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Abstract 

Cities and urban areas are the primary source of CO2 worldwide by using around 70% of global energy and emitting 

more than 71% of CO2. Urban vegetation, referring to all trees and shrubs, are important components of urban 

environments. They provide many ecosystem services to human beings both directly and indirectly. Especially, 

they play a key role in reducing carbon emissions in urban areas by storing and capturing the carbon. However, 

recently, an increase in the number and intensity of wildfires that occur within urban areas has been observed. It 

resulted in losing stored carbon, releasing GHG to the atmosphere. Hence, quantifying above-ground carbon stored 

by urban trees and its distribution is essential to better understanding urban vegetation's role in urban environments 

and to better urban vegetation management. This study aimed to examine how forest fire affects the amount and 

distribution of stored carbon in the urban environment for the case of the Marmaris fire in the Summer of 2021 in 

Türkiye. For the study, urban forest carbon storage maps were generated before and after the Marmaris forest fire 

using remote sensing-based methodology with freely available remote sensing (RS) data. The results indicated that 

using the existing methodology could be rapid and cost-effective in monitoring the carbon storage change after an 

anthropogenic and natural disaster. However, for precise and reliable estimation of total carbon storage and the 

change in total urban carbon storage, the methodology needs to be developed at a local scale using field sampling 

along with RS data. 

Keywords: Urban forest, Forest fire, Carbon storage mapping, Spatio-temporal change.

1. Introduction 

The world's population in urban areas has been 

rapidly growing. The UN (2018) reported that more than 

half of the world's population (around 55%) lives in 

cities. Due to population growth, the increased vehicle 

uses, and industrial activities, cities and urbanized areas 

have become a main source of global CO2 emissions 

(Hutyra et al., 2011b). Also, population growth has had a 

notable direct or indirect impact on land cover change 

processes. The need for infrastructure for housing, 

transportation, education, and health care facilities 

mainly destroys trees, forests, and green areas within, 

adjacent to, or around the cities. Thus, it causes 

deterioration of the structure, pattern, and function of the 

urban ecosystem within and around urban areas (Nowak 

et al., 1996; McPherson et al., 2011; Berland, 2012; 

Sağlam and Elvan, 2017).  

Urban vegetated areas, meaning all woody vegetation 

in urban areas, are vital for the urban ecosystem (Berland 

2012; Konijnendijk et al., 2006; Nowak et al., 2010; 

Richardson and Moskal 2014). They offer many benefits 

for human beings, such as providing aesthetic values and 

recreational opportunities, reducing energy use by 

facilitating cooling effects, improving water and air 

quality and biodiversity, and increasing human health 

and well-being (Nowak et al., 1996; Konijnendijk and 

Randrup 2004; Nowak and Greenfield 2010; Safford et 

al., 2013; Pasher et al., 2014; Richardson and Moskal 

2014). All these ecosystem services obtained from urban 

vegetated areas are related to the amount of healthy and 

functioning vegetation, used to measure and monitor tree 

health, remove pollutants, and estimate carbon storage 

and sequestration (Pasher et al., 2014). The removal of 

the vegetation in urban areas due to the expansion of 

cities or natural disasters (fire, flooding, etc.) 

significantly affects the amount of carbon emissions on 

both local and global scales (Hutyra et al., 2011a).    

All these changes in urban and suburban development 

cause a significant threat to the ecosystem and its 

services. For example, the extension of settlement 

towards wildland vegetation results in an increase 

human-caused fire ignition. It is reported that more than 

50% of forest fires worldwide are accidental or 

intentional human-caused fires, and this rate rises to over 

90% in Mediterranean regions (FAO, 2007; Ganteaume 

et al., 2013). Türkiye is one of the Mediterranean 
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countries that experience the most significant number of 

forest fires in the south and western parts of the country. 

This region also experienced the highest number of fires 

and the largest burning area between 2020-2022 

(European Forest Fire Information System, 2022).  

Although fire has always been a part of many 

ecosystems, such as the Mediterranean ecosystem, in the 

current context, climate change, desertification, and 

human activities such as shaping fuels and vegetation 

indirectly through land use and directly causing or 

controlling fire (Pyne et al., 1996; Krebs et al., 2010; 

Ricotta et al., 2018; Chen and Jin, 2022) make these 

ecosystems more vulnerable to wildfires. These fires also 

cause increasingly serious environmental, economic and 

social losses.  

In particular, wildfires release significant amounts of 

greenhouse gases, mainly CO2 (Harrison et al., 2010). 

They also cause a reduction in carbon sinks by burning 

Above Ground Biomass (AGB) or carbon-rich fuels 

(Kirschbaum, 2003). Unfortunately, those areas in the 

landscape lose their ability to capture and store carbon 

until mature trees grow back. Recovery time after fire 

disturbance is related to the severity and ecosystem 

types. The forest ecosystem requires a longer recovery 

time, which is varied between two decades to a century, 

compared to other ecosystems, such as grasslands and 

peatlands (Reichstein et al., 2013; Fu et al., 2017). The 

loss of vegetation due to fire in the urban environment, a 

major source of global CO2 emission, not only increases 

released carbon and reduces air quality but will 

significantly impact the amount of captured and stored 

carbon in the future within cities. Therefore, assessing 

and mapping ecosystem services, especially stored 

carbon by forests in urban environments, following 

wildfire disturbance is essential to understand spatial and 

temporal changes in ecosystem services, contributing to 

natural resource management planning and policy-

making processing in the conservation and sustainable 

use of natural resources in urban environments. 

Remote sensing technology provides new approaches 

with various data sources to monitor and detect changes 

and conditions of natural resources at local, regional, and 

global scales (Navalgund et al., 2007; Kumar et al., 2015; 

Szpakowski and Jensen 2019). They have been used 

increasingly for monitoring natural disturbances, 

including but not limited to fire disturbances (fire 

detection, burned severity mapping, fuel mapping, and 

fires risk mapping) (Chuvieco and Congalton 1989; 

Saatchi et al., 2007; Escuin et al., 2008; Adab et al., 2013; 

Satir et al., 2016; Filizzola et al., 2017; Xu and Zhong 

2017; Collins et al., 2018; Akay and Şahin 2019; Huesca 

et al., 2019; Adaktylou et al., 2020; Ozenen Kavlak  et 

al., 2021; Kantarcioglu et al., 2023) and insect infestation 

(Bone et al. 2005; Goodwin et al., 2008; Oumar and 

Mutanga 2011; Dalponte et al, 2022). Also, RS 

technology is widely employed in monitoring and 

mapping land use land cover change (Green et al., 1994; 

Shalaby and Tateishi 2007; Rwanga and Ndambuki 

2017), vegetation recovery (Sever et al., 2012; Aicardi et 

al., 2016; Bolton et al., 2015; Samiappan et al., 2019) and 

urban expansion (Dereli, 2018; Al-Bilbisi, 2019; 

Dhanaraj and Angadi, 2022; Liu et al., 2022).  

Moreover, RS data have been used to assess and 

monitor Green House Gas (GHG) emissions, including 

released carbon, nitrogen, and pollutants after natural 

disturbances such as wildfire (Hashim et al., 2004; 

Mirzaei et al., 2018; Sannigrahi et al., 2020; Yin et al., 

2020; Singh et al., 2021; Akyürek 2022) or the amount 

of sequestered carbon by land cover such as forest areas 

(Turner et al., 2004; Baccini et al., 2012; Wicaksono et 

al., 2011; Vicharnakorn et al., 2014; Hastuti et al., 2018; 

Keles et al., 2021; Vatandaslar and Abdikan 2022; Çinar 

et al., 2024) and urban environments (Myeong et al., 

2006; Sanga-Ngoie et al., 2012; Dobbs et al., 2014; 

Hutyra et al., 2011; Dobbs et al., 2018; Tonyaloğlu 2020; 

Dewanto and Jatmiko, 2021; Değermenci, 2023). 

Especially carbon emission in an urban environment that 

consumes around 70% of global energy and emits more 

than 71% of CO2 worldwide (Hutyra et al., 2011a) 

requires regular monitoring, and the continuously 

available remote sensing data makes it possible.  

Additionally, the use of remote sensing satellite 

images for carbon storage assessment, mapping, and 

monitoring provides a time and cost-effective approach 

rather than using limited ground measurements. The 

methodology, developed by Myeong et al. (2006) using 

spatially explicit freely available remote sensing data, 

was employed to estimate stored carbon in urban 

ecosystems. It pointed out that RS data offers fast and 

reliable estimates of stored carbon in urban ecosystems. 

In addition, this method was applied by many researchers 

to explore the ecosystem services provided by urban 

forests in different urban environments. For example, 

Dobbs et al. (2018) used the method in the case of Bogota 

(Colombia) and Santiago (Chile). The researcher also 

conducted another study in 2014 by using the same 

methodology to examine global drivers and tradeoffs of 

three urban vegetation ecosystems (carbon storage, 

recreational potential and habitat development). All 

these studies concluded that remote sensing data-based 

methodology helps to understand past patterns and 

consequences of urbanization that will contribute to 

future urban land management and urban forest 

conservation plans. 

In this study, our main objective is to examine spatio-

temporal changes in the amount of stored carbon in the 

urban environment for the case of the Marmaris fire that 

took place in the Summer of 2021 Türkiye. The spatio-

temporal data provided by satellite images make it 

possible to determine total burned urban forested areas 

and estimate the amount of the stored carbon lost in those 

areas. Urban forest carbon storage maps were generated 

for before and after the Marmaris fire using remote 

sensing-based methodology, developed by Myeong et al. 

(2006), with freely available remote sensing (RS) data. 

The method has been used widely to estimate carbon 
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emission within urban environments. However, the 

method has not been used to assess the amount of the 

stored carbon change due to fire within urban areas. It 

would help to understand whether remote sensing-based 

methodology can be useful for immediately assessing 

fire-caused ecosystem services loss, particularly the 

amount of stored carbon, in urban environments for 

sustainable cities. 

 

2. Material and Methods 

2.1. Study area 

Marmaris is a township of Muğla province, located in 

southwest Türkiye, along the shoreline of the Turkish 

Riviera. Marmaris, one of the most popular destinations, 

is a port city and tourist resort on the Mediterranean 

coast. The total population of Marmaris is 95,849 and 

during summer, it reaches over 670,000 (TUIK, 2022).  

Figure 1 showed that there has been an increase trend in 

population in Marmaris since 2010. Although the growth 

rate was not changed in 2021, this rate jumped during 

Covid-19 (especially in 2020). 

More than %50 of the Marmaris population is located 

in Armutalan, Siteler, Cildir, Hatipirimi, Kemeralti, Tepe 

and Camdibi districts. Thus, the administrative boundary 

of these 7 districts was used as study area (Figure 2). The 

total study area was 1,491.12 ha and the dominant tree 

species was Pinus brutia Ten., (Turkish pine) that ranges 

from Mediterranean to Aegon coasts of Türkiye and very 

sensitive to forest fires although they are fire adapted 

species (Boydak et al., 2006).  

 

 
a       b 

Figure 1. Population of the Marmaris (a) and the growth rate (b) (TUIK, 2022). 

 

 
Figure 2. The study area consists of the most populated seven districts of Marmaris township. 

 

Tourism is one of the primary sources of income for 

Marmaris. Total number of tourists in 2021 was more 

than 3.2 million (Muğla İl Kültür ve Turizm Bakanlığı, 

2022). Since the early 1960s, many touristic places, such 

as hotels, motels, and resorts, have been built to 

encourage tourism activities in the city with government 

support (Arslan, 2021). It led to the converting of green 

areas into developed areas and an uncontrolled increase 

in human activities in those areas.  

2.2. Data 

In this study, remote sensing-based methodology with 

freely available remote sensing (RS) data was employed 

to assess stored carbon change due to forest fire that 

caused Above Ground Biomass (AGB) loss. Hence, 

Landsat 8 Operational Land Imager (OLI) satellite 

images were used to assess stored carbon change due to 

forest fire. Two Landsat 8 OLI images were selected to 

represent pre and post Marmaris fire, occurred between 

July 29th, 2021, and August 7th, 2021. While selecting 

images, the cloud condition and smoke haze on the 

images was considered. Landsat 8 OLI images taken on 

May 26, 2021, and August 30, 2021, were used in this 

study as pre-fire and postfire images, respectively. 

Landsat 8 OLI images consist of nine spectral bands in 

the visible, near infrared, and shortwave infrared 

portions (VNIR, NIR, and SWIR) of the spectrum with a 
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spatial resolution of 30 meters for Bands 1 through 7 and 

9 that was employed in this study.  The data were 

downloaded from the United States geological Survey 

(USGS) webpage (https://earthexplorer.usgs.gov/)  for 

path: 179 and row:35. USGS has developed research 

quality and analysis ready products from the Landsat 

images. The data used in this study is level 2 science 

products, meaning already preprocessed and ready for 

analysis (i.e., radiometric and atmospheric corrections) 

(Chander et al., 2009).  

In addition, the boundary of study area 

(administrative the boundary of seven districts) was 

obtained from Marmaris municipalities as a. shp file. 

Marmaris forest management plan was obtained from 

Marmaris Forest Management Enterprise. The plan 

provides the stand volume that is used to estimate above 

ground carbon from AGB in forested areas.  

 

2.3. Methods 

In the sections below, estimating stored carbon from 

RS-based method, including delineating the burned area 

and estimate carbon loss within that area, are described 

as showed in workflow of the study (Figure 3).  

 

 
Figure 3. The workflow of the study. 

 

2.3.1. Estimating stored carbon from RS-based 

method 

In order to quantify the amount of stored carbon 

within the study area, we first need to quantify vegetation 

greenness. Normalized Difference Vegetation Index 

(NDVI) is a simple indicator that measures the amount 

and vitality of vegetation on land surface.  NVDI is 

commonly used to determine biomass, photosynthetic 

capacity of vegetation, and vegetation health (Tucker 

1979).  Also, it has been widely used vegetation index in 

urban environments for distinguishing vegetation from 

non-vegetated areas such as water, bare soil and 

developed areas (Myeong et al., 2006; Chen et al., 2012; 

Dobbs et al., 2014; Hastuti et al., 2018; Ucar et al., 2018; 

Tonyaloğlu, 2020). NDVI is calculated for each pixel in 

satellite imagery from NIR band, where vegetation 

strongly reflects, and the red band, using following 

formula (Rouse et al., 1974): 

 

NDVI = (NIR – RED) / (NIR + RED)  (1) 

 

NDVI values range between -1 and +1, and higher 

NDVI values indicate a large amount of green vegetation 

(Chen et al., 2012). In this study, two Landsat 8 OLI 

images, before and after the Marmaris fire, were used to 

calculate NDVI. Then, these Landsat-derived NDVIs 

were used to calculate stored carbon in   vegetation   

along with  an  existing model  developed by Myeong  et  

al. (2006). The model was designed explicitly for urban  

 

 

vegetation and has been validated with field data. That is 

why we selected the boundary of the heavily populated 

district as a study area rather than for the entire Marmaris 

sub-city boundary. Also, this spatially explicit model has 

been used earlier in different cities to calculate the stored 

carbon in urban forests (Myeong et al., 2006; Dobbs et 

al., 2014; 2018; Tonyaloğlu, 2020; Değermenci, 2023; 

Shanafelt et al., 2023) using following regression 

equation (Myeong et al., 2006): 

 

Carbon = 0.10702e(NDVI*0.0194)   (2) 

 

where Carbon represents stored carbon (tonnes C / pixel) 

and NDVI is the Landsat-derived NDVI value.  

With this model, two carbon maps were generated; 

one was before the Marmaris fire, and the other was after 

the Marmaris fire.  

Also, generated NDVI map for before fire was used 

to classified forested area within study area. In order to 

distinguish urban vegetated areas from impervious 

surface, a threshold for NDVI values needs to be 

determined. In general, NDVI values is 0.2 or greater is 

suggested (McBride, 2011; Chen et al., 2012). However, 

when we applied this threshold, it did not clearly 

differentiate woody vegetated areas from impervious 

surface. Thus, 0.23 was selected as threshold value for 

classification of urban woody vegetation within the study 

area after visual assessment.  

 

https://earthexplorer.usgs.gov/
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2.3.2. Delineating burned area  

The total burned forested area within our study area 

were determined with Normalized Burn Ratio (NBR) 

index to assess the amount of stored carbon only in 

burned urban forested areas. NBR is a commonly used 

index to highlight burned areas in large fires and provide 

a measure of severity. The formula of NBR is quite 

similar to NDVI, but it combines NIR, where healthy 

vegetation has high reflectance in NIR band and low 

reflectance in SWIR band. In contrast, burned areas 

show low reflectance in NIR band and high reflectance 

in SWIR band. Thus, it is calculated by using ratio 

between NIR and SWIR bands (Key and Benson, 1999; 

Key et al., 2002; Escuin et al., 2008; Keeley 2009; 

Picotte and Robertson, 2010): 

 

NBR = (NIR – SWIR) / (NIR + SWIR)  (3) 

 

NBR with high values represents healthy vegetation 

while a low NBR value indicates bare ground or recently 

burned areas.  

The difference between the pre and post fire NBR 

derived from satellite images has been used to calculate 

the differenced Normalized Burn Ratio (dNBR), which 

is a powerful tool for successfully mapping burned area 

and relative burn severity. The following formula is used 

to calculate dNBR: 

 

dNBR = PrefireNBR – PostfireNBR  (4) 

 

The value of dNBR varies depending on the case, but 

the higher value of dNBR indicates more severe damage 

while the lower dNBR indicates less severity. For this 

study, firstly, the prefire NBR and postfire NBR were 

generated using Landsat images and then they were used 

to calculate dNBR. Secondly, the total burned area within 

the study area boundary was delineated by classifying 

dNBR as burned and unburned areas using threshold 

values. A study by Rahman et al. (2018) suggested that a 

dNBR value of + 0.1 is an appropriate threshold for 

differentiating burned from unburned areas. In our study, 

the dNBR value ranged from – 0.7066 to + 0.6897 and 

after visual comparison, + 0.1261 was used to avoid false 

positives. Nevertheless, some salt and paper effects were 

observed in this classification (misclassified isolated 

pixel). Post-classification processes were applied in 

ArcGIS 10.8.x to accurately delineate the boundary of 

burned area. After that, the zonal statistic was applied to 

determine the Min, Max, and Mean value of Carbon 

(tons/pixels) in the delineated burned area using the 

carbon map, calculated from NDVI based remote 

sensing model. Last but not least, the amount of carbon 

in pixels estimated from before and after fire NDVI 

based remote sensing model were summed for entire 

burned forest area obtained from the dNBR to estimate 

stored carbon change within urban environment due to 

fire.  

 

3. Results and Discussion 

After reclassifying NDVI (only used before fire), 

estimate of total urban forested area within our study area 

was 783.99 ha, and it was 47% of entire study area. The 

effect of the fire on urban forest were clearly seen in the 

southwestern part of the study area. In Figure 4, before 

the fire, healthy functioning urban forest at the 

southwestern part of the study area, indicating higher 

NDVI values, were represented in green color on the 

map. However, after the fire, the lower NDVI value was 

observed within same areas, green color was obviously 

turned into red color. It means that urban forest at the 

southwestern part of the study area were lost ability to 

capture and sequestered carbon. 

 

 
Figure 4. NDVI maps before (left) and after fire (right). 
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Total burned area delineated from dNBR map was 

249.66 ha (Table 1 and Figure 5). Total burned area 

covered 20% of the entire study area and 32% of the 

urban forested area within the study area. Total stored 

carbon was estimated by summing the mean value of 

stored carbon (tons/pixel) within the burned urban forest 

area for both before and after fire. Then, stored carbon 

change of urban forest due to the fire was estimated as 

2.23 tons in ha (Table 1). It was estimated that there was 

an 3.25% decrease in total stored corbon due to urban 

forest lost during fire. Our estimation for stored carbon 

map, derived from satellite image based NDVI, showed 

that the maximum value of the stored carbon (tons/pixel) 

within study area was quite similar when compared to 

before and after fire (Figure 6a and 6b). However, the 

minimum value of the stored carbon (tons/pixel) within 

the study area were reduced (Table 1). A similar trend 

was observed for the mean value of the stored carbon 

(tons/pixel). 

 

Table 1. Estimated stored carbon change due to forest fire within urban forest in Marmaris. 

  
Burned Area 

(as pixel) 
Burned Area 

(ha) 
Min 

(tons/pixels) 
Max 

(tons/pixels) 
Mean 

(tons/pixels) 
Total C* 

(ha) 

Before Fire 2774 249.66 0.2808 0.2874 0.2852 71.20 

After Fire 2774 249.66 0.2596 0.2852 0.2762 68.97 
*Total C (ha):  Total carbon storage was estimated by summing carbon storage values (Mean) for all pixels after converting 

pixel to ha (1 pixel = 0.09 ha) in the study area. 

 

   
Figure 5. Burned area within study area (left - RGB), total burned area and unburned area delineated by classifying dNBR 

within study area. 

 

 
Figure 6. Total carbon amount estimated from NDVI derived model within study area before and fire. a) stored carbon 

(tons/pixel) map before fire, and b) stored carbon (tons/pixel) map after fire. 
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Terrestrial ecosystems are an important and dynamic 

component of the global carbon cycle. In particular, 

carbon emission in an urban environment consumes 

around 70% of global energy and emits more than 71% 

of CO2 worldwide. Urban forests are the main 

component of the urban environment by providing many 

ecosystem services, especially sequestering and storing 

carbon. In addition to the interactions between human 

activities and land use land cover change, natural 

disturbances, such as fire, and its recovery dynamic are 

controlled carbon balance in urban environment. Hence, 

mapping and assessing ecosystem services in dynamic 

urban environments are key elements for sustainable 

cities (Dobbs et al., 2018). Many studies have been 

integrated and used RS technology in mapping and 

monitoring carbon stores, sinks, and sources in the 

forests (Krankina et al., 2004: Turner et al., 2004; 

Wicaksono et al., 2011; Baccini et al., 2012; 

Vicharnakorn et al., 2014; Hastuti et al., 2018; Keles et 

al., 2021; Vatandaslar and Abdikan 2022). They pointed 

out that integration of RS technology into the methods 

offers a promise for monitoring and mapping carbon at 

spatial and temporal scale. It is also time and cost 

effective.   

In this study, we employed the RS-based 

methodology developed by Myeong et al. (2006) that 

related AGB and NDVI to estimate and map carbon stock 

loss in urban environment of Marmaris due to forest fire. 

Although trees are the main carbon sink even after fire 

maintaining the carbon, they lose ability to capture 

carbon due to losing their leaves. Thus, the study mainly 

focused on assessing the amount of stored carbon change 

using AGB change. The method has been used by many 

researchers to estimate dynamics of urban ecosystems 

services. For instance, Dobbs et al. (2014; 2018) applied 

this method to explore temporal dynamics of urban 

vegetation ecosystem services, Hutyra et al. (2011a; and 

2011b), Tonyaloğlu (2020) and Değermenci (2023) used 

the method to address impact of urban expansion on 

terrestrial carbon stock. They stated that carbon models 

based on NDVI are affected by vegetation conditions and 

cover. Similar to previous studies, our results also 

showed that because of forest fire, woody vegetation lost 

green canopy cover or affected the health condition of 

vegetation where photosynthetic activity takes place. 

Thus, there was a 3.25% decrease in total stored carbon 

in the study area.  

Urbanization causes carbon loss in above-ground 

biomass (Hutyra et al., 2011b) by disturbing trees. In 

addition, natural disasters such as fire release CO2 into 

the atmosphere in a short period compared to 

urbanization, resulting in a fast decline in the net sink of 

carbon in urban areas (Climate Action Reserve, 2014). 

Thus, it is important to estimate the size of the affected 

area and total carbon loss accurately and quickly after a 

natural disaster. Remote sensing technology, which 

offers a variety of spatial and temporal continuous data, 

has been increasingly used to assess and monitor 

ecosystem services in forested areas and urban 

environments. For instance, a study by Picotte and 

Robertson (2010) pointed out that the use of dNBR 

methods derived from RS data is useful for monitoring 

burned areas due to fire and is also cost-effective. 

Similarly, a study by Key and Benson (1999) 

demonstrated an additional advantage of the dNBR 

method: the ease and reliability of delineating burn 

perimeters. Lately, the dNBR method derived from 

different satellite image sources has been widely used to 

estimate burned areas immediately after fires. Thus, the 

burned area perimeter before and after fires was 

delineated for this study using the dNBR method derived 

from Landsat images.  

However, there are some limitations, such as data 

availability, quality, and quantity for estimating and 

monitoring ecosystem services in urban environments. 

This study showed that using satellite images (30 x 30 m 

pixels), which are freely available and accessible 

worldwide, makes it easy to examine changes in 

ecosystem services due to urbanization and natural 

disasters. In urban ecosystem services assessment 

studies, the data resolution, with 30 x 30 m pixels, can 

make it challenging to identify heterogeneous 

characteristics of urban environments, such as differing 

grass from forest areas or buildings and trees that can be 

located within the same cell. However, it was not an issue 

in this study because the fire occurred in a homogenous 

forested area adjacent to developed areas and did not 

scatter. In addition, it needs to be emphasized that the 

model was developed based on temperate urban forests 

and only considers three above-ground carbon estimated 

from AGB. Our study area is located in a temperate urban 

forest zone, but the lack of estimated carbon stack from 

ground inventory data to compare the accuracy of the 

model could be counted as another limitation. To 

improve the accuracy of estimation and mapping stored 

corban, it would be better to develop local models using 

inventory data with finer resolution RS data.  

 

4. Conclusion 

Today, urban areas and cities represent a small 

proportion of the world; however, they are responsible 

for about 70% of the world's energy consumption and 

more than 71% of the world's CO2 emissions. Also, there 

is a continuous change in urban ecosystems at local, 

regional, and global levels due to urbanization dynamics. 

Urban woody vegetation in urban environments provides 

many ecosystem services, particularly reducing carbon 

emissions in urban areas by storing carbon. In addition 

to urbanization, natural disasters, such as wildfires, have 

a huge impact on urban ecosystem services provided by 

urban woody vegetation. This study aimed to explore and 

address the spatio-temporal variation of ecosystem 

services in urban areas due to natural disasters using the 

RS-based method. The results of the study provide 

insight into the consequences of unexpected forest fires 

in urban environments by providing a rapid estimate of 
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stored carbon loss. This explanatory study allows us to 

better understand the role of urban vegetation in urban 

ecosystem services using RS-based methodology. Thus, 

authorities, planners, and policymakers can take 

immediate action using the results from the RS-based 

method to reverse the changes in urban environments by 

planting new trees in urban areas or reforestation the 

burned areas. The results from this study showed that the 

method can be applied for fast and easy calculation of 

stored carbon loss due to fire. However, future studies 

need to integrate ground inventory data with finer-

resolution images to develop a new method at the local 

scale. 
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