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Abstract − The theory of elliptic curves is one of the popular topics of recent times with
its unsolved problems and interesting conjectures. In 1922, Mordell proved that the group of
Q-rational points on an elliptic curve is finitely generated. However, the rank of this group,
signifying the number of independent generators, can be arbitrarily high for certain curves, a
fact yet to be definitively proven. This study leverages the computer algebra system Magma
to investigate curves with potentially high ranks using a technique developed by Mestré.
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1. Introduction

Elliptic curves possess a fascinating and yet unsolved property: their rank. The set of rational points
on an elliptic curve forms a finitely generated abelian group. Mordell’s Theorem guarantees this group
is isomorphic to a finite direct sum of cyclic groups. The rank of the elliptic curve signifies the number
of these cyclic groups with infinite order, which directly corresponds to the number of independent
points of infinite order within the group. Determining the rank of an elliptic curve presents a significant
challenge. There currently exists no known algorithm for calculating it efficiently. Additionally, a
fundamental open question in number theory revolves around the existence of an upper bound for
the rank of elliptic curves. While it is widely believed that elliptic curves can possess a rank of any
non-negative integer, a definitive proof remains elusive. This lack of a proven upper bound fuels the
ongoing search for elliptic curves with the highest possible rank.

Several key advancements have been made in determining the maximum possible rank of elliptic curves.
Penney and Pomerance [1,2] established lower bounds, proving that the rank can be greater than 6 and
7, respectively. Subsequently, Grunewald and Zimmert [3] pushed this bound further by demonstrating
the existence of curves with a rank exceeding 8. Brumer and Kramer [4] achieved a rank greater than
9. Mestré [5–8] introduced a breakthrough with two novel methods for estimating elliptic curve rank.
He significantly raised the known lower bounds by applying these methods and showcasing specific
examples. His works [5–9] demonstrably showed that the rank of certain elliptic curves can be greater
than 11, 12, 14 and 15. Building upon Mestré’s groundwork, Nagao and Fermigier [10–13] achieved
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further progress. They specialized in a family of curves introduced by Mestré over the field of rational
functions in one variable, Q(t). This specialization allowed them to prove that the rank over the
rational field Q is greater than 17 and 19 − 22. Notably, the current record for the highest discovered
rank, at 28, was achieved by Noam Elkies. It’s worth mentioning that Martin and McMillen [14] also
played a crucial role by independently discovering specific elliptic curves with ranks of 23 and 24,
respectively.

Recent research in rank studies has tackled three key areas: calculating ranks for specific families
of curves [15–19], exploring how rank behaves for curves constructed from special number sequences
[20–28] and analyzing rank distributions within families and across field extensions [29–31]. Dujella [32]
provided an enumeration of the strategies for generating high-rank Diaphontine elliptic curves. The
contributions of Elkies and Klagsburn [33] are also noteworthy in that they established new rank
records for specific torsion groups. Another noteworthy work is Kazlicki’s attempt to develop a
rank classification system using deep neural networks [34]. Although various studies continue to be
conducted in different ways, there is not yet a complete method that yields high-rank curves. The
majority of existing studies employ the Mestré method and Mestré’s sum [7]. Therefore, the finite
field method of Mestré was selected as the subject of this study.

This paper is divided into three distinct sections. The initial section establishes the fundamental
groundwork by presenting the essential definitions and theorems relevant to elliptic curve ranks. Fol-
lowing the foundational elements, we introduce the method developed by Mestré for finding elliptic
curves with high ranks. Finally, the third section analyzes the data obtained through the custom
codes we developed using the MAGMA software program.

2. Preliminaries

We begin our discussion with the definition of elliptic curves.

Definition 2.1. [35] Let K be a field. An elliptic curve over K can be defined as

i. A genus one curve with one K-rational point,

ii. A plane cubic with a K-rational point or

iii. A Weierstrass cubic, y2 = x3 + px + q.

Example 2.2. The curve
Y Z2 = X3 − XZ2

over Q is an elliptic curve with the point at infinity denoted O = [0, 1, 0] in homogeneous coordinates.
If we write x = X/Z and y = Y/Z in the equation, then we obtain the Weierstrass form of the equation
as

y2 = x3 − x

The set of K rational points on the curve is given by

E(K) = {O} ∪ {(x, y) ∈ K}

Theorem 2.3. [36] The group E(K) is finitely generated.

Mordell proved this theorem for the field Q in 1922 and Weil generalized it to any field K in 1928. It
can be stated by the Mordell Theorem along with the general structure theory of finitely generated
abelian groups that

E(K) ∼= E(K)tors × Zr
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The group E(K) is called the Mordell-Weil group. The subgroup E(K)tors consists of points with
finite order and is referred to as the torsion subgroup. Formally, this subgroup is defined as follows:

E(K)tors = {P ∈ E(K) : ∃n ∈ N that nP = O}

The free part of the Mordell-Weil group is generated by r points of E(K) with infinite order. Here r

is called the rank of E(K).

Theorem 2.4 (Mazur Theorem, Conjecture of Ogg). [37, 38] Let E(Q)tors be the torsion subgroup
of the Mordell-Weil group of an elliptic curve over Q. Then, E(Q)tors is isomorphic to one of the
following fifteen groups:

i. Z/mZ, 1 ≤ m ≤ 10 or m = 12

ii. Z/2Z × Z/2vZ, 1 ≤ v ≤ 4

The Conjecture of Ogg was proven by Barry Mazur [37] in 1977. However, many unsolved questions
still exist with on ranks of elliptic curves. Determining the rank of an elliptic curve remains a significant
challenge. No known algorithm efficiently calculates the rank for any curve. Additionally, it is unproven
whether an upper bound exists on the rank. While the possibility of arbitrarily high ranks is widely
accepted, complete proof remains elusive [33]. This study utilizes one of Mestré’s influential methods,
which were the first to construct elliptic curves with demonstrably high ranks. Notably, in 1982,
Mestré [6] introduced a groundbreaking method to construct elliptic curves over the rational numbers
(Q) with demonstrably high ranks. This method allowed him to find curves with 8 and 10 − 12 ranks
in [5, 6]. These achievements marked a significant step forward in the field. Mestré presented two
methods for searching elliptic curves. The method, which is the subject of this article, is known as
the ”Finite Field Method” as proposed by Campbell [39].

3. Mestré’s Finite Field Method

We introduce a key conjecture underpinning Mestré’s method. Intriguing and far-reaching, the Birch
and Swinnerton-Dyer conjecture (BSD) is a central pillar in studying elliptic curves, offering a profound
connection between their arithmetic and analytic properties. Indeed, the BSD conjecture plays a
fundamental role in understanding the underlying principles of our approach.

Definition 3.1. [40] Let E be an elliptic curve defined over the field of rational numbers, Q. Denote
its conductor by N . We define its associated L−function by L(E, s), where s is a complex number:

L(E, s) =
∑
n

ann−s

=
∏

p|N
(1 − app−s)−1 ∏

p∤N

(
1 − app−s + p1−2s

)−1

Conjecture 3.2 (Birch-Swinnerton-Dyer Conjecture). [41] The function L of an elliptic curve is
extendable into a holomorphic function in the neighborhood of 1 and its order in 1 is equal to the
rank of the Mordell-Weil group of E over Q.

The Birch and Swinnerton-Dyer Conjecture (BSD Conjecture) is relevant to the context of elliptic
curves and their L−functions, but it doesn’t directly provide a bound for the rank of an elliptic curve.
However, it establishes a connection between the rank and the behavior of the L−function at a specific
point, which can be used to infer information about the rank under certain conditions.

Mestré’s algorithm is the following [5, 6]:

Let
E : y2 + y = x3 + a4x + a6
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be an elliptic curve over Q, p be a good reduction prime for E and Np be several points of E modulo
p. An analysis of Weil’s exponential formulas [6] applied to the L−function of the elliptic curve E

reveals a potential discrepancy between the rank, r, implied by the large size of Np for numerous prime
numbers p, and a potentially higher rank suggested by the analytic behavior of the L− function under
this analysis. As a result, to obtain elliptic curves with high ranks, one builds curves such that Np is
maximal for all p inferior or equal to P0, which is an integer depending on the computing capabilities
available. Then,

∆ = −(4a4)3 − 27(1 + 4a6)2

We provide four integers P0, P1, k0, and k′
0 to our search.

i. Let M be an integer and
M0 =

∏
p≤M

p

The congruences modulo p that coefficients a4 and a6 of an elliptic curve attain when Np is maximized
for each p ≤ P0 are calculated.

ii. The congruences (a4, a6) modulo M0, which ensures the maximal value of NP for all integers p ≤ P0,
are derived by a simple application of the Chinese remainder theorem.

iii. For each pair of congruences (a4, a6), the negative value a4 of minimum absolute value congruent
to a4 and for each of the values a′

4 = a4 − kM0, 0 ≤ k ≤ k0, are searched, a′
6 congruent to a6 and

minimizing |∆| are calculated. Then, each curve with coefficients a′
4 and a′′

6 = a′
6 + kM0, | k |≤ k′

0,
are considered.

iv. For each of these curve NP are calculated for P0 ≤ p ≤ P1, then

S =
∑

P0≤p≤P1

(
p − 1
Np

− 1
)

log p

Curves such that S is greater than a constant S0 dependent only on P0 and P1 are rejected.

v. If E is such that S ≤ S0, integer points of this curve are searched for example in the interval

[e1, e1 + 5000]

where e1 being the abscissa of an order 2 point of E.

vi. If we do not find an integer point, the curve is rejected; otherwise, the matrix of the heights of the
points obtained and the rank of the height matrix are calculated.

Mestré [5] obtained many curves with rank 6, 7, 8, and 9 for P0 = 17, P1 = 50, k0 = 20, and k′
0 = 50.

He also obtained a curve with rank 12 for P0 = 37, P1 = 101, k0 = 1, and k′
0 = 8.

4. Results on our Search for Finding Curves with High Ranks

We implemented Mestré’s finite field method [5] in Magma software to estimate the rank of elliptic
curves. Running our code with parameters P0 = 17, P1 = 50, k0 = 20, and k′

0 = 50, we successfully
reproduced Mestré’s results of sieves with ranks 7 − 9. Our code identified numerous elliptic curves
with rank 7. Due to space limitations, we omit specific examples of these curves here, but they are
available upon request. The results of our investigation are presented in Table 1.
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Table 1. Searching results
Rank TorsionSubgruop Curve

7 trivial y2 + y = x3 − 1201837x − 28298094

7 trivial y2 + y = x3 − 3243877x − 44634414

7 trivial y2 + y = x3 − 1832467x − 37997784

7 trivial y2 + y = x3 − 4385017x − 37997784

7 trivial y2 + y = x3 − 4234867x − 26491674

7 trivial y2 + y = x3 − 2733367x − 46401564

7 trivial y2 + y = x3 − 1321957x − 37212384

7 trivial y2 + y = x3 − 3363997x − 33638814

7 trivial y2 + y = x3 − 1199107x − 42174684

7 trivial y2 + y = x3 − 8256157x − 33496014

7 trivial y2 + y = x3 − 9907807x − 32985504

7 trivial y2 + y = x3 − 1078987x − 47515404

7 trivial y2 + y = x3 − 5163067x − 35773674

7 trivial y2 + y = x3 − 598507x − 34242144

7 trivial y2 + y = x3 − 6214117x − 45473364

7 trivial y2 + y = x3 − 7235137x − 29137044

7 trivial y2 + y = x3 − 1739647x − 38326224

8 trivial y2 + y = x3 − 2667847x − 25888344

8 trivial y2 + y = x3 − 2842567x − 50714124

8 trivial y2 + y = x3 − 3688867x − 49646694

8 trivial y2 + y = x3 − 3224767x − 37444434

9 trivial y2 + y = x3 − 3151057x − 34517034

The curve
E : y2 + y = x3 − 3151057x − 34517034

has 9 independent points on Q. The Torsion Subgroup is trivial. Points of E are

P1 = (90641/4, 27205059/8)

P2 = (20221, −2864331)

P3 = (8945/4, 512371/8)

P4 = (1325657/484, −1160700207/10648)

P5 = (741102/361, −317934960/6859)

P6 = (1636928/289, −1988611043/4913)

P7 = (3097593/361, −5333671306/6859)

P8 = (5325049/64, −12285322125/512)
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and
P9 = (3872137/676, −7243647215/17576)

Applying our implementation of Mestré’s method to primes p = 19 and p = 23, we were not able
to identify any elliptic curves with a rank greater than 6. These findings are consistent with the
observations reported in Mestré’s work [5]. The curve discovered during the scan does not correspond
to any entries on Dujella’s website [14, 42], which serves as a repository for elliptic curve ranks. Our
Magma implementation encountered errors and did not complete the computations for primes 29, 31
and 37. This suggests that analyzing these cases might require more extensive computational resources
than those available on personal computers.

5. Conclusion

In this study, we implemented Mestrés method for searching elliptic curves with high ranks using a
Magma code. This approach yielded a comprehensive list of elliptic curves with ranks 7 − 9. Notably,
these curves were not previously documented in the referenced literature [5,6] or on Dujella’s website, a
leading resource for rank records. While we have not identified curves exceeding rank 9, our exploration
has exposed potential limitations in our current Magma code regarding time and memory efficiency.
Future efforts can be focused on optimizing the code to handle computations for even higher ranks.
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(1977) 133–186.

[38] B. Mazur, D. Goldfeld, Rational isogenies of prime degree, Inventiones Mathematicae 44 (2)
(1978) 129–162.

[39] G. Campell, Finding elliptic curves and families of elliptic curves over Q of large rank, Doctoral
Dissertation The State University of New Jersey (1999) New Brunswick.
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