛 is the minimal frequency in analysis, and b is the number of bins per semi-tone. The CQT 

can be derived with a quality factor 𝑄 =
𝑓𝑚

𝑓𝑚+1− 𝑓𝑚
= 1/(2

1

12𝑏 − 1) 

 𝐹𝐶𝑄𝑇[𝑚, Λ] =
1

𝑁𝑚
∑ 𝑥[𝑘 + Λ𝑅]𝑤𝑚[𝑘]𝑒

(−𝑖
2𝜋𝑄𝑘

𝑁𝑚
)

𝑁𝑚−1

𝑘=0

 (2) 
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To accurately identify both the exact frequencies of musical notes and the unique sound qualities of 

instruments, a feature set combining the STFT and the CQT has been developed. For the STFT, a 2048-

point Fast Fourier Transform (FFT) is used, focusing on the first 500 frequency components from 0 Hz 

to 9 kHz. At the same time, the CQT uses 80 bins to cover the range of musical notes from the C in the 

first octave to the C in the eighth octave, between 32.7 Hz and 4186 Hz. This combined use of STFT 

and CQT provides a thorough and detailed representation of the music, capturing both the frequencies 

of notes and the distinct sound characteristics of various instruments across a wide frequency range. 

 

The Spectral Centroid [19] shown in Equation (3) is a pivotal feature in music analysis, serving as a 

quantitative measure that denotes the 'center of gravity' of the spectrum for each analyzed bin. This 

metric is crucial in discerning the musical texture and timbral qualities of different instruments within a 

composition. It effectively indicates the concentration of energy across the spectrum, providing insights 

into the brightness or dullness of the sounds. 

 𝑆𝐶𝑘 =
∑ 𝑚𝑘(𝑛)𝑛𝑁

𝑛=1

∑ 𝑚𝑘(𝑛)𝑁
𝑛=1

 (3) 

 

Like the Spectral Centroid, the BER is another critical audio feature that can be extracted for in-depth 

music analysis. This parameter is calculated for each window of the audio signal, as detailed in Equation 

(4). The BER quantifies the energy distribution within specific frequency bands of the audio spectrum, 

thereby providing a nuanced understanding of the spectral characteristics of the sound. This 

measurement is essential for tasks such as identifying the dominant frequency bands in a piece of music, 

understanding the textural components of sound, and distinguishing between different types of sounds 

or instruments based on their energy distribution across the spectrum. 

  𝐵𝐸𝑅𝑘 =
∑ 𝑚𝑘(𝑛)2𝐹−1

𝑛=1

∑ 𝑚𝑘(𝑛)2𝑁
𝑛=𝐹

=  
𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑙𝑜𝑤𝑒𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 ℎ𝑖𝑔ℎ𝑒𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
 (4) 

 

Training the DNN Model 

 

The study employs a comprehensive dataset derived from the multipitch characteristics of the Qanun 

and Oud instruments, covering octaves ranging from C3 to B5. From this dataset, the features are 

extracted and utilized as the foundational data for training a sophisticated 7-layer Deep Neural Network 

(DNN). The architecture of this DNN is thoughtfully designed, with the input layer comprising 586 

nodes for the FFT components, CQT bins, Spectral Centroids, and BER features to identify the mixture 

components of two instruments.   

 

The model is a deep neural network built using the Keras Sequential API, designed for multi-class 

classification. It consists of five hidden layers with 586, 400, 200, 400, and 200 neurons, each utilizing 

the ReLU activation function to introduce non-linearity and enhance the network's ability to learn 

complex patterns. The output layer comprises 37 neurons with softmax activation, producing a 

probability distribution across 37 different musical notes that span the 3 octaves. Compiled with the 

categorical cross-entropy loss function and the Adam optimizer, the model is optimized for efficient 

training and effective convergence. The accuracy metric evaluates performance throughout the training 

and testing phases, ensuring the model's effectiveness in classifying data into multiple categories. The 

model is trained using 67% of the data and tested on the remaining 33%, providing a more thorough 

evaluation of its classification capabilities. 

 

Transient Detection and Onset Analysis  

 

Music transcription fundamentally involves recognizing temporal changes within a musical piece, such 

as variations in notes played by instruments or their intermittent silences. These fluctuations, termed as 

transients, are particularly pronounced during the attack phase of an instrument's note. In the context of 
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this study, which focuses on plucked instruments like the Oud and Qanun, these transients are distinctly 

identifiable. To accurately track these transients and thereby detect structural shifts within the time series 

of the music, both the energy envelope and zero crossings are utilized. Concurrently, frequency-domain 

features, including the spectral centroid, spectral skewness, and spectral kurtosis, are employed to 

provide a more granular understanding of potential onset points. Figure 3 exemplifies this process, 

showcasing onset detection in a recording featuring both the Oud and Qanun, with illustrations in both 

time and frequency domains. This comprehensive approach allows for a precise music transcription, 

capturing the dynamic and nuanced interplay of these instruments. 

 
Figure 3. Onset times of music played by Qanun and Oud 

 

The Music Transcription 

 

After completing the model's training process, a two-part musical composition is processed through the 

trained DNN. The output from this DNN comprises potential notes that form the basis of the musical 

piece. Concurrently, onset analysis is employed to identify and track the potential transients of notes 

and the intervals of silence (rests) within the music. 

 

In conducting a comparative analysis of original melodies and their transcriptions, a methodology was 

utilized to reduce them into smaller constituent elements. This was achieved by transforming the 

duration of each note and rest within the compositions into an equivalent duration represented by 

sixteenth notes. The decomposition of these melodies into increments of sixteenth notes allowed for a 

uniform and exact measure of temporal divisions. This standardization was crucial in representing 

rhythmic patterns consistently, and it facilitated an accurate examination of nuanced differences, 

including syncopations and articulations, within the musical pieces.  

 

3. RESULTS 

 

The trained model with data of simple combinations of Oud and Qanun is used to separate and transcribe 

two-part music. We evaluated the model's efficiency using an originally composed piece, as detailed in 

Figure 4. This composition, featuring both instruments, was recorded in a CD-quality at a tempo of 60 

beats per minute (bpm) and endured 1 minute and 38 seconds.  
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Figure 4. The Composition 1 for Qanun and Oud Music 

To evaluate the model’s performance, the entire musical composition was segmented into precise 

segments, each corresponding to a duration of sixteenth notes. This structured division allowed for a 

detailed analysis of the model's accuracy and F1 measure in recognizing and transcribing each note 

segment. The F1 measure is a special metric that combines precision (how often we were right when we 

thought we were) and recall (how many of the right things we caught) into one score. Those are 

calculated as :  

  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  ∑
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒[𝑛]

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 [𝑛] + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 [𝑛]

𝑁

𝑛=1

 (5) 

   

  𝑅𝑒𝑐𝑎𝑙𝑙 =  ∑
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒[𝑛]

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 [𝑛] + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 [𝑛]

𝑁

𝑛=1

 (6) 

   

  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  ∑
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒[𝑛]

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 [𝑛] + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 [𝑛] + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 [𝑛]

𝑁

𝑛=1

 (7) 

   

  𝐹1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (8) 

 

The Qanun Transcription of the music is given in Figure 5. Figure 6 shows the Confusion Matrix 

corresponding to Qanun's transcription. Here, it is noted that NO represents the rest.  
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Figure 5. Transcription of Extracted Qanun from Composition 1 

 

In this confusion matrix of Qanun of Composition 1:  

 

The Accuracy: 0.6538461538461539, F1 Score: 0.6636862141708085 are calculated. 

 
Figure 6. Confusion matrix of Transcribed Qanun part 

The experiment conducted to transcribe qanun music yielded an accuracy of approximately 0.65, and 

the F1 score is 0.66, which, upon examination of the confusion matrix and results, was found to be 

implausible. Notably, a significant number of rests were transcribed instead of notes, primarily due to 
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the distinctive pitch characteristics of the qanun instrument. The limited sustain inherent to the qanun 

often renders the related sound imperceptible, leading to its transcription as a rest. Nevertheless, it is 

crucial to highlight that despite this limitation, the qanun music's transcribed sections successfully 

capture the melody's progression, which remains the most critical aspect in this context. The 

transcriptions effectively preserve the descriptive elements associated with the melody's development 

and trajectory. However, it is essential to acknowledge that the accuracy metric of 0.65 may not fully 

encompass the transcription's overall quality, particularly when a specific instrument or music-specific 

attributes have not been adequately accounted for.  

 

The primary objective of the transcription process is to accurately track the progression of the melody 

and capture the temporal changes in notes. Figure 7 illustrates that, despite successfully identifying the 

overall melody progression in both measure 1 and measure 2, there are discrepancies in specific note 

durations.  

 
 

Figure 7. Extract from the Qanun music. 

 

In measure 1, for instance, the sustained C#4, which lasts for 16 sixteenth notes, is transcribed as 8 

sixteenth notes followed by 8 rests. This transcription fails to represent the continuous nature of the 

note's duration accurately. Similarly, at the beginning of the second measure, the sustained E♭5, which 

endures 8 sixteenth notes, is transcribed in the correct time position. It is shown in the second box in 

Figure 7. However, it is represented as 3 sixteenth notes instead of the intended 8. This discrepancy 

disregards the sustained quality of the note and fails to capture its full duration.  

 
As mentioned before, in the case of qanun music, the characteristic pitch of the instrument may lead to 

the transcriptions incorrectly identifying rests due to the lack of sustain in the instrument. Since the 

sustain is insufficient to sustain the sound, it is transcribed as a rest. 

 
The primary focus of melody transcription lies in accurately capturing the progression of the melody. 

The events presented in Figure 7, while not impacting the recognition of the melody itself, significantly 

affect metrics such as the confusion matrix, as well as satisfaction measures like Accuracy and F1 scores. 

A specialized heuristic has been developed to solve this issue. At the core of this heuristic is a decision-

making process based on probability metrics, particularly when determining the musical notes at the 

output layer in DNN. Here, the algorithm meticulously evaluates the likelihood of each possible note. 

The one with the highest probability score is typically selected as the most appropriate note value. 

However, the heuristic introduces a nuanced twist in scenarios where the output indicates a rest, which, 

in musical terms, means a pause or silence. Instead of automatically accepting this rest, the algorithm 

delves deeper, examining the probability value associated with the note immediately preceding the 

supposed rest. If this preceding note's probability value is found to be higher than that of any other 

outputs except the rest, the heuristic dynamically adjusts its decision. In this case, it opts to consider the 

preceding note as being more representative of the intended musical expression rather than the rest. The 

example illustrated in Figure 7 within the red box shows a probability value of 0.82 at the end of the 

duration of the quarter note for C3. Subsequently, the rest probabilities are 0.47, 0.52, 0.57, and 0.48, 

which are higher than all other note possibilities. Meanwhile, C3 exhibits probability values of 0.26, 

0.26, 0.21, and 0.20 during this time, making them the second-highest probabilistic values identified by 
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the algorithm. Since the previous note value aligns with these second most probable notes over time, the 

algorithm decides to continue the note instead of replacing it with a rest value. 
 

This heuristic evaluates whether rests are present in the music, considering the rapid decay attributes of 

the qanun instrument. This assessment is done without compromising the transcription accuracy of 

individual notes. After implementing this heuristic, the transcribed music played on the qanun has been 

regenerated and is displayed in Figure 8. Although the musical characteristics remain unchanged, there 

has been a notable improvement in both the F1 score and overall accuracy. 
 

 

Figure 8. Transcription of Extracted Qanun from Composition 1 

In this transcription:  

The Accuracy : 0.9846153846153847 F1 Score : 0.9873858802696013 are calculated. 

The confusion matrix is given in Figure 9 

 
Figure 9. The Confusion matrix recalculated using heuristics. 
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The Oud part's transcription results exhibit a similar quality level as depicted in Figure 10. The evaluation 

of these results includes the calculation of Accuracy and F1 score metrics, which are considered 

impressive for assessing the performance of the transcription model. In this transcription: The Accuracy 

: 0.9894736842105263 F1 Score : 0.9918660287081339 are calculated. 

 

The same experiments have been repeated randomly generated compositions and the results are shown 

in Table 1 

 
Table 1. Quality Metrics of Transcription of Qanun and Oud in different compositions 

 
 Qanun Oud 

 Accuracy F1 Measure Accuracy F1 Measure 

Composition 1 0.984 0.987 0.989 0.991 

Composition 2 0.991 0.990 0.987 0.989 

Composition 3 0.989 0.991 0.994 0.997 

 

 
 

Figure 10. Comparison of Original and Transcribed Oud of Melody 1 

 

To evaluate the effectiveness of the proposed model, we examined and trained the current state-of-the-

art automatic music transcription models. One of the most significant challenges is that these models 

heavily rely on corpora based on Western music and Western instruments. For example, the 

commercially available Automatic Music Transcription software, AnthemScore 5 [20] attempted to 

transcribe the music shown in Figure 4, resulting in a highly inaccurate transcription, as depicted in 

Figure 11. In this software, the guitar is the closest instrument to the qanun and oud. 
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Figure 11. AnthemScore 5 output of Composition 1 For Qanun and Oud 

 

Another well-known Automatic Music Transcription model, based on probabilistic latent component 

analysis using matrix factorization, developed by [21], was tested on the music shown in Figure 4. The 

output was a time series of probabilities for 80 different notes in matrix form. This matrix was then 

resolved, and the notes were configured. However, the model failed to separate the two instruments, and 

for each time sample, the most probable two note signatures were considered. The accuracy of this 

approach for the qanun was calculated as 0.342, and the F1 measure was calculated as 0.57, both of 

which are significantly lower than the proposed model. 

 

4. CONCLUSION 

 

In this research, an end-to-end automatic music transcription solution based on learning basic trained 

patterns has been formulated. The underlying motivation is to simulate the trained ear on specific 

instruments or combinations of instruments. Here, the test bench has been developed using the 

traditional Turkish instruments Qanun and Oud. The DNN has been trained by the basic combinations 

of those two instruments. Those multipitched and plucked instruments are highly susceptible to the early 

decay periods; however, an algorithm has also been devised to grasp the true melodic formations.  

 

Recent developments in machine learning-based algorithms for automatic music transcription 

predominantly involve models trained on specific data structures. These models have been effectively 

applied to the analysis of Western music and the separation of Western instruments. However, the 

literature lacks a comprehensive corpus for authentic instruments such as the Qanun, Oud,  Tambour, 

etc, The proposed work aims to address this gap by creating a dedicated corpus for these instruments 

and utilizing it for music transcription. Nonetheless, a notable limitation of the model is its dependency 

on the corpus for introducing and separating the instruments. Consequently, a model trained on a corpus 

created for instruments like the Qanun and Oud would not be applicable to the separation of other 

instruments. 

 

In this research, different compositions with very complicated combinations of those instruments have 

been generated in polyphonic scope, and the transcription of two-part music related to two instruments 

has been obtained in a very satisfactory manner. Here, this approach is the fundamental step to identify 

a much more complex pattern regarding the Maqam, which depends on microtonal structures.  In Maqam 

music, the whole interval has been separated into 5 to 9 microtones, and a half interval is divided into 4 

microtonal intervals. This proposed approach will be improved to transcribe classical Turkish music. 
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The proposed approach, currently successful in transcribing complex Western music patterns, is 

expected to evolve and become capable of handling the sophisticated structures of classical Turkish 

music. This progression is not just a technical achievement but also an important cultural one. By 

improving the transcription of Maqam and other traditional Turkish music forms, this technology plays 

a vital role in preserving and promoting the understanding of Turkey's rich musical heritage. The ability 

to accurately transcribe and study these complex musical forms could open new avenues for 

musicological research and appreciation, bridging the gap between traditional musical art forms and 

modern technological advancements. 
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