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Abstract. A development of an algebraic system with N -dimensional ladder-

type operators associated with the discrete Fourier transform is described,

following an analogy with the canonical commutation relations of the conti-
nuous case. It is found that a Hermitian Toeplitz matrix ZN , which plays the

role of the identity, is sufficient to satisfy the Jacobi identity and, by solving

some compatibility relations, a family of ladder operators with corresponding
Hamiltonians can be constructed. The behaviour of the matrix ZN for large

N is elaborated. It is shown that this system can be also realized in terms
of the Heun operator W , associated with the discrete Fourier transform, thus

providing deeper insight on the underlying algebraic structure.

1. Introduction

The study of discrete structures is significant for the theory of signal processing,
entanglement, quantum computation and more [1], and it serves as a source of
interesting and surprising considerations worth studying. The problem of the con-
struction of a system of eigenvectors for the discrete Fourier transform (DFT) is
still open and has been approached from several directions since J. H. McClellan
and T. W. Parks [2]. Recent results of M. K. Atakishiyeva and N. M. Atakishiyev
(AA) [3]–[5] aim to enrich the resulting eigensystem with the quality of being cano-
nical. Techniques for associating eigensystems with the DFT include the use of
an uncertainty principle associated with cyclic groups of prime order [6], as well
as commutative matrices construction for a matrix that commutes with the DFT,
thus ensuring that both matrices share the same set of eigenvectors, which provides
an orthonormal eigenbasis for the DFT [7]–[9]. This last method is employed in [3],
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where raising and lowering operators has been found to construct a number ope-
rator N commuting with the DFT, in complete analogy with the linear quantum
harmonic oscillator of the continuous case. It is this analogy that motivates the
present work targeting the establishment of a broader framework to deal with this
problem even more systematically. Can we extend this analogy of the harmonic
oscillator for the DFT to mimic the continuous case? To what extent can we make
an analogy of the canonical commutation relations (CCR) for finite dimensional
Hilbert spaces? This is the common thread that guides us to put forward an al-
gebraic system through some compatibility relations that admit operator solutions
of ladder type, beginning with the use of a Hermitian Toeplitz matrix ZN , which
plays the role of the identity. We establish a remarkable relationship between this
treatment and the AA-approach, by using the Heun operator W of the latter, thus
leading naturally to the proposal of a complete realization of the algebraic system.

The paper is organized as follows: In Section 2, we briefly review some quantum
foundations about the CCR. In Section 3, we present the mathematical background
necessary for discrete structures in finite dimensional Hilbert space. In Section 4,
we establish the discrete commutation relations and show they satisfy the Jacobi
identity. In Section 5, we give an explicit matrix representation for ZN and conduct
a brief investigation into the nature of this operator for large N as well. Section
6 is devoted to the main results of this work, namely, the proposal of an algebraic
system in terms of the Hermitian Toeplitz operator ZN and through compatibility
relations, whose solutions consist of ladder-type operators. From these operators
a family of Hamiltonians H can be obtained for each N ; this solutions, however,
fulfill at least two of the four requirements of the proposed algebraic system and
not necessarily the other two. In Section 7 we show then how the operators Q and
P , which generate ZN , are related to the raising and lowering operators, as well as
the Heun operator W of the AA-approach, through the exponential map. Thus we
conclude that this connection could provide a complete realization of the algebraic
system; that is, the fulfillment of the four requirements which comprise it. Finally,
Section 8 offers concluding remarks on the outstanding issues.

2. Quantum foundations

Canonical commutation relations.

We seek a suitable analogy between continuous and discrete realizations of the
canonical commutation relations that underlie the Heisenberg algebra, briefly ana-
lyzing the parallels between Classical Mechanics (CM) and Quantum Mechanics
(QM)[10].

• Observables in CM are smooth functions on R2n.
• Hermitian operators in QM are regarded as infinitesimal canonical trans-

formations or infinitesimal automorphisms, the vector fields are used to
obtain (local) canonical transformations by integrating Hamilton’s equa-
tions. Similarly, Hermitian operators A are employed to derive skew-adjoint
operators 2πiA, which upon the exponentiation yield a one-parameter uni-
tary group.
• The automorphisms of the underlying set R2n+1 are considered, where
R2n+1 corresponds to a Lie algebra or a Lie group, depending on whether
a bracket operation or a group law is defined.
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• The Fourier transform arises naturally from the very wavy nature of QM
in an idealized basis of basic plane wave packets (eigenfunctions of the
momentum) eξ(x) = e2πixξ, the momentum of which is hξ.
• By constructing the j-th component of momentum through the correspon-

dence of Borel measures with its Hermitian operators, one finds that the
Fourier transform intertwines it with the position operator

Pj = hFQjF−1 =⇒ Pj =
h

2πi

∂

∂xj
= hDj . (2.1)

• It has been proven that the action of the exponentials of momentum and
position operators is on the functions on L2 and represents a translation in
momentum space and a translation in position space, respectively.
• The basic observables Qj and Pj satisfy the canonical cammutation rela-

tions (CCR) (see [10], p.15)

[Pj , Pk] = [Qj , Qk] = 0, [Pj , Qk] =
hδjk
2πi

I. (2.2)

Following Seligman’s treatment of representation theory [11], the Heinsenberg-Weyl
Lie algebra of QM, denoted by h, with elements Q, P and I over the field of com-
plex numbers is considered. This algebra is defined by the following commutation
relations:

[Q,P ] = iI, [Q, I] = 0, [P, I] = 0. (2.3)

The elements Q, P and I form a basis for the algebra h, so we can express any
element E in h as:

E = xQ+ yP + zI, x, y, z ∈ C.

Taking Q and P is sufficient for an algebraic basis of h, as I can be derived from the
Lie bracket in the first of equations (2.3). The elements of interest in this abstract
scheme are

R =
1√
2

(Q− iP ), L =
1√
2

(Q+ iP ), (2.4)

which satisfy:

[L,R] = I, [L, I] = 0, [R, I] = 0. (2.5)

These operators also form a basis for h and thus define h as well. The primary goal
in this approach is to construct concrete models through representations of h with
sets of linear operators representable by matrices; this is always feasible since every
Lie algebra over C is isomorphic to some matrix algebra. It may be interesting
to note that our search for different bases for representations of the algebra h is
intimately related with the fact that different bases for the same representations
of the Lie group lead to different special functions and provide a group theoretical
underpinning for all of these functions (see [12] for a more detailed discussion of
this point).

The Heisenberg-Weyl group

For the Heisenberg-Weyl algebra h defined in (2.3), we can use its faithful re-
presentation and subalgebra of gl(3,C), denoted by hf , to build its corresponding
Lie Group Hf , which is a subgroup of GL(3,C), through the exponential map
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exp : hf → Hf , such that hf constitutes the tangent space of Hf at the identity.
The exponential map

eA =

∞∑
n=0

1

n!
An

exists since the exponential of an arbitrary matrix with finite elements is an abso-
lutely convergent series that yields an invertible matrix; this map sends the zero
element in hf to the identity element in Hf . As a manifold, the parameters which
form a canonical coordinate system of Hf are given by the Lie group elements of
Hf :

G(x, y, z) = exp i(xQf + yP f + zIf ) = exp

 0 x 0
0 0 0
y iz 0

 . (2.6)

From the properties of the exponential map, one can derive the composition law of
the abstract corresponding group H:

g(x1, y1, z1)g(x2, y2, z2) = g
(
x1 + x2, y1 + y2, z1 + z2 +

1

2
[y1x2 − x1y2]

)
, (2.7)

e = g(0, 0, 0), g(x, y, z)−1 = g(−x,−y,−z). (2.8)

This group is named the Heisenberg-Weyl (or simply Heisenberg) group. All pa-
rameters range over R so the group manifold is isomorphic to R3, non-compact and
simply connected.

3. Mathematical background for discrete structures

In this section, we explore the discrete structure in finite dimensions, considering
the intricacies involved. To address specific nuances, the action of a group G on
a set X is represented by a function f : G × X −→ X such that for all x in X,
f(e, x) = x, where e is the identity element of G. An N-dimensional representation
of a group G over a field K is a group homomorphism φ : G −→ GL(V ), where V is
an N-dimensional vector space on K, and GL(V ) is the group of linear operators on
V . If φ(g) is a unitary operator for every g in G, and its corresponding conjugate
transpose satisfies φ(g)† = φ(g)−1, we say the representation φ is unitary. We
consider discrete groups to be Lie groups endowed with the discrete topology; a
finite group G acts on itself by automorphisms and can be embedded in some
permutation group SN , which admit a representation on KN , with K a field.

The Fourier transform arises naturally from the harmonic periodic behaviour
of quantum systems, where periodicity is somehow fundamental. Thus, we focus
on the finite cyclic abelian group ZN which is isomorphic to the additive group of
integers modulo N , denoted Z/NZ. We also consider the geometric series:

1 + z + z2 + . . .+ zN−1 =

{
(1− zN )/(1− z), if z 6= 1

N, if z = 1
. (3.1)

Define ω = e2πi/N , with i =
√
−1, to be the N-th primitive root of unity, then

the set of N-th roots of unity, {ωk}, k = 0, . . . , N − 1, is a group and satisfies
1 + ω+ ω2 + . . .+ ωN−1 = 0, since e2πi − 1 = 0. Such a group is isomorphic to ZN
and is denoted by CN . Let’s consider Hom(Z/NZ) as the set of homomorphisms
of Z/NZ into CN . A vector in CN is denoted by v and its components by vj , the
canonical basis of CN is represented as ek = {(δk,0, . . . , δk,N−1) : k = 0, . . . , N −1},
where δkj is the Kronecker delta function. Operators are denoted by capital letter
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T and their matrix entries by Tlm. With an abuse of notation, operators and matrix
representations of them are denoted with the same letter, unless otherwise specified.

Most of what will be mentioned in this section without proof, can be found in
[13].

As discussed in Section 2, the position and momentum operators generate trans-
lations in the underlying group, thus we consider a notion of translation in our space
of complex-valued functions on Z/NZ. First we endow it with an inner product to
turn it into a Hilbert space L2(Z/NZ) by means of

〈f, g〉 =
∑

α∈Z/NZ

f(α)g(α),

where x̄ denotes the complex conjugate of x in C. A translation operator Ta :
L2(Z/NZ) −→ L2(Z/NZ), for every a ∈ Z/NZ, is defined by the action of Z/NZ
on L2(Z/NZ) given by

Taf(b) := f(b− a), ∀a, b ∈ Z/NZ.

It can be shown that an orthonormal basis for L2(Z/NZ) is {fα}, 0 ≤ α ≤ (N −1),
where

fα(b) =

{
1 if α = b

0 if α 6= b
α, b ∈ Z/NZ.

If we look for a matrix representation V of T in the {fα} basis, we can take the
range of f ∈ L2(Z/NZ), ordered by its argument from 0, . . . , N − 1, as a vector
(f(0), f(1), . . . , f(N − 1)) ∈ CN . This means that the set {fα} is represented in
CN by the canonical basis {el}; therefore the matrix representation V of Ta=1 := T
in the {fα} basis is the N ×N matrix given by

V =



0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
0 0 0 · · · 1 0


;

note that V = Cᵀ, where C is the circulant permutation matrix with entries Ckl =
δk,l−1. Thus the full set of matrices, defined as Vj = V j , are unitary and V N =
I, 0 ≤ j ≤ (N − 1). These matrices Vj are well known in the literature as the shift
matrices and are a basis for the algebra of circulant matrices [14].

On the other hand, the regular representation ρ : ZN → GL(L2(Z/NZ)) of the
cyclic group ZN is given by ρ(aj) = Vj , 0 ≤ j ≤ (N − 1) ([15], p.4), this implies
that the matrix representation of the translation operators on the function space
L2(Z/NZ) is the regular representation of the N -cyclic group, which in turn is
completely reducible. Moreover, since Z/NZ is abelian, it can be decomposed into
a direct sum of one-dimensional irreducible representations. This simple decompo-
sition is the source of a rather intricate structure which gives rise to the Fourier
analysis, structure that is employed in this work.

Let C1
N be the multiplicative group of complex numbers of absolute value 1, a

character on Z/NZ is a group homomorphism λ : Z/NZ −→ C1
N . Taking characters

in λ1, λ2 ∈ Hom(Z/NZ) and defining (λ1+λ2)(a) := λ1(a)λ2(a) ∀a ∈ Z/NZ, it can
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be concluded that Z/NZ ∼= Hom(Z/NZ) ∼= CN . It can be shown that Hom(Z/NZ)
consists of elements of the form

λl :=
1√
N
e−2πil/N , l = 0, . . . , N − 1,

and the set {λl}, l = 0, . . . , N −1, is an orthonormal basis of L2(Z/NZ), which is a
consequence of the geometric series (3.1). We call this basis {λl}, 0 ≤ l ≤ (N − 1),
the normalized character basis, NCB, for L2(Z/NZ). Because of this, we can expand
f ∈ L2(Z/NZ) as a linear combination of the {λl} basis, namely

f =

N−1∑
l=0

f̂lλl, f̂l ∈ C;

such expansion is the (Nth partial sum of the discrete) Fourier series of f . The

coefficients f̂l can be obtained applying orthonormality of the NCB as usual:

〈f, λm〉 = 〈
N−1∑
l=0

f̂lλl, λm〉 =

N−1∑
l=0

f̂l〈λl, λm〉

=

N−1∑
l=0

f̂lδlm = f̂m, 0 ≤ m ≤ (N − 1);

whereby

f̂m = 〈f, λm〉 =

N−1∑
n=0

f(n)λm(n) =
1√
N

N−1∑
n=0

f(n)e2πimn/N , 0 ≤ m ≤ (N − 1).

This is clearly the mth component of a matrix multiplication with the vector
(f(0), f(1), . . . , f(N−1)). We give a name to the underlying linear transformation.

Definition 3.1. Let {λm}, l = 0, . . . , N − 1, be the normalized character basis

and define f̂m as (ΦNf)(m). The discrete Fourier transform (DFT) is the linear
operator ΦN : L2(Z/NZ)→ L2(Z/NZ), defined by

(ΦNf)(m) := 〈f, λm〉 =
1√
N

∑
n∈Z/NZ

f(n) exp

(
2πi

N
mn

)
.

The DFT is known to satisfy the following properties:

(1) ΦN is a unitary operator,
(2) Φ4

N = I, where I is the identity operator,
(3) the matrix representation of ΦN in {fβ} is

(ΦN )mn =
1√
N

exp

(
2πi

N
mn

)
, 0 ≤ m,n ≤ (N − 1);

this implies that the columns of the DFT matrix are an orthonormal basis {εk} for
CN . We call this basis the normalized Fourier basis (NFB).

Next we get back to the shift matrices to connect them with the DFT. Since the
Vj are unitary, they must be unitarily similar to a diagonal matrix because of the
spectral theorem. Thus the DFT plays a fundamental role in this work because the
following holds:
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Theorem 3.1. The DFT ΦN simultaneously diagonalizes the Vj matrices, with
eigenvalues

αjl = exp

(
2πi

N
jl

)
, 0 ≤ j, l ≤ (N − 1),

and the columns of the DFT as eigenvectors.

Let ρ1 : G −→ U(H1) and ρ2 : G −→ U(H2) be unitary representations on G
over the Hilbert spaces H1 and H2. We say that the operator A : H1 −→ H2

intertwines ρ1 and ρ2 if Aρ1(g) = ρ2(g)A, ∀g ∈ G; thus ρ1 and ρ2 are said to be
unitarily equivalent if A is unitary and the operator A is called an intertwining
operator. If U is the diagonal operator, obtained through diagonalization of V by
the DFT, then Uj and Vj are unitarily equivalent representations of Z/NZ with

the DFT as intertwining operator. Namely, Vj = ΦNUjΦ
†
N , j = 0, . . . , N − 1.

With ω = exp(2πi/N) the Nth primitive root of unity, {εk} the NFB and {ek} the
canonical basis, the previous theorem implies that

(1) The eigenvectors of U and V satisfy

Vjεk = ωkjεk and Ujek = ωkjek,

(2) V acts as a shift on the eigenvectors of U and viceversa

Vjek = ek+j and Ujεk = εk+j ,

(3) UN = I;

due to these properties, the matrices Uj are called the clock matrices.
Finally, by applying these properties, UV ek = Uek+1 = ωk+1ek+1 = ω ωkek+1;

V Uek = V ωkek = ωkV ek = ωkek+1. Combining these results, we get (UV −
ωV U)ek = 0,∀k ∈ Z/NZ, whereof we conclude that the shift and clock matrices V

and U satisfy the so-called Weyl commutation relation, namely, UV = e
2πi
N V U .

4. An algebra with discrete commutation relations

Because of the very definition of translation, the operator V generates translations
in the underlying space L2(Z/NZ), thus, we look for Hermitian solutions P , whose
exponentiation yields the unitary T in complete analogy with eq.(2.6). This request
establishes the connection with the quantum picture. This idea is not new; it was
previously explored by Santhanam and Tekumalla [16] using a different approach.

Theorem 4.1. Let j be an element of Z/NZ. Then a hermitian operator Pj ∈
GL(L2(Z/NZ)), which is a solution of the equation Vj = exp(iηPj), where η is a
real parameter, is given by

Pj =
2π

ηN
ΦNdiag (0, j, . . . , (N − 1)j)Φ−1N . (4.1)

Proof. Due to the unitarity of ΦN ,

P †j =
2π

ηN

(
ΦNdiag(0, j, . . . , (N − 1)j)Φ†N

)†
=

2π

ηN
ΦNdiag(0, j, . . . , (N − 1)j)Φ†N = Pj ,

thus confirming that Pj is Hermitian. Now we show that under exponentiation, we
certainly recover Vj . As said before, exponentiation of Pj is well defined since Pj
is a matrix with finite elements, it is a series of Pj which converges absolutely and
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yields a matrix which is invertible; moreover, when multiplied by the imaginary unit
i, this matrix becomes a skew-adjoint matrix, which upon exponentiation produces
a unitary matrix. Then let η ∈ R and let’s compute the matrix representation of
exp (iηPj) in the canonical basis {el}; using the unitarity of ΦN

exp (iηPj) = exp

(
iη

2π

ηN
ΦNdiag(0, j, . . . , (N − 1)j)Φ−1N

)
= ΦN exp

(
2πij

N
diag(0, 1, . . . , N − 1

)
Φ−1N ,

multiplying by ΦN on the right and applying el, we get

eiηPjΦNel = ΦNIel + ΦN
2πij

N
diag(0, 1, . . . , N − 1)el

+ ΦN
(2πij)2

2!N2
diag2(0, 1, . . . , N − 1)el + · · ·

= ΦN

(
1 +

2πij

N
l +

(2πij)2

2!N2
l2 + · · ·

)
el

= ΦNe
2πijl/Nel = ΦNUjel, ∀j, l ∈ {0, 1, . . . , N − 1}.

Whereby, using the intertwining property of ΦN , it follows

eiηPjΦNel = ΦNΦ†NV
jΦNel = V jΦNel, ∀j, l ∈ {0, 1, . . . , N − 1}.

Thus, (
eiηPjΦN − V jΦN

)
el = 0, ∀j, l ∈ {0, 1, . . . , N − 1},

and consequently

eiηPjΦN = V jΦN , ∀j ∈ {0, 1, . . . , N − 1},
from which it follows that

eiηPj = V j , ∀j ∈ {0, 1, . . . , N − 1}.
�

Remark. Clearly, the eigenvalues of Pj are 2πjl/(ηN) with the NFB as eigenvec-
tors. Similarly, by exponentiating the Uj, we obtain the same eigenvalues.

Let the diagonal operators be denoted as

Qj :=
2π

ηN
diag(0, j, . . . , (N − 1)j);

thus the DFT intertwines the operators Pj and Qj as in eq.(2.1). Thereby the DFT
intertwines operators at the group level (the Vj ’s) and at some algebra level as well
(the Pj ’s); this is a direct consequence of the exponential map and the unitarity of
the DFT. Thus intertwining is a necessary condition to build possible algebras at
the Schrödinger realization level, but not sufficient.

Next, we consider commutators of skew-adjoint operators,

1

i
[iQ, iP ] = i[Q,P ],

with

Q :=
2π

ηN
diag(0, 1, . . . , N − 1), P := ΦNQΦ−1N . (4.2)
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Remark. The real number η is a coupling parameter which will take appropriate
values according to the finite discrete (DFT), infinite discrete (Fourier series) or
continuous (integral Fourier transform) cases we deal with.

Since [Q,P ] remains constant for the unitary transformation uniparametric group
{Vj}j=0,...,N−1, this suggest the following definition.

Definition 4.1. Let the commutator of Q : CN −→ CN and P : CN −→ CN be
defined by ZN through

ZN := i[Q,P ].

Thus we get

Corollary 4.2. The operators Q, P , ZN satisfy the Jacobi identity

[Q, [P,ZN ]] + [P, [ZN , Q]] + [ZN , [Q,P ]] = 0.

Proof. Direct computation of the commutators yields

[Q, [P,ZN ]] = i(2(QP )2 −Q2P 2 − 2(PQ)2 + P 2Q2),

[P, [ZN , Q]] = i(2(PQ)2 − P 2Q2 − 2(QP )2 +Q2P 2),

[ZN , [Q,P ] = 0;

therefore

[Q, [P,ZN ]] + [P, [ZN , Q]] + [ZN , [Q,P ]] = 0.

�

In addition, the following relationships are established.

Corollary 4.3. The operators Qj, Pk and ZN , j, k = 0, . . . , N − 1, satisfy the
discrete commutation relations

[Pj , Pk] = 0, [Qj , Qk] = 0, [Pj , Qk] = ijkZN .

Proof. Since

Q =
2π

ηN
diag(0, 1, . . . , N − 1),

then, by Theorem 4.1 and eqs.(4.2), Qj = jQ, thereby Pj = ΦNQjΦ
−1
N = ΦN jQΦ−1N =

jP , so that [Pj , Qk] = PjQk−QkPj = jk(PQ−QP ) = −i2jk[P,Q] = −ijki[P,Q] =
ijkZN . The other commutators are trivially satisfied. �

Therefore, ZN plays the role of the identity in this discrete algebra.

5. About the nature of ZN

As discussed in the previous section, the operator ZN plays the role of the identity
in this context. In this section we explore more the operator ZN and suggest that
in the limit when N →∞, ZN → δ, where δ is the Dirac delta distribution, which
is the identity in distributions under convolution.
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5.1. The explicit form of ZN . First we need to know the explicit form of ZN .
So we compute the action of the operators Qj and Pj on the NFB, to get the
explicit form of the matrix entries of [Qj , Pk]. It is clear that Pj is in the canonical
representation; since the DFT diagonalizes it, its inverse acts as a transition matrix
from {el} to {εl}, resulting Qj , which is in the NFB representation (note that the
definition we are using for the DFT is with positive sign in the exponent). Since
eigenvectors are preserved under the exponential map, the eigenvectors of Pj are the
NFB, and because Qj is diagonal, those of it are the {el}. Also, the corresponding
eigenvalues are the exponents of those of Vj , Uj , namely,

Pjεk =
2πjk

ηN
εk, Qjek =

2πjk

ηN
ek, (5.1)

and

εk =
∑
m

Φmkem, ek =
∑
m

Φ−1mkεm, (5.2)

where Φmk stands for the matrix entries of ΦN .
We now compute the transformation of the NFB by the operator PkQj and

express it in terms of itself.

Lemma 5.1. The operator PkQj transforms the NFB as

PkQjεm =
4π2jk

η2N3

∑
n

∑
n′

nn′ωn(m−n
′)εn′ , 0 ≤ k, j,m, n, n′ ≤ (N − 1).

Proof. First we compute Qjεm, 0 ≤ j,m ≤ (N − 1) by using the first of eqs.(5.2),
to apply the eigenvalue property of Qj ; then the second of eqs.(5.1) to obtain the
corresponding eigenvalues; finally the second of eqs.(5.2) to express the result in
the NFB basis:

Qjεm = Qj
∑
n

1√
N
ωnmen =

∑
n

1√
N
ωnmQjen

=
1√
N

∑
n

ωnm
2πj

ηN
nen =

2πj

ηN2

∑
n

ωnmn
∑
n′

ω−nn
′
εn′

=
2πj

ηN2

∑
n

∑
n′

nωn(m−n
′)εn′ . (5.3)

Next we get

PkQjεm =
2πj

ηN2

∑
n

∑
n′

nωn(m−n
′)εn′

2πkn′

ηN
εn′ =

4π2jk

η2N3

∑
n

∑
n′

nn′ωn(m−n
′)εn′ .

�

Therefore the matrix elements of the commutator satisfy the following

Theorem 5.2. The matrix elements of [Qj , Pk] in the NFB are given by

[Qj , Pk]lm =
4π2jk

η2N3

∑
n

(m− l)nωn(m−l),

where j, k, l,m, n = 0, . . . , N − 1.
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Proof. Let [Qj , Pk]lm be the (l,m) entry of the matrix representation of [Qj , Pk] in
the NFB, then, because of eq.(5.3), Lemma 5.1, and orthonormality, it follows that

[Qj , Pk]lm = 〈εl, [Qj , Pk]εm〉 = 〈εl,
2πkm

ηN
Qjεm − PkQjεm〉

= 〈εl,
2πkm

ηN

2πj

ηN2

∑
n

∑
n′

nωn(m−n
′)εn′

− 4π2jk

η2N3

∑
n

∑
n′

nn′ωn(m−n
′)εn′〉

=
4π2jk

η2N3
〈εl,
∑
n

∑
n′

(m− n′)nωn(m−n
′)εn′〉

=
4π2jk

η2N3

∑
n

∑
n′

(m− n′)nωn(m−n
′)〈εl, εn′〉

=
4π2jk

η2N3

∑
n

(m− l)nωn(m−l),

where bilinearity of 〈, 〉 has been used. �

To estimate the behaviour of ZN for large N , it is necessary to recenter the
matrix elements of [Qj , Pk] with respect to its entries lm. Set

r :=

{
N = 2L+ 1, N−1

2 = L

N = 2M, N
2 = M

;

we define new centered indices l′,m′, n′ the by means of n′ = n−r, m′ = m−r, n′ =
n− r, then

[Q,P ]lm =
4π2

η2N3
ω(m′−l′)r

∑
n′

(m′ − l′)(n′ − r)ωn
′(m′−l′),

thereby

[Q,P ]lm = ω(m−l)r[Q,P ]Cl′m′ , (5.4)

where [Q,P ]Cl′m′ is given as in the following definition.

Definition 5.1. [Q,P ]Cl′m′ is called the centered version of [Q,P ]lm, and is given
by

[Q,P ]Cl′m′ =
4π2

η2N3

∑
n′

(m′ − l′)(n′ + r)ωn
′(m′−l′),

where

l′,m′, n′ :=

{
−N−12 , . . . , N−12 if N is odd

−N2 , . . . ,
N
2 − 1 if N is even

.

The centered version can be simplified.

Proposition 5.3. The centered version of [Q,P ] satisfies

[Q,P ]Cl′m′ =
4π2

η2N3

∑
n′

(m′ − l′)n′ωn
′(m′−l′).
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Proof. We take from Definition 5.1 the sum with factor 1/N and split it into two
terms; so on account that m′ − l′ = m− l one can write

1

N

∑
n′

(m′ − l′)(n′ + r)ωn
′(m′−l′) =

1

N

∑
n′

(m′ − l′)n′ωn
′(m′−l′)

+
1

N

∑
n′

(m′ − l′)rωn
′(m′−l′),

where the second term vanishies,

1

N

∑
n′

(m′ − l′)rωn
′(m′−l′) =

m− n
N

r

N−1∑
n=0

ω(n−r)(m−l)

= (m− l)rω−r(m−l) 1

N

N−1∑
n=0

ωn(m−l)

= (m− l)rω−r(m−l)δml = 0, ∀ m, l = 0, . . . , N − 1.

The Kronecker delta δml appears after using the geometric series in eq.(3.1); there-
fore, putting this in the Definition 5.1, we get the assertion. �

So the centered version is the non-centered times the phase factor ω−(m−l)r for each
matrix entry.

Corollary 5.4. ZN = i[Q,P ] is a traceless Hermitian Toeplitz operator.

Proof. This clearly follows from Theorem 5.2. �

5.2. On the behaviour of ZN for large N . We are now in a position to roughly
estimate the behaviour of ZN = i[Q,P ] for large N , provided that a restriction
on the η parameter is given. In this subsection, we relax formality and rigor to
gain intuition on ZN . We are going to deal a little with tempered distributions
as continuous linear functionals on the space of Schwartz functions and also with
the Fourier transform of distributions. A gentle treatment of this concepts can be
found in [17] and a rigorous one in [18].

Let F be the set of square integrable periodic functions f : [−π, π] −→ C with
convergent Fourier series in the basis {λn(t) = e−int : n = 0, 1, ..., N − 1}. Then

f(t) =

∞∑
−∞

f̂ne
−int,

with

〈f(t), λm(t)〉 =
1√
2π

∫ ∞
−∞

f(t)eintdt =: f̂n; (5.5)



36 M. A. ORTIZ AND N. M. ATAKISHIYEV

with f̂n the Fourier transform of f defined through the inner product 〈, 〉 on the
corresponding Hilbert space H. Then, introducing the Nth partial sum of f ,

f(t) =

∞∑
−∞

f̂ne
−int = lim

N→∞

N∑
n=−N

f̂ne
−int

= lim
N→∞

N∑
n=−N

∫ ∞
−∞

f(t′)eint
′
dt′e−int = lim

N→∞

N∑
n=−N

∫ ∞
−∞

f(t′)ein(t
′−t)dt′

= lim
N→∞

∫ ∞
−∞

f(t′)

N∑
n=−N

ein(t
′−t)dt = lim

N→∞

∫ ∞
−∞

f(t′)DN (t′ − t)dt′, (5.6)

where DN is a well known kernel:

Definition 5.2. The sequence of functions {DN}, N ∈ N, is called Nth Dirichlet
kernel,

DN (t) :=

N∑
n=−N

eint.

It is also well known ([19]) that, using the geometric series (3.1), the Dirichlet kernel
obeys, after inserting a factor of 2π/N in the variable t

(1) DN (t) =
sin [(N+ 1

2 )t]

sin(t) ,

(2)
∫ π
−πDN (t)dt = 1,

(3) DN (0) = 2N + 1.

Due to these facts, the Dirichlet kernel is taken as an approximating sequence of
functions for the Dirac delta distribution δ. So in the sense of distributions we can
write

lim
N→∞

DN = δ. (5.7)

Definition 5.3. If f and g are two integrable 2π periodic functions, then

(f ∗ g)(x) =
1

2π

∫ π

−π
f(y)g(x− y)dy =

1

2π

∫ π

−π
f(x− y)g(y)dy

is the convolution of f and g.

Hence, it inmediately follows that the partial sums in eq.(5.6) satisfy

SN (f)(t) :=

N∑
−N

f̂ne
int =

1

2π

∫ π

−π
f(t′)DN (t′ − t)dt′ = (f ∗DN )(t);

thus f(t) = limN→∞(DN ∗f)(t), ∀ t ∈ (−π, π), ∀ f ∈ F , so, using eq.(5.7), we can
write

δ ∗ f = f ∀f ∈ F , (5.8)

because f determines a well defined tempered distribution through its action on
test functions φ under the integral sign and, with an abuse of notation, it is common
to write f instead of its induced distribution Tf . This means we can consider δ as
the identity under convolution in the distributional sense.

Unfortunately, the Dirichlet kernel is known to be problematic as a kernel func-
tion and is not a good kernel in the sense of [19], pp. 99, 102, since as N →∞ the
area between the curves and the x-axis measured in absolute value diverges. This
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makes the kernel very difficult to work with and one has to be very careful when
dealing with integrals with absolute value because they may not converge. To avoid
this difficulty, it is usual to use the so-called Fejér kernel instead, obtained through
arithmetic mean of D0, D1, . . . , DN−1, which is named a Cesàro mean. This reme-
dy the problems because averaging frequently make things better behaved; thus, a
non-negative good kernel is obtained (cf.[19], Remark 5, p.103). But convergence of
the partial sums SN (f)(t) is guaranteed however, if f is Lipschitz or differentiable,
then they converge pointwise everywhere.

Let us take the derivative of DN :

D′N (t′ − t) :=
dDN (t′ − t)

dt′
=

N∑
n=−N

inein(t
′−t),

so that

(t′ − t)D′N (t′ − t) =

N∑
n=−N

in(t′ − t)ein(t
′−t).

Now we take a sample of N data given by t′ = 2πm
N , t = 2πl

N ∈ [−π, π]. When
coupling continuous and discrete treatments, l, m and n are taken according to
Definition 5.3. This avoids changing the 2π factor in the exponential. Therefore,
using Lemma 5.3 and completing necessary factors we get

(m− l)D′N (m− l) =

N∑
n=−N

n(m− l) exp

(
2πi

N
n(m− l)

)

=
4π2

η2N3

N3η2i

4π2

N∑
n=−N

(m− l)nωn(m−l) =
N3η2

4π2
i[Q,P ]lm

= Zlm, provided η =
2π

N3/2
;

that is,

Zlm = (m− l)D′N (m− l). (5.9)

A refined computation can be made if we consider a continuum of frequencies; then
the Fourier series is replaced by the integral Fourier transform and η would take
the value

√
2π/N .

The eq.(5.9) suggests the following claim: in the limit as N →∞, it is expected
that Zlm → (t′− t)δ′(t′− t). Then, since f(t)δ′(t) = −f ′(t)δ(t), taking f(t) = t′− t,
it is found that Zlm → −(−1)δ(t′ − t) = δ(t′ − t) as N →∞. Thus, in accordance
with eq.(5.8), the limit of ZN is conjectured to be the identity under convolution in
the vector space of tempered distributions. In addition, since ZN is represented by
a Toeplitz matrix, it is natural to ask if its entries are the coefficients of the Fourier
series of a real valued function, as it happens for Toeplitz matrices when their entries
are the Fourier coefficients of an L1 function or of a Radon function, converging
to zero as N → ∞ for the former and remaining bounded for the latter. Thus, as
N → ∞ we wonder what is this real valued function whose Fourier transform is
the Dirac δ. It is known that such a function is 1; that is to say, to be precise, the
Fourier transform of the distribution T1 induced by 1 is the distribution δ (see [17],
p.203). In the study of algebras of Toeplitz operators, such a real valued function
is called the symbol of the Toeplitz operator; thus, in our context, the symbol of
the limit of the Toeplitz ZN is the constant 1 as a distribution. The issues about
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boundedness and compactness is analyzed in [20] for symbols as functions and in
[21] for symbols as distributions. Finally, the formal analysis about the veracity of
these claims requires the rigorous application of distribution theory and it is the
topic for future work.

6. An algebraic system associated with the DFT

Now we proceed to the construction of operators with the ladder property, starting
from their generic definition and giving to ZN its role as a form of identity in its
own right. We do not use the traditional definitions (1/

√
2)(Q ± iP ) since there

is no a priori reason to assume they should be valid in the context of the discrete
commutation relations. This implies relaxing the condition of the “canonical com-
mutation relations (CCR) equal to a constant” ([22], [23]) and give enough freedom
to look for solutions associated to the DFT, involving new operators H, L− and
L+, but taking a sort of compatibility relations as elemental and even lift them to
a fundamental postulate in the context we are dealing with. These compatibility
relations are also named compatibility of Hamilton’s equations with the Heisenberg
equations in [24], p.5 and [25], p.3., as well as Heisenberg-Schrödinger consistency
relations. A similar study can be found in [26].

6.1. Discrete algebraic system from ZN . To obtain the form of the compatibi-
lity relations in the context we are dealing with, let us take for a while the standard
definitions L = (1/

√
2)(Q + iP ), R = (1/

√
2)(Q − iP ) and notice that they imply

that

H =
1

2
{R,L}, ZN = [R,L].

From this it follows that the commutation relations

[H, R] = −1

2
{R,ZN}, [H, L] =

1

2
{L,ZN},

are valid and one gets

[{R,L}, R] = −{R,ZN}, [{R,L}, L] = {L,ZN}.

We call the above relations the discrete compatibility relations (DCR) and refer
to the operator H as the Hamiltonian operator. Now we leave the standard defi-
nitions of L and R and at the same time, leverage such relations as a fundamental
postulate in the context of the discrete commutation relations, for their continu-
ous counterpart is not guaranteed to be so in quantum mechanics as is mentioned
by Wigner in [27]. Further, the fact that ZN , N ∈ N, determines a sequence of
Hermitian Toeplitz matrices according to Corollary 5.4, allows to naturally connect
those relations with the DFT, in the sense that the entries of ZN are linked to an
approximating sequence of a distribution, whose Fourier transform is the Dirac δ,
namely, the distribution T1 induced by the constant 1, as discussed above.

On the other hand, Toeplitz matrices can be split into two parts, so that

ZN =

N−1∑
k=1

z−k(BT )k +

N−1∑
k=0

zkB
k,

where B is the backward shift matrix satisfying BT = KBK with K the reversal
matrix defined by ones in the antidiagonal and zero otherwise.
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Taking the parity operator, used in the AA-approach, as S = KV with V the
basic circulant matrix, there seems to be an enriched structure which provides a
possible framework that we believe it is worthwhile analyzing.

Summarizing, the following algebraic system is proposed (note that we will also
refer to it as an algebraic scheme in this work).

Construct operators L− : CN −→ CN and L+ : CN −→ CN such that

(1) The operator H := (1/2){L+, L−} is Hermitian (semi-)positive definite;
(2) The discrete compatibility relations (DCR) must be satisfied,

[{L+, L−}, L+] = −{L+, ZN}, [{L+, L−}, L−] = {L−, ZN}; (6.1)

(3) Parity–point reflection–condition: to split the eigenvectors in even and odd
parts,

[{L+, L−}, S] = 0; (6.2)

(4) Commutation with the DFT: to obtain an eigensystem for ΦN from the
Hamiltonian H,

[{L+, L−},ΦN ] = 0. (6.3)

In this scheme, non-equally spaced eigenvalues of the Hamiltonian are allowed, for
this property plays a key role in quantum information processes. To see if there
exist models for this system, the general form for a discrete Hermitian operator is
used

H =

N−1∑
n=0

ξnφn〈φn, ·〉,

where φn is an eigenbasis of H. Then use the ladder-type generic form to construct
creation and annihilation operators through

L+ :=

N−1∑
n=0

rnφn+1〈φn, ·〉, L− :=

N−1∑
n=0

lnφn−1〈φn, ·〉.

Sufficient conditions to solve this scheme are provided in what follows.

6.2. Solving the discrete compatibility relations. Following the algebraic sys-
tem proposed in the last paragraph, we establish now sufficient criteria to find so-
lutions for the first two requirements, at least. We aim to establish the conditions
under which Hamiltonians can be constructed and to understand their relationship
with the DFT within the framework of the DCR. In what follows, bra-ket notation
is used.

Let H be a (semi-)positive definite Hermitian operator on L2(Z/NZ) and {|ξj〉|j =
0, . . . , N − 1} be a complete set of eigenvectors of H, such that

H|ξj〉 = ξj |ξj〉, (6.4)

also
N−1∑
n=0

|ξn〉〈ξn| = I,

therefore

H =

N−1∑
n=0

ξn|ξn〉〈ξn|.
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Definition 6.1. The creation and annihilation linear operators L+, L− : CN −→
CN , are defined by

L+ :=

N−1∑
n=0

l+n |ξn+1〉〈ξn|, L− :=

N−1∑
n=0

l−n |ξn−1〉〈ξn|.

We establish some results to determine under which conditions solutions L± can
be found, such that

[{L+, L−}, L+] = −{L+, ZN}, [{L+, L−}, L−] = {L−, ZN}

holds. Thus we have the following

Lemma 6.1. |ξj〉 is an eigenvector of {L+, L−} with eigenvalue l+j−1l
−
j + l+j l

−
j+1.

Proof. We compute directly, using definitions and orthonormality, that

{L+, L−}|ξj〉 = (L+L− + L−L+)|ξj〉

= L+
N−1∑
n=0

l−n |ξn−1〉〈ξn|ξj〉+ L−
N−1∑
n=0

l+n |ξn+1〉〈ξn|ξj〉

= L+l−j |ξj−1〉+ L−l+j |ξj+1〉

=

N−1∑
n=0

l+n |ξn+1〉〈ξn|l−j |ξj−1〉+

N−1∑
n=0

l−n |ξn−1〉〈ξn|l+j |ξj+1〉

= (l+j−1l
−
j + l+j l

−
j+1)|ξj〉.

�

Lemma 6.2. The matrix representations for [{L+, L−}, L±] in the {|ξj〉} basis,
are given by

[{L+, L−}, L−]ξkj = (l+j−2l
−
j−1 − l

+
j l
−
j+1)l+j δk,j−1,

[{L+, L−}, L+]ξkj = (l+j+1l
−
j+2 − l

+
j−1l

−
j )l+j δk,j+1,

respectively.

Proof. Computing the commutator with L− using the previous Lemma 6.1,

[{L+, L−}, L−]|ξj〉 = ({L+, L−}L− − L−{L+, L−})|ξj〉

= {L+, L−}
N−1∑
n=0

l−n |ξn−1〉〈ξn|ξj〉 − L−(l+j−1l
−
j + l+j l

−
j+1)|ξj〉

= {L+, L−}l−j |ξj−1〉 − (l+j−1l
−
j + l+j l

−
j+1)l−j |ξj−1〉

= (l+j−2l
−
j−1 − l

+
j l
−
j+1)l−j |ξj−1〉,

whereby, the orthonormality of {|ξj〉} implies

〈ξk|[{L+, L−}, L−]|ξj〉 = 〈ξk|(l+j−2l
−
j−1 − l

+
j l
−
j+1)l−j |ξj〉

= (l+j−2l
−
j−1 − l

+
j l
−
j+1)l−j δk,j−1.

The second equation is obtained similarly. �
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Next, we obtain the matrix representation of {L±, ZN}. Let Zξαβ be the matrix

representation of ZN in {|ξj〉} basis and recall that {|ej〉} is the canonical basis. It
is clear then that, if Cαβ := 〈ξα|em〉 represents the transition matrix from {|ej〉} to
{|ξj〉}, we have

Zξαβ =
∑
m,n

CαmZ
e
mnC

−1
nβ =

∑
m,n

CαmZ
e
mnC̄βn =

∑
m,n

〈ξα|em〉Zemn〈en|ξβ〉,

since C is a unitary matrix.

Lemma 6.3. The matrix representations of {L±, ZN} in the {|ξj〉} basis, are given
by

{L±, ZN}ξkj = l±k∓1Z
ξ
k∓1,j + l±j Z

ξ
k,j±1, k, j = 0, 1, . . . , N − 1,

where Zξαβ are the entries of the matrix representation of ZN in the {|ξj〉} basis.

Proof. Since Zξαβ is the representation of ZN in the {|ξj〉} basis, then the action of

ZN on a basis vector can be expanded as ZN |ξj〉 =
∑
α Z

ξ
αj |ξα〉, so that

{L±, ZN}ξkj = 〈ξk|L±ZN + ZNL
±|ξj〉 = 〈ξk|L±

∑
α

Zξαj |ξα〉+ 〈ξk|ZN l±j |ξj±1〉

= 〈ξk|
∑
α

Zξαj l
±
α |ξα±1〉+ l±j Z

ξ
k,j±1 = l±k∓1Z

ξ
k∓1,j + l±j Z

ξ
k,j±1.

�

Therefore, putting all this together, one can readily see that the DCR are equivalent
to

(l±j±1l
∓
j±2−l

±
j∓1l

∓
j )l±j δk,j±1 = ∓l±k∓1Z

ξ
k∓1,j∓l

±
j Z

ξ
k,j±1, ∀k, j = 0, 1, . . . , N−1. (6.5)

Now conjugate transposition between the L± operators is imposed, and the Her-
miticity of ZN becomes essential to employ.

Proposition 6.4. Let’s suppose that the DCR hold. If (L−)† = L+, then

(1) the DCR are equivalent, and
(2) they reduce to

(|l−j−1|
2 − |l−j+1|

2)l−j δk,j−1 = l−k+1Z
ξ
k+1,j + l−j Z

ξ
k,j−1, ∀k, j = 0, 1, . . . , N − 1. (6.6)

Proof. First consider that

(L−)†|ξj〉 =

(
N−1∑
k=0

l−k |ξk−1〉〈ξk|

)†
|ξj〉 =

(
N−1∑
k=0

l−k |ξk〉〈ξk−1|

)
|ξj〉

=

N−1∑
k=0

l−k |ξk〉δk−1,j , k − 1 = j,

= l−j+1|ξj+1〉;

on the other hand L+|ξj〉 = l+j |ξj+1〉, thus, if (L−)† = L+, we necessarily have

(l−j+1 − l
+
j )|ξj+1〉 = 0, ∀ j = 0, . . . , N − 1, whereby l+j = l−j+1. Therefore, using

this and eq.(6.5) we get for the DCR

(|l−j+2|
2 − |l−j |

2)l−j+1δk,j+1 = −l−k Z
ξ
k−1,j − l

−
j+1Z

ξ
k,j+1,
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(|l−j−1|
2 − |l−j+1|

2)l−j δk,j−1 = l−k+1Z
ξ
k+1,j + l−j Z

ξ
k,j−1.

So to probe part 1 of the proposition, it is enough to conjugate transpose anyone of
the last equations to obtain the other using the Hermiticity of ZN (Corollary 5.4)
and a change of index. Part 2 clearly follows as a consequence of the equivalence
in part 1 picking the second expression. �

Thus, when imposing the conjugate transposition condition, we can deal with
only one of the DCR contained in eq.(6.5), namely that of part 2 of the last propo-
sition; it deploys into the following two equations after applying the definition of
the Kronecker delta:

|l−j−1|
2 − |l−j+1|

2 = Zjj + Zj−1,j−1, k = j − 1, (6.7)

l−k+1Z
ξ
k+1,j + l−j Z

ξ
k,j−1 = 0, k 6= j − 1. (6.8)

This means that we have a set of N2 equations, which we would like to solve for
l− := {l−0 , l

−
1 , . . . , l

−
N−1}; or equivalently, to solve 2N − 1 recurrence relations: the

first one given by eq.(6.7) with k = j − 1 and the other remaining ones correspond
to k = j − N + 1, j − N, j − N − 1, . . . , j − 2, j, j + 1, j + 2, . . . , j + N − 2 given
by eq.(6.8). We make the following correspondence about the indices: N → 0 and
−1→ N − 1, for instance, lN = l0 and l−1 = lN−1. Expanding the first recurrence
relation, we deploy N of the N2 equations as

|l−N−1|
2 − |l−1 |2 = Zξ00 + ZξN−1,N−1, j = 0, k = N − 1

|l−0 |2 − |l
−
2 |2 = Zξ11 + Zξ00, j = 1, k = 0,

|l−1 |2 − |l
−
3 |2 = Zξ22 + Zξ11, j = 2, k = 1,

... (6.9)

|l−N−2|
2 − |l−0 |2 = ZξN−1,N−1 + ZξN−2,N−2, j = N − 1, k = N − 2.

To solve this recurrence relation for a given N , we need to express everything in
terms of an initial |l−0 |2; it turns out that this is possible for N odd only, whereas
for N even, l−1 is additionally required, whence we have to treat the even and odd
cases separately. The solution is summarized in the following theorem, in which
another of the remarkable properties of ZN is required, namely, its tracelessness.

Theorem 6.5. The solutions for the recurrence relation (6.7) satisfy the following
hyperbolic relations:

(1) for N odd,

|l−N−1|
2 − |l−0 |2 = ZξN−1,N−1,

|l−1 |2 − |l
−
0 |2 = −Zξ00;

(2) for N even,

|l−N−2|
2 − |l−0 |2 = ZξN−2,N−2 + ZξN−1,N−1,

|l−N−1|
2 − |l−1 |2 = Zξ00.

Proof. Note the l−j are interrelated by even and odd indices in (6.9), so we separate
the equations in sets of even and odd indices, which means we will have one no
interrelating equation when N is even. Then we solve the even and odd cases for
N separately.
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Case 1: N odd. Lets separate the indices of j = {0, 1, . . . , N − 1} in even and odd
integers. Solving eqs.(6.9) for j = 2m,m = 1, 2, . . . , (N − 1)/2 in terms of l−0 and
substituting recursively,

|l−2 |2 = |l−0 |2 − Z
ξ
00 − Z

ξ
11,

|l−4 |2 = |l−0 |2 − Z
ξ
00 − Z

ξ
11 − Z

ξ
22 − Z

ξ
33,

... (6.10)

|l−N−1|
2 = |l−0 |2 + ZξN−1,N−1 − Tr(ZN ).

Similarly for j = 2m− 1 in reverse order,

|l−N−2|
2 = |l−0 |2 + ZξN−2,N−2 + ZξN−1,N−1,

|l−N−4|
2 = |l−0 |2 + ZξN−4,N−4 + ZξN−3,N−3 + ZξN−2,N−2 + ZξN−1,N−1,

... (6.11)

|l−1 |2 = |l−0 |2 − Z
ξ
00 + Tr(ZN ).

Case 2: N even. This case can be handled similarly, just that it is not possible to
express everything in terms of only |l−0 |2, but |l−1 |2 becomes also necessary.

For j = 2m in (6.9)

|l−N−2|
2 = |l−0 |2 −

N−3∑
m=0

Zξmm,

for j = 2m− 1

|l−N−1|
2 = |l−1 |2 −

N−2∑
m=1

Zξmm;

which are equivalent to

|l−N−2|
2 = |l−0 |2 + ZξN−2,N−2 + ZξN−1,N−1 − Tr(ZN ),

|l−N−1|
2 = |l−1 |2 + Zξ00 − Tr(ZN ).

Finally we get the result, stated in this theorem, remembering that ZN is traceless,
in accordance with Corollary 5.4. �

Note that the odd case requires only three parameters l−0 , l
−
1 , l
−
N−1, whereas the

even case requires four. The fact that only the modules of the l−j are involved,

anticipates the existence of many operators L± and so, many hamiltonians H.
Hitherto two main properties of ZN have been used: its Hermiticity and its

tracelessness; now its diagonalizability is needed.

Corollary 6.6. An annihilation operator L− which is a solution of the DCR, exists
if the parameters l−0 , l

−
1 , l
−
N−1, l

−
N−2 satisfy the hyperbolic relations (6.5) and {|ξj〉}

is a complete basis of eigenvectors of ZN .

Proof. Since l−0 , l
−
1 , l
−
N−1, l

−
N−2 satisfies the relations (6.5), then the recurrence (6.7)

is fulfilled. As for the remaining 2N − 2 recurrences in (6.8), the fact that |ξj〉 are

eigenvectors of ZN , implies ZξN is diagonal, therefore Zξk,j−1 = Zξk+1,j = 0 ∀ k =
j −N + 1, j −N, . . . , j − 2, j, j + 1, . . . , j +N − 2; that is, the off-diagonal elements

of ZξN vanish, thus, eq.(6.8) is satisfied. �
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Therefore, the construction of the operators L± is recursively given by (6.10) and
(6.11) starting with solutions of the hyperbolic relations.

Example 6.1. We can obtain a numeric example running code to compute ZN =
i[Q,P ] for N = 13 in Wolfram-Mathematica, this program yields the following
eigenvalues for Z13

Zξ00 = 11.1582, Zξ1212 = −0.371055,

whereby the corresponding hyperbolic relations of Theorem 6.5 which solve the re-
currence relation are

|l−12|2 − |l
−
1 |2 = Zξ00 + Zξ1212 = 10.7872,

|l−1 |2 − |l
−
0 |2 = −11.1582.

This implies that |l−1 |2 = |l−0 |2 − 11.1582, and therefore |l−0 |2 > 11.1582. So if we
take |l−0 | = 12, then the circle C0 = {l0 ∈ C||l−0 | = 12} determines an infinite
set of solutions. We choose building on the imaginary axis, so we take l−0 = 12i;
hence |l−1 |2 = 144 − 11.1582, or|l−1 | = 11.5257, thus we take l−1 = 11.5257i; also,
|l−12|2 = |l−1 |2 + 10.7872 implies that l−12 = 11.9845i. The remaining l−j are given

recursively by eqs.(6.10) and (6.11).

Corollary 6.7. Let hN be the set of Hamiltonians H = 1
2{L

+, L−}, such that
[{L+, L−}, L−] = {L−, ZN}, then [H, ZN ] = 0, ∀H ∈ hN .

Proof. Now this is clear because of construction since we are taking as {|ξj〉} the
eigenvectors of ZN , which in turn are also eigenvectors of H in accordance with eq.
(6.4); this is, they have the same set of eigenvectors, so they must commute. �

Definition 6.2. The number operator N : CN −→ CN is defined as N := L+L−.

Corollary 6.8. [N ,H] = [N , ZN ] = 0.

Proof. It is enough to probe that the eigenvectors of N are those of the set {|ξj〉}.
Using the definitions of L+ and L−, we have

N = L+L− =

N−1∑
j=0

N−1∑
j′=0

l+j |ξj+1〉〈ξj |l−j′ |ξj′−1〉〈ξj′ |

=

N−1∑
j=0

N−1∑
j′=0

l+j l
−
j′ |ξj+1〉δj,j′−1〈ξj′ | =

N−1∑
j=0

l+j l
−
j+1|ξj+1〉〈ξj+1|

=

N−1∑
j=0

|l−j+1|
2|ξj+1〉〈ξj+1|,

since l+j = l−j+1 (see the proof of Proposition 6.4); therefore

N|ξα〉 =

N−1∑
j=0

|l−j+1|
2|ξj+1〉〈ξj+1|ξα〉 = |l−α |2|ξα〉.

Thus N has the same eigenvectors as H, as desired. �

With these results requirements 1 and 2 of the proposed algebraic scheme are
satisfied.
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7. On the AA-approach

The purpose of this work is to provide a framework for analysing eigensystems,
associated with the DFT for arbitrary N , either by using an operator not necessarily
commuting with the DFT, as in the realization in terms of the operator ZN , or by
employing an operator W , which does commute with the DFT. In this section
we propose a possible realization for the algebraic scheme 6.1, by using the Heun
operator W from the Atakishiyeva and Atakishiyev (AA) approach, which could
provide the fulfilment of its four requirements. This can be done due to the existence
of a significant connection between the operators Q and P and the raising and
lowering operators A and A† of the AA-approach through the exponential map.
Thus, we show how these operators are related and establish corresponding DCR
which naturally follow in this approach.

The A and A† operators, also called intertwining operators, are linear transfor-
mations A,A† : CN → CN such that (see [3, 4] for more on the subject)

A = X + iY, A† = X − iY,

where X = diag(S0, S1, . . . , SN−1), Sn := 2 sin(2πn/N), n ∈ ZN , and Y = i(V † −
V ). Since X and Y are Hermitian they can be identified as position and momentum
operators, respectively. Note that the operators A and A† satisfy the intertwining
relations

AΦN = iΦA, A†Φ = −iΦA†.

By using them it is possible to prove the following important result: if the discrete
number operator is defined as N := A†A, then

[N ,ΦN ] = 0,

hence they have the same eigenvectors.
On the other hand, it is not hard to see that the operator X satisfies the relation

(see [4], p. 89)

X =
1

2i

(
U − U†

)
,

from which it follows that

A =
1

4

√
N

π

[
V † − V + i

(
U† − U

) ]
,

A† =
1

4

√
N

π

[
V − V † − i

(
U − U†

) ]
,

where, as we know from Section 3, the operators U and V are intertwined by the
DFT.

In [4], Theorem 3.1, p.86, it was shown that the set of unitary operators defined
as

u(l;m,n) :=
√
NqlV nUm, 0 ≤ l,m, n ≤ N − 1,

form an irreducible unitary representation U(N) on CN of the finite Heisenberg
group H. Additionally, as is proved in [15], Theorem 1.5, p.19, the matrix elements
of the unitary, irreducible representations of H are a complete orthonormal set for
the vector space of the regular representation C[H] of H, which in turn is obtained
by a basis indexed by the elements of H. It is possible to turn C[H] into an
algebra by means of the product vgvh = vgh, g, h ∈ H and extending it linearly;
the resulting algebra is the group algebra CH of H on the field C. Therefore, the
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matrix elements of A and A† are elements of the group algebra CH. Recall that,
by virtue of Theorem 4.1,

V j = exp(iηPj),

which implies that the raising and lowering operators A and A† can also be inter-
preted as linear combinations of exponentiations of the operators Q and P , with
matrix elements belonging to the group algebra CH. These arguments probe the
deep connection between Q, P , A and A† as desired. Shortly, we can say that the
operators Q, P , L+, L− and ZN lie at the level of representations of the Heisen-
berg algebra h, whereas the operators X, Y , A, A† and W lie at the level of
representations of the Heisenberg group H – turned into a group algebra CH – and
connected through the exponential map, with underlying finite-dimensional Hilbert
space L2(Z/NZ).

Thus, we have gained insight on the mathematical structure underlying the DFT
and now we are in a position to lay down a possible realization for 6.1 lying natu-
rally in the AA-approach. It would be desirable, not mandatory though, that N
was Hermitian; this condition is not fulfilled, however, since A and A† generate
a cubic algebra (for more details see [28]). Fortunately, it has been possible to
find a transformation T , which turns N into an Hermitian matrix by means of a
symmetrization with respect to the parity operator S extendable to arbitrary N ;
this implies that N is diagonalizable and so there exists an orthonormal eigenbasis
of N and it has been already constructed [5] (at least for N = 5 up to the writing
of this paper). This means we could use such basis to build an associated family of
ladder operators apart from the AA’s raising and lowering operators. The natural
candidate that plays the role of ZN is the Heun operator

W := −2i [X,Y ] = [A,A†],

defined in [28], p.7, which additionally can be chosen to commute with ΦN . So
despite the fact that W may not have the Toeplitz property, we could remarkably
have in exchange, the fulfilment of the whole four requirements of the algebraic
scheme in 6.1. The Toeplitz property will only be relevant when we formally study
the intrinsic nature of ZN , so its absence here is not detrimental to the scheme
under analysis, for the existence of solutions of the DCR only required hermiticity,
tracelessness and diagonalizability, as we learned in the previous section. Therefore
it is important to determine whether or not it is possible to construct operators L+

and L−, such that

[{L+, L−}, L+] = −{L+,W}, [{L+, L−}, L−] = {L−,W}.

If solutions exist for these equations, then the proposed algebraic scheme will have
been solved completely, since

[W,ΦN ] = 0.

These observations undoubtedly help to deeply understand the mathematical struc-
ture underlying the behaviour of Q, P , A and A†, and we think this can be useful
for further developments on the subject.

8. Concluding remarks

In this paper we have established a set of discrete commutation relations obtained
from a Hermitian Toeplitz operator ZN , which plays the role of the identity. Thus,
by means of the formulation of the discrete compatibility relations, the algebraic
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system 6.1 was proposed and it has been shown to admit solutions featuring ladder-
type operators that lead to the construction of families of Hamiltonians H for each
N . Also, it was established a remarkable relationship between the operators Q and
P , and those of the AA-approach, A and A†, in the sense that these are linear
combinations of exponentiations of the former, with matrix elements belonging
to the group algebra CH. Then we proposed that the condition [W,ΦN ] = 0 can
naturally lead to the fulfilment of the four requirements of the algebraic system and
thereby provide a complete model of it, obtaining insight on the underlying algebraic
structure of the DFT. We believe this can lead to a well formulated framework for
systematically studying discrete systems in finite dimensional Hilbert spaces.

Further analysis is needed to formally deal with the conjectured relationship
between ZN and the δ distribution, as well as to determine whether analytic ex-
pressions for the eigenvectors of ZN can be obtained. It is also important the study
of the asymptotics –i.e. upper and lower bounds– of the extreme eigenvalues, if any,
trying to follow procedures similar to those in [30]. The establishment of three-term
recurrence relations for eigenvectors of the DFT, leading to associated polynomials
through Rodrigues-type difference formulas, as well as the extension of the results
to the multivariate case still remains pending.

The possible recovery of the continuous case withing the scope of the Limit Cen-
tral Theorem, would be desirable and lies on the veracity of the limit of ZN as the
Dirac distribution, and the knowledge of the explicit form of its eigenvectors. If this
limit holds, then ZN has Schwartz distributional behaviour. Therefore one needs
to find an appropriate analog of the identity operator in the CCR (2.2), instead of
employing the identity operator under convolution in the distributional sense of the
discrete conmutation relations (4.3). This is due to the fact that Schwartz distri-
butions are a bit different notion than the usual probability distributions. Never-
theless, this is not detrimental to the algebra of the discrete commutation relations
because in our study under discussion we prioritize a correspondence principle from
Tarasov. This principle states (see [31] p.4) that the correspondence between dis-
crete and continuous quantum theories lies not so much in the limiting agreement
when the step of discretization tends to zero, as in the fact that mathematical
operations on the two theories obey, in many cases, the same laws. Finally, the
problem of the recovery of the continuous case, associated with the Heun operator,
or if the limit of ZN turns out to be a bounded operator, is left open.

Acknowledgments. NMA is grateful to Alexei Zhedanov for illuminating discus-
sions.
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