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ABSTRACT
Objective: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) became one of the most important health problems of the 21st 
century. Non-structural protein-13 (nsp13/helicase) plays an important role in the replication of the viral genome and the viral life cycle. 
The SARS-CoV-2 genome has undergone thousands of mutations since the disease first appeared. Mutations pose a threat to the validity 
of therapeutics due to changes in protein structure. Modeling alterations caused by mutations in the viral proteome contributes to the 
development of effective antivirals. The changes in protein structure and stability caused by mutations seen in European isolates of SARS-
CoV-2 were analyzed in the study with the aim of contributing to studies on the development of new anti-virals and the validity of existing 
therapeutics.

Methods: The changes in protein structure after mutation were modeled with deep learning algorithms. The alterations in protein stability 
were analyzed by SDM2, mCSM, DUET and DynaMut2.

Results: The mutation analysis revealed four (Pro77Leu, Gly170Ser, Tyr324Cys, and Arg392Cys) missense mutations in the nsp13 protein in 
European isolates of SARS-CoV-2. Mutations caused changes in protein structure (rmsd 0.294 Å) and stability (-4.37 ≤ ΔΔG ≤ .085 kcal.mol-1). The 
atomic interactions formed by the mutant residues in the three-dimensional conformation of the protein have changed.

Conclusions: The mutations seen in European isolates for nsp13 of SARS-CoV-2 may lead to the emergence of different phenotypes in terms 
of viral activity. For this reason, the study may contribute to the success of the fight against the virus with different treatment approaches 
in different regions.
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Non-Structural Protein-13 Mutations in European Isolates of 
SARS-CoV-2 Changed Protein Stability

1. INTRODUCTION

Severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2), the pathological agent of Coronavirus Disease-2019 
(COVID19), one of the most important health problems of the 
21st century, is a positive polarity RNA virus (1). SARS-CoV-2 
has caused 704 million people to become ill and more than 
7 million deaths since its emergence in December 2019 (2). 
The SARS-CoV-2 genome, which is 29.9 kb in size, consists of 
two overlapping open reading frames (ORF1ab and ORF1a), 
four structural proteins (spike, envelope, nucleocapsid and 
membrane) and six accessory proteins (ORF3a, ORF6, ORF7a, 
ORF7b, ORF8 and consists of ORF10) (3). The twelve open 
reading frames (ORFs) encoded by the RNA genome of SARS-
CoV-2 regulate the viral cycle. Non-structural protein (nsp) – 13 
is one of sixteen non-structural proteins encoded by ORF1ab. 
nsp13 is a non-structural protein belonging to helicase 
superfamily 1B. SARS-CoV-2 helicase (nsp13) catalyzes a 5’–3’ 

direction unwinding process in the presence of nucleotide 
three phosphate to transform duplex oligonucleotides 
(RNA or DNA) into single strands (4,5). Helicases perform 
numerous biological functions like as transcription, 
mRNA splicing, mRNA export, RNA stability, translation, 
mitochondrial gene expression, and nucleic acid packaging 
into virions. The SARS-CoV-2 helicase plays a vital role in the 
replication of the viral genome and the maintenance of the 
viral life cycle. Therefore, inhibition of the helicase of SARS-
CoV-2 is one of the main targets of anti-viral drug studies (6–
8). The genomes of RNA viruses face a high risk of mutation 
with each replication cycle (9). Thousands of mutations have 
been seen in the SARS-CoV-2 genome since the disease was 
first detected (10). These mutations resulted in significant 
changes in the clinical manifestations of the disease. For the 
SARS-CoV-2 genome, some of these mutations aggravated 
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clinical findings, increased human-to-human transmission, 
and mortality rates, while others caused a decrease in the 
severity of the disease (11,12). Mutations also pose a threat 
to the validity of therapeutics due to changes in protein 
structure (13,14). Modeling alterations caused by mutations 
in the viral proteome contributes to the development of 
effective antivirals.

A thorough understanding of the functional roles and 
responses of viral genomes is necessary for success in 
controlling viral epidemics, which occur every eight years. In 
this study, the changes in protein structure caused by helicase 
mutations seen in European isolates of SARS-CoV-2 were 
investigated with the aim of contributing to the development 
of valid therapeutics.

2. METHODS

2.1. Study group, genome and proteome data

The mutation data for 1,616 European isolates were 
obtained from the NCBI Virus database (15). NC_045512.2 
and YP_009725308.1 sequences were taken as reference 
for the SARS-CoV-2 virus nsp13 protein. The sequence data 
was aligned with the MAFFT (v7.511) multiple sequence 
alignment program L-INS-i algorithm (16). The scoring 
matrix BLOSUM 80, and 1 PAM was chosen for the amino 
acid sequences, and nucleotide, respectively (17,18). The 
gap opening penalty was used as 2.0. The mutated residues 
were analysed MegaXI (19). The detected mutant residue 
information was processed using MegaXI and the mutant 
nsp13 protein sequence was compiled.

2.2. Protein modelling and quality assessment

The changes caused by the mutations detected in the 
helicase protein structure were modeled using deep learning 
algorithms (20). 7NIO was used as a template in protein 
modelling (21). The quality evaluation of the created mutant 
protein models was made with QMEAN and MolProbity 
(22,23). The changes in mutant protein conformation were 
visualized with PyMOL.

2.3. Protein stability analyses

The changes in helicase protein stability and atomic 
interaction caused by nsp13 mutations of SARS-CoV-2 
detected in European isolates were analysed with SDM2, 
mCSM, DUET, and DynaMut2 tools.

3. RESULTS

The mutation analysis revealed four (Pro77Leu, Gly170Ser, 
Tyr324Cys, and Arg392Cys) missense mutations in the nsp13 
protein in European isolates of SARS-CoV-2 (Figure 1). Mutant 
sequence data were modeled on reference sequence (Figure 2).

Figure 1. Aligned sequence representation of the nsp13 protein of 
SARS-CoV-2 in European isolates

Figure 2. Aligned representation of wild and mutant nsp13 proteins.

The obtained mutant protein sequence data were modelled 
with the Robetta tool using deep learning algorithms. The 
quality of the mutant protein models created was highly 
reliable and within acceptable limits (Figure 3). Z-score was 
in the .55 ± .34 – .13 ± .32 range. Model confidence values 
were .88. Mutations caused changes in nsp13 protein 
conformation and topological structure. The rmsd value at 
superimpose was .294 Å (Figure 4). The Pro77Leu mutation 
in the nsp13 protein of SARS-CoV-2 caused a decrease in 
protein stability (-.58≤ ΔΔG≤.003 kcal.mol-1). A change in the 
nsp13 tertiary structure atomic interaction was observed 
after the Pro77Leu mutation in the nsp13 protein of the 
SARS-CoV-2 European isolates. The tertiary structure stability 
provided by proline with one polar, one hydrogen bond, and 
two hydrophobic interactions at the 77th position in the wild 
type was provided with one polar and four hydrophobic 
interactions after the mutation (Figure 5).
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Figure 3. Cartoon illustration of the nsp13 mutations detected in 
European isolates of SARS-CoV-2 on the protein tertiary structure.

Figure 4. Superimposed illustration of the nsp13 protein of SARS-
CoV-2 (blue color indicates wild type nsp13, orange color indicates 
mutant type nsp13). a) Superimposed cartoon illustration of the 
nsp13 protein of SARS-CoV-2, b) Superimposed of the nsp13 protein 
of SARS-CoV-2.

Figure 5. Illustration of the change in the atomic interaction of 
residue 77 in the P77L mutation of nsp13 detected in European 
isolates of SARS-CoV-2. a) wild type nsp13, b) mutant type 
nsp13 (indicates that green dots-hydophobic, orange dots-polar 
interaction, red dots-hydrogen bond)

The Gly170Ser mutation in the nsp13 protein of SARS-
CoV-2 caused a decrease in protein stability (-4.37 ≤ ΔΔG 
≤ - .75 kcal.mol-1). A change in the tertiary structure atomic 
interaction was observed after the nsp13 protein Gly170Ser 
mutation in European isolates of SARS-CoV-2. While Glycine 
at the 170th position in the wild type ensured the stability 
of the tertiary structure with one polar interaction, it did 
not form an interaction with the surrounding residues after 
mutation.

The Tyr324Cys mutation in the nsp13 protein of SARS-CoV-2 
caused a decrease in protein stability (-1.581 ≤ ΔΔG ≤ - .46 kcal.
mol-1). A change in the tertiary structure atomic interaction 
was observed after the Tyr324Cys mutation detected in the 
nsp13 protein in European isolates of SARS-CoV-2. The tertiary 
structure stability provided by Tyrosine at the 324th in the wild 
type with five polar, twelve hydrophobic, and one Van der 
Waals interaction was reduced to three polar, four hydrophobic 
interactions after mutation (Figure 6).

Figure 6. Illustration of the change in the atomic interaction of 
residue 324 in the Y324C mutation of nsp13 detected in European 
isolates of SARS-CoV-2. a) wild type nsp13, b) mutant type 
nsp13 (indicates that green dots-hydophobic, orange dots-polar 
interaction, red dots-hydrogen bond)

The Arg392Cys mutation in the nsp13 protein of SARS-CoV-2 
caused a decrease in protein stability (-.496 ≤ ΔΔG ≤ .85 kcal.
mol-1). A change in the tertiary structure atomic interaction 
was observed after the nsp13 protein Arg392Cys mutation 
in European isolates of SARS-CoV-2. The tertiary structure 
stability provided by arginine with four polar interactions 
and one hydrogen bond at the 392th position in the wild 
type was reduced to four polar interactions after mutation 
(Figure 7).
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Figure 7. Illustration of the change in the atomic interaction of 
residue 392 in the R392C mutation of nsp13 detected in European 
isolates of SARS-CoV-2. a) wild type nsp13, b) mutant type 
nsp13 (indicates that green dots-hydophobic, orange dots-polar 
interaction, red dots-hydrogen bond)

4. DISCUSSION

The study revealed that mutations seen in European isolates 
of SARS-CoV-2 nsp13, an important antiviral target, caused 
changes in protein stability. The functional roles of proteins 
are formed by the dynamic movement and stability of their 
molecules (24,25). Mutations in the primary sequences of 
proteins can alter tertiary structure, stability and function 
(26,27).

Regional-based evaluation of mutations, especially in viral 
epidemics, is important in terms of the behavior of the 
virus in the cellular invasion process, the progression of the 
epidemic, and determination of treatment options (28). 
SARS-CoV-2 has undergone thousands of mutations since the 
beginning of the epidemic, resulting in significant changes in 
its genome and protein structure (29–31).

Many of these changes have emerged as viral properties such 
as increased affinity for the angiotensin-converting enzyme-2 
receptor and faster host transmission (32–34). The increase 
of virus in the host cell is associated with increased replication 
cycle and helicase activity. The opposite is also possible. Viral 
proteome rearrangements caused by mutations in the virus 
can increase or decrease the virulence effect (35).

The interaction of active protein molecules and the target 
nucleic acid sequence in the activation and regulation of 
replication, transcription, and translation processes occurs 
with the contribution of special structural motifs such as zinc 
fingers (36,37). Zinc finger domain mutations cause changes 
in target nucleic acid/protein and protein/protein interactions 
(38–40). Our findings showed that the Pro77Leu mutation in 
the zinc finger region located at the N-terminus of SARS-CoV-2 
nsp13 caused a decrease in protein stability (ΔΔGPro77Leu range 
from -.58 to +.003 kcal.mol-1) and a change in its conformation. 

Considering the functional roles of zinc finger structural motifs, 
these changes in protein stability are likely to lead to significant 
changes in the functional properties of the helicase (41,42). 
Akbulut, in his in-slico study analysing the mutations seen 
in Chinese isolates, showed that mutations in the zinc finger 
structural motif located in the N-terminal region caused changes 
in protein structure and stability, and these changes resulted in a 
decrease in protein-nucleic acid affinity (35).

The mutations, Tyr324Cys and Arg392Cys, detected in the 1A 
domain of nsp13 of SARS-CoV-2 indicate a decrease in protein 
stability. Domains 1A and 2A of nsp13 of SARS-CoV-2 contain 
the Rossman fold, one of the common structural motifs in 
nucleotide binding regions. It is thought that the changes in 
stability caused by the two mutations in the 1A domain, where 
this structural motif, which stands out with its substrate binding 
properties, is located, may also trigger changes in the activity 
of the helicase. Grimes et al. in their study, they revealed that 
the Ala336Val mutation in the 1A domain preserved the ability 
of the SARS-CoV-2 helicase to associate with core replication 
proteins nsp 7, 8 and 12, but caused impairment in helicase 
unwinding and ATPase activity (43).

5. CONCLUSION

The study data revealed that four missense mutations 
detected in the helicase protein in European isolates of SARS-
CoV-2 caused a decrease in protein stability. The mutations 
and resulting changes are not only a threat to the functional 
roles of viral proteins but are also important for the validity 
of existing therapeutics. Topological and stability changes 
in targeted therapeutic binding sites are important for the 
validity of developed therapeutics. The changes resulting 
from these mutations may increase or, conversely, reduce the 
effectiveness of inhibitors. The mutations seen in European 
isolates for nsp13 of SARS-CoV-2 may lead to the emergence 
of different phenotypes in terms of viral activity. For this 
reason, the study may contribute to the success of the fight 
against the virus with different treatment approaches in 
different geographical regions.
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