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Existence of delays and cost overruns frequently puts the project viability in 

jeopardy. The integrated nature of these threats brings forward project scheduling as 

the primary determinant of project management success. The quality of project 

scheduling depends highly on the way resources are assigned to activities. In the 

project management literature, the efficiency of resource allocation is examined 

closely by the phenomenon called project crashing. This study introduces traditional 

and genetic algorithm approaches for the project crashing events and explains their 

steps in achieving the most efficient resource allocation. Within this context, the 

project crashing event is visualized, the insights of alternative approaches are 

described, and their implementations are illustrated with a case study. Besides, the 

procedures required for adopting the genetic algorithm approach to a typical problem 

are expressed. The case study illustration reveals the advantages and disadvantages 

of the genetic algorithm approach over the traditional approach. It is observed that 

the genetic algorithm approach can reach the solution in a single phase while the 

traditional approach requires multiple phases. On the other hand, the genetic 

algorithm approach may not reach the optimum solution unless the toolbox options 

are appropriately selected. This study presents the contribution of operational 

research to the project management body of knowledge by demonstrating the 

applicability and efficiency of genetic algorithm in the project crashing events. 

Researchers and industry practitioners may benefit from the proposed approach by 

following the indicated procedures to incorporate genetic algorithm into optimization 

issues in different fields. 

 

 
1. Introduction 

 

The subject of project management has attracted 

the attention of practitioners and researchers 

from different disciplines such as management 

science, organization theory, operations 

management, and social psychology [1]. Even 

though many factors have been defined for the 

successful delivery of projects [2], it is an 

undeniable fact that many projects fail to perform 

as intended and experience delays and cost 

overruns [3, 4], which may put project viability 

at risk [5]. The integrated nature of delays and 

cost overruns implies that these two phenomena 

should be studied together [6]. Poor scheduling, 

therefore, has been frequently specified as the 

main reason behind the project management 

failures [7]. 

 

Management of large-scale projects necessitates 

coordination of many activities with different 

costs and durations [8]. Achievement of project 

success requires organizations to efficiently 

assign resources to these activities. The project 

scheduling optimization has a wide range of 

applications in the fields of construction, 
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production planning, and manufacturing [9]. The 

issue lies at the heart of project management and 

has attracted great attention in academia [10]. 

Many researchers have attempted to find 

solutions to the issue since 1960s. The solutions 

have focused on creating a project schedule to 

minimize the project cost and duration [11]. 

 

Project crashing is a schedule compression 

technique that aims to minimize the total cost of 

the project. The technique is based on analyzing 

the cost and duration trade-offs to obtain the 

greatest compression in project schedule for the 

least incremental cost. The project duration is 

reduced by shortening the critical path, which 

corresponds to the longest sequence of activities. 

Even though shortening the critical path requires 

greater resource allocation to certain activities on 

the critical path (implying an increase in activity 

costs), reduction in the project duration can 

provide savings in penalty associated with the 

project delay. As long as the savings obtained 

outweigh the increase in activity costs, such an 

attempt helps the project managers decrease the 

total cost of the project. 

 

Project crashing has been traditionally carried 

out with a multi-phase schedule compression 

method. In recent years, development of 

metaheuristic algorithms like the genetic 

algorithm has enabled researchers to identify the 

optimized solutions for such complicated issues. 

Several researchers have utilized metaheuristic 

algorithms to overcome the challenges 

encountered in such events [12]. This study 

makes a comparison between the traditional 

solution and genetic algorithm approach for the 

project crashing events. In this regard, the project 

crashing event is visualized; the project crashing 

concept is introduced; and a typical problem is 

represented in a table format. The steps followed 

by the traditional approach are presented and the 

procedures necessary to adopt the genetic 

algorithm approach are clarified. Implementation 

of these alternative approaches on a typical 

problem is illustrated with a case study. The 

advantages and disadvantages of genetic 

algorithm adoption over the traditional solution 

are observed. 

 

The paper is organized as follows: Section 2 

describes the genetic algorithm concept and 

summarizes the fields genetic algorithm have 

been used for. Section 3 explains the 

methodology; visualization of the project 

crashing event, description of the alternative 

approaches, and illustration with a case study. 

The steps followed by the traditional solution and 

genetic algorithm approach are explained, and 

advantages/disadvantages are discussed in 

Section 4. Finally, Section 5 presents the 

conclusion; summary of the results, contribution 

to the body of knowledge, and limitations of the 

study. 

 

2. Research Background 

 

2.1. The genetic algorithm concepts 

 

Genetic algorithm is a well-known population-

based metaheuristic algorithm inspired from the 

biological evolution process [13]. The algorithm 

was proposed by John Holland in 1970s and is 

based on the Darwinian theory of the survival of 

the fittest [14]. The optimization process of 

genetic algorithm is illustrated in Figure 1. The 

process starts with randomly generating an initial 

population. A certain number of individuals are 

created, where each individual represents a 

solution the problem [15]. A fitness function is 

used to evaluate the fitness of each individual 

[16]. The fitness value indicates the likelihood of 

each individual to survive and reproduce in the 

new population [17]. 

 

Generation of the initial population is followed 

by evolution toward better solutions by means of 

genetic operators: selection, cross-over, and 

mutation [18]. The selection operator chooses the 

fitter individuals in the current population as 

parents to give birth to individuals in the new 

population [19]. The cross-over operator takes 

the chosen individuals and generates the new 

individuals by crossing the genes between pairs 

of parents [20]. The mutation operator changes 

the genes in the new population to increase the 

diversity [21]. It helps the algorithm exploit all 

the search space [22]. In short, the cross-over 

operator provides better future generations, while 

the mutation operator prevents the algorithm 

from getting stuck at local optima [23]. 

 

Generation of the new population by subjecting 

the current population to the genetic operators is 
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an iterative process. The iteration is repeated 

until the number of iterations equals to a 

predefined value for maximum generations, 

which implies that the termination criterion is 

met [24]. Satisfaction of the criterion results in 

termination of the algorithm [25]. The best-so-far 

solution, the individual with the most satisfactory 

fitness value, is regarded as the optimal solution. 

The results obtained for the optimal solution are 

displayed.

 

 
Figure 1. Genetic algorithm optimization process 

 

2.2. Utilization of genetic algorithms for 

optimization 

 

The metaheuristic algorithms, especially the 

genetic algorithms, have been utilized for various 

optimization purposes such as construction 

material design, energy efficiency in buildings, 

project layout planning, and project scheduling. 

A group of studies have attempted to optimize 

the design of construction elements. Genetic 

algorithms have been developed to optimize the 

design of multi-story composite steel frames 

[26], to minimize the construction cost of mass 

concrete [27], to produce asphalt mixtures 

complying with applicable specification 

requirements [28], to predict the adhesion 

strength [29], to mitigate the risk of early-age 

thermal cracking and delayed ettringite 

formation in mass concrete [30], to identify 

optimum parameter settings for aluminum-based 

hybrid metal matrix composite material [31]. 

Other metaheuristics-based algorithms have also 

been proposed for the design of cantilever 

retaining walls [32] and cantilever beams [33]. 

 

Another group of studies have used genetic 

algorithm to improve the energy efficiency in 

buildings. Several researchers have aimed at 

improving the energy efficiency through 

developing building retrofitting strategies [34]. 

Retrofitting has been done for school buildings 

[35], green building compliance [36], and 

residential buildings within a budget constraint 

[37]. Energy efficiency has been enhanced in 

another group of study with a focus on the 

heating energy consumption. The researchers 

have either developed algorithms to forecast the 

heating loads [38] or determined the optimum 

thermal design [39]. 

 

Several researchers have conducted studies for 

the optimization of project layout planning and 

logistics network design with the use of 

metaheuristic algorithms. Elements of the 

industrial production systems have been arranged 

in a number of studies as a part of the business 

operation strategy [40]. Multi-objective particle 

swarm optimization algorithm was proposed to 

minimize the construction safety risks of cranes 

and the total travelling distance of resources [41].  



Sakarya University Journal of Science, 28(5) 2024, 959-977 

962 
 

Non-dominated sorting genetic algorithm 

(NSGA) II was adapted to find the optimum 

location of facilities and transport network 

design to obtain sustainable supply-chain-

network [42]. The link capacities and 

environmental protection were expressed as the 

problem constraints. A genetic algorithm-based 

model was proposed to solve the bus terminal 

location problem through finding efficient 

allocation patterns for assigning stations 

terminals [43]. The path planning in an unknown 

or partially known environment was resolved 

with artificial bee colony algorithm and 

evolutionary programming [44]. 

 

Project/program scheduling has been another 

application field of genetic algorithms. 

Algorithms have been used by several 

researchers for resource constraint optimization 

problems in construction [45, 46]. A genetic 

algorithm using a two-point crossover operator 

was proposed to a resource-constrained project 

scheduling problem with sequence dependent 

transfer times and the proposed algorithm could 

efficiently solve these problems [47]. A novel 

genetic algorithm incorporating complicated 

activity-dependencies for the resource leveling 

problem was developed by Li et al. [48]. The 

model could achieve near optimal solutions in 

fractions of a second. A NSGA-III-based 

algorithm was produced for a bi-objective 

hierarchical resource-constrained program 

scheduling problem [49]. The computational 

simulations confirmed the satisfactory 

performance of the model. In another study, a 

construction schedule was automatically 

generated by extracting data from a building 

information modeling product [50]. Behera and 

Sobhanayak [51] utilized genetic algorithm to 

optimize task scheduling in heterogeneous cloud 

computing environments.  

 

Previous studies using the genetic algorithm 

concept for addressing certain optimization 

issues have mainly attempted to come up with 

solutions to these specific issues and have not 

clarified the steps that should be followed for 

repetition of the study in different fields. The 

literature obviously lacks an informative and 

explanatory study that visualizes a typical 

mathematical optimization problem and 

expresses the philosophy of utilizing the genetic 

algorithm to solve it. The procedures necessary 

for genetic algorithm adaptation need to be 

described so that the approach can also be 

adjusted for optimization issues in other fields 

and the use of genetic algorithm can be 

popularized. 

 

This study aims to fill the gap in the literature by 

providing a detailed description for the use of 

genetic algorithm in project crashing events and 

demonstrating its advantages and disadvantages 

over the traditional solution through an 

illustrative case study. This study goes beyond 

optimization of a specific project scheduling 

issue and explains the philosophy behind 

integration of genetic algorithms into the project 

crashing events for the purpose of cost 

minimization. It clarifies the steps to be followed 

for proper integration of genetic algorithms into 

optimization problems. 

 

3. Research Methodology 

 

The flowchart of methodology is presented in 

Figure 2. It is composed of three main phases, 

namely (i) visualization of project crashing, (ii) 

description of alternative approaches, and (iii) 

case study illustration.  

 

In the first phase, the project crashing event is 

introduced and visually represented. 

Categorization of the project cost is clarified, the 

project crashing concept is explained, and a 

typical problem is represented. The second phase 

presents the philosophy behind the traditional 

and proposed genetic algorithm approaches. It 

elaborates on the steps followed by the traditional 

and proposed genetic algorithm approaches to 

optimize resource allocation with the project 

crashing. The iterative process of the traditional 

approach is introduced and the requirements for 

adopting the genetic algorithm are expressed. 

The third phase involves implementation of the 

steps followed by these approaches on a case 

study. 
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Figure 2. Flowchart of the methodology 

 

3.1. Visualizing the project crashing events 

 

The project cost is categorized into two different 

costs, namely the direct and indirect costs. The 

direct costs represent the costs directly 

attributable to the product. These may include the 

cost of raw materials, labor, and equipment costs. 

In project crashing events, the individual cost of 

each activity is evaluated under this category. In 

other words, the sum of the activity costs equals 

the direct costs. The indirect costs extend beyond 

the expenses realized in creating the product. 

General administration, supplies, and building 

rental costs can be given as the examples of 

indirect costs. Indirect costs are assumed to be 

linearly related to the project duration in the 

project crashing events. 

 

Project crashing is a technique used to speed up 

the timeline of a project by providing more 

resources to certain activities in the critical path. 

More resources can be provided to the activities 

by assigning additional personnel or paying a 

premium. Shortening the project duration 

through allocating greater resources increases the 

direct cost. However, the indirect cost is 

decreased as it is directly associated with the 

duration of the project. Project crashing aims to 

shorten the project while keeping the project cost 

at a minimum. Determining the minimum project 

cost via the project crashing technique can be 

achieved through the traditional approach or the 

proposed genetic algorithm approach. These 

approaches follow different steps to calculate the 

optimum duration and cost of the project. 

A typical project crashing problem is represented 

in Table 1. The first two columns show the list of 

activities and the relations between them. The 

third column indicates the normal duration (the 

duration when no crashing occurs) of each 

activity. The crushed duration stands for the 

duration of each activity after all the possible 

crashes are applied. Thus, the difference between 

the normal and crashed duration implies the 

number of crashes applicable to the 

corresponding activity.  

 

To illustrate, if the difference is equal to two, the 

activity cannot be crashed more than two times 

(the duration cannot be decreased by more than 

two days). The remaining columns are the 

normal costs and the cost of each crash. The 

direct cost of the project is equal to the sum of 

the normal costs and costs of the crashes realized. 

The indirect cost is obtained by multiplying the 

overhead cost by the project duration determined 

by the critical path method (CPM). 

 

3.2. Alternative approaches for project 

crashing 

 

The steps followed by the two alternative 

approaches to minimize cost with project 

crashing are presented in Figure 3. In the 

traditional approach, it is firstly assumed that all 

the activities are realized in their normal 

durations/costs and the project duration/cost is 

calculated accordingly. CPM is used to calculate 

the project duration and identify the critical
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Table 1. Representation of a typical project crashing problem 

Activity Predecessor 

Normal 

Duration 

(days) 

Crashed 

Duration 

(days) 

Normal 

Cost  

($) 

Cost of Crashes ($) 

1st Crash 2nd Crash 3rd Crash 

A … … … … … … … 

B … … … … … … … 

C … … … … … … … 

D … … … … … … … 

…
…

. 

…
…

. 

…
…

. 

…
…

. 

…
…

. 

…
…

. 

…
…

. 

…
…

. 

*Overhead cost: … $/day 

 

path(s). Acquisition of saving in indirect costs 

requires the project duration to be decreased by 

one unit. Therefore, the cheapest combination of 

activities is determined such that crushing these 

activities can satisfy the specified condition. 

 

Shortening the project duration by one unit 

requires crashing all the critical paths. It is also 

necessary to explain the difference between 

crashing an activity and crashing a critical path. 

While the former implies decreasing the duration 

of the activity by one unit, the latter means 

crashing at least one of the activities in the 

corresponding path. The cost of crashing the 

selected activities is compared with the saving 

obtained from indirect costs. If the saving 

exceeds the cost of crashing; the selected 

activities are crashed, the new project duration 

and cost are calculated, and the process is 

repeated. Otherwise, the current project duration 

and cost are regarded as the optimum. 

 

The proposed genetic algorithm approach 

follows totally different steps. Implementation of 

the proposed genetic algorithm approach requires 

transformation of the problem (Table 2). The 

duration/cost alternatives are presented for each 

activity rather than expressing the costs of 

crashes. Such a transformation is required for the 

formulations to be described in the following 

steps. A decision variable is defined for each 

activity as the number of times the corresponding 

activity is crashed. Afterwards, the duration and 

cost of each activity is expressed as a function of 

the decision variable. The number of times each 

activity can be crashed becomes the constraints 

for the decision variables. The objective function 

is defined as the minimization of the project cost. 

The project cost is formulated such that it 

becomes a function of the decision variables. 

 

3.3. Case study illustration 

 

The steps followed by two different approaches 

for the project crashing events are illustrated in a 

case study. A typical project crashing problem is 

presented in Table 3. The problem includes a 

total of 12 activities. The relations between the 

activities are given in the second column. A 

finish-to-start relationship exists between them. 

The normal and crashed duration of each activity 

are shown in the third and fourth columns. 

 

For activity 1, the normal and crashed durations 

are 8 and 5 days, respectively. It is implied that 

the activity has the potential to be crashed for 

three days (8 days – 5 days). The fifth column 

shows the cost of the activity when it is 

completed in its normal duration. The last three 

columns show the cost of crashes. It is realized 

that the cost of crashing increases in each 

additional crash. 

 

3.3.1. The traditional approach 

 

The first step in the traditional approach is to 

calculate the project cost based on the normal 

durations and costs of activities. As already 

mentioned, the project cost is composed of the 

direct and indirect costs. The direct cost is 

calculated by summing up the costs stated in the 

fifth column of Table 3, which is determined as  
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Figure 3. Steps followed by alternative approaches for project crashing events 

 

Table 2. Representation of the transformed version of the problem 

Activity Predecessor 

Normal 

Duration / Cost 

(days / $) 

1st crash 

Duration / Cost 

(days / $) 

2nd crash 

Duration / Cost 

(days / $) 

3rd crash 

Duration / Cost 

(days / $) 

A … … / … … / … … / … … / … 

B … … / … … / … … / … … / … 

C … … / … … / … … / … … / … 

D … … / … … / … … / … … / … 

…
…

. 

…
…

. 

…
…

. 

…
…

. 

…
…

. 

…
…

. 

*Overhead cost: … $/day 

 

$23750. The indirect cost is calculated by 

multiplying the overhead cost by the project 

duration determined according to the CPM 

(Figure 4). The project duration and cost are 

identified as 21 days and $25850 (direct and 

indirect costs), respectively. The critical path is 

Activity 3 - Activity 6 - Activity 9 - Activity 10. 

The situation before crashing is summarized as: 

 

• Duration: 21 days 

• Cost: 23750 + 21 * 100 = $25850 

• Critical path(s): 

o Act. 3 – Act. 6 – Act. 9 – Act. 10 

 

Completing the project one day earlier provides 

a $100 saving in indirect cost. Reducing the 

project duration by one day requires all the 

critical paths to be crashed. Therefore, the 

cheapest combination of activities crashing all 

the critical paths is determined and compared 

with the saving in indirect cost. It is noticed that 

crashing Activity 9 by 1 day is cheapest way to 

crash the identified critical path and it is less than 

the saving realized ($20 vs $100). 

 

The activity is crashed, the resultant project 

duration and cost are calculated, and the new 

critical paths are determined (Figure 5). The 

situation after the first crash is summarized as: 

 

• 1st crash: Crash Activity 9 by 1 day 

• Resultant duration: 20 days 

• Resultant cost: 2585 + 20 – 100 = $25770 

• Resultant critical path(s): 

o Act. 3 – Act. 6 – Act. 9 – Act. 10 

o Act. 1 – Act. 4 – Act. 8 

 

Two critical paths are identified at the end of the 

first crash. The cheapest combination of the 

activities that can crash these critical paths are 

determined as Activity 1 and Activity 3.  



Sakarya University Journal of Science, 28(5) 2024, 959-977 

966 
 

Table 3. Information about the activity costs/durations 

Activity Predecessor 

Normal 

Duration 

(days) 

Crashed 

Duration 

(days) 

Normal 

Cost  

($) 

Cost of Crashes ($) 

1st Crash 2nd Crash 3rd Crash 

1 - 8 5 2500 20 25 35 

2 - 6 4 1200 30 45 - 

3 - 7 5 1450 30 35 - 

4 1, 2, 3 6 4 1350 30 30 - 

5 1, 2, 3 4 2 1250 20 30 - 

6 2, 3 5 3 2300 40 55 - 

7 3 4 2 2000 40 45 - 

8 4, 5 6 5 2750 40 - - 

9 6, 7 5 2 1800 20 35 50 

10 4, 5, 9 4 2 850 45 55 - 

11 7 8 5 3800 50 50 50 

12 3 10 7 2500 15 20 25 

*Overhead cost: … $/day 

 

Crashing these activities costs $50 ($20+$30), 

which is less than the additional saving to be 

realized. These activities are crashed and project 

duration is decreased by one day (Figure 6). The 

situation after the second crash is summarized as: 

 

• 2nd crash: Crash Activity 1 and Activity 3 

by 1 day 

• Resultant duration: 19 days 

• Resultant cost: 25770 + 20 + 30 – 100 = 

$25720 

• Resultant critical path(s): 

o Act. 3 – Act. 6 – Act. 9 – Act. 10 

o Act. 1 – Act. 4 – Act. 8 

o Act. 2 – Act. 6 – Act. 9 – Act. 10 

 

Realization of the second crash leads to an 

additional critical path. The number of critical 

paths is increased to three. The cheapest 

combination to crash these paths is determined as 

Activity 1 and Activity 9. It should be noted that 

Activity 1 and Activity 9 are already crashed for 

one day in the second and first crashes, 

respectively. Thus, the cost of crashing becomes 

$25 for Activity 1 and $35 for Activity 9. It is 

realized that these three critical paths can be 

crashed simultaneously by crashing two 

activities because Activity 9 is the mutual 

activity in the first and third critical paths. As the 

cost of crashing ($25+$35) is less than the 

additional saving, the activities are crashed 

(Figure 7). The situation after the third crash is: 

• 3rd crash: crash Activity 1 and Activity 9 

by 1 day 

• Resultant duration: 18 days 

• Resultant cost: 25720 + 25 + 35 – 100 = 

$25680 

• Resultant critical path(s): 

o Act. 3 – Act. 6 – Act. 9 – Act. 10 

o Act. 1 – Act. 4 – Act. 8 

o Act. 2 – Act. 6 – Act. 9 – Act. 10 

o Act. 3 – Act. 4 – Act. 8 

o Act. 3 – Act. 7 – Act. 11 

 

Two additional critical paths occur after the third 

crash, resulting in a total of five critical paths. 

The cheapest way to crash these critical paths is 

to crash Activity 2, Activity 3, and Activity 4. 

Activity 3 is already crashed for one day in the 

second crash, so the crashing cost becomes $35 

for Activity 3. The cost of crashing 

($30+$35+$30) is still less than the potential 

saving in indirect costs. Thus, the fourth crash is 

also realized (Figure 8). The situation after the 

fourth crash is summarized as: 

 

• 4th crash: crash Activity 2, Activity 3, and 

Activity 4 by 1 day 

• Resultant duration: 17 days 

• Resultant cost: 25680 + 30 + 35 + 30 – 

100 = $25675 

• Resultant critical path(s): 

o Act. 3 – Act. 6 – Act. 9 – Act. 10 
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Figure 4. CPM analysis before crashing 

 

 
Figure 5. CPM analysis after 1st crash 

 

 
Figure 6. CPM analysis after 2nd crash 

 

o Act. 1 – Act. 4 – Act. 8 

o Act. 2 – Act. 6 – Act. 9 – Act. 10 

o Act. 3 – Act. 7 – Act. 11 

 

Four critical paths are identified after the fourth 

crash. The cheapest way to decrease project 

duration by one day is to crash Activity 4, 

Activity 6, and Activity 7. The cost of crashing 
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($30+$40+$40) exceeds the potential saving in 

indirect costs. It implies that crashing these 

activities results in an increase in total project 

cost. Therefore, the process is terminated and the 

current situation is described as the optimum. 

The optimum project duration and project cost 

are obtained as 17 days and $25675. The 

optimum situation is achieved by crashing 

Activity 1 by 2 days, Activity 2 by 1 day, Activity 

3 by 2 days, Activity 4 by 1 day, and Activity 9 

by 2 days. The other activities are realized in their 

normal durations and costs. 

 

3.3.2. The genetic algorithm approach 

 

The proposed genetic algorithm approach 

follows entirely different steps to optimize 

project crashing events. Adaptation of the genetic 

algorithm approach principally requires 

transformation of the problem. After the original 

problem is transformed, necessary coding is done 

in a programming platform that supports the 

genetic algorithm optimization. MATLAB has 

been preferred as a commercial programming 

platform. Definition of the decision variables, 

formulation of the durations/costs, statement of 

the constraints, and the expression of the 

objective function are explained to demonstrate 

the use of the genetic algorithm concept for the 

optimization of project crashing events. 

 

Transforming the problem 

 

A typical project crashing problem is most of the 

time presented as shown in Table 3. The normal 

duration/cost of each activity is given and costs 

of the crashes are indicated if available. The 

genetic algorithm approach requires a clear 

presentation of the alternatives for each activity. 

The cost and duration of an activity after each 

crash should be presented as a package. In this 

context, the presentation of the problem is 

transformed (Table 4). The alternatives for each 

activity are clearly observed in the transformed 

version. The number of alternatives for the 

activities ranges between two and four. 

Multiplication of the number of alternatives 

results in more than one million solutions. To be 

more precise, the genetic algorithm is expected 

to find the optimal solution among 1,119,744 

solutions. 

 

Defining the decision variables 

 

The way the decision variables are defined is one 

of the most critical part of the genetic algorithm 

approach. The decision variable should be 

defined such that all the other variables and the 

objective function can be expressed as a function 

of the decision variable. For this purpose, the 

decision variable is defined as: 

 
𝑥𝑖  =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 𝑖𝑠 𝑐𝑟𝑎𝑠ℎ𝑒𝑑 
𝑥𝑖 𝜖 ℤ

𝑛 
 

The decision variable is an integer that shows the 

number of times the corresponding activity is 

crashed. Thus, with this approach, the project 

crashing problem is transformed into a selection 

of how many times each activity should be 

crashed. The other variables that are to be 

expressed as a function of the decision variables 

are defined as follows: 

 
𝑑𝑖  =  𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 
𝑐𝑖  =  𝐶𝑜𝑠𝑡 𝑜𝑓 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 
𝐸𝑆𝑖  =  𝐸𝑎𝑟𝑙𝑦 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 
𝐸𝐹𝑖  =  𝐸𝑎𝑟𝑙𝑦 𝑓𝑖𝑛𝑖𝑠ℎ 𝑡𝑖𝑚𝑒 𝑜𝑓 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 
 

Formulating the durations/costs 

 

It is already mentioned that the other variables 

and the objective function must be expressed as 

a function of the decision variables. The duration 

and cost of each activity are formulated as 

follows: 

 
𝑑1 𝑎𝑛𝑑 𝑐1

=

{
 

 
𝑑1 = 8 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐1 = $2500, 𝑓𝑜𝑟 𝑥1 = 0

𝑑1 = 7 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐1 = $2520, 𝑓𝑜𝑟 𝑥1 = 1

𝑑1 = 6 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐1 = $2545, 𝑓𝑜𝑟 𝑥1 = 2

𝑑1 = 5 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐1 = $2580, 𝑓𝑜𝑟 𝑥1 = 3

 

 

𝑑2 𝑎𝑛𝑑 𝑐2

= {

𝑑2 = 6 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐2 = $1200, 𝑓𝑜𝑟 𝑥2 = 0

𝑑2 = 5 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐2 = $1230, 𝑓𝑜𝑟 𝑥2 = 1

𝑑2 = 4 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐2 = $1275, 𝑓𝑜𝑟 𝑥2 = 2

 

 
𝑑3 𝑎𝑛𝑑 𝑐3

= {

𝑑3 = 7 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐3 = $1450, 𝑓𝑜𝑟 𝑥3 = 0

𝑑3 = 6 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐3 = $1480, 𝑓𝑜𝑟 𝑥3 = 1

𝑑3 = 5 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐3 = $1515, 𝑓𝑜𝑟 𝑥3 = 2

 

 
𝑑4 𝑎𝑛𝑑 𝑐4

= {

𝑑4 = 6 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐4 = $1350, 𝑓𝑜𝑟 𝑥4 = 0

𝑑4 = 5 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐4 = $1380, 𝑓𝑜𝑟 𝑥4 = 1

𝑑4 = 4 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐4 = $1410, 𝑓𝑜𝑟 𝑥4 = 2
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𝑑5 𝑎𝑛𝑑 𝑐5

= {

𝑑5 = 4 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐5 = $1250, 𝑓𝑜𝑟 𝑥5 = 0

𝑑5 = 3 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐5 = $1270, 𝑓𝑜𝑟 𝑥5 = 1

𝑑5 = 2 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐5 = $1300, 𝑓𝑜𝑟 𝑥5 = 2

 

 
𝑑6 𝑎𝑛𝑑 𝑐6

= {

𝑑6 = 5 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐6 = $2300, 𝑓𝑜𝑟 𝑥6 = 0

𝑑6 = 4 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐6 = $2340, 𝑓𝑜𝑟 𝑥6 = 1

𝑑6 = 3 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐6 = $2395, 𝑓𝑜𝑟 𝑥6 = 2

 

 
𝑑7 𝑎𝑛𝑑 𝑐7

= {

𝑑7 = 4 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐7 = $2000, 𝑓𝑜𝑟 𝑥7 = 0

𝑑7 = 3 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐7 = $2040, 𝑓𝑜𝑟 𝑥7 = 1

𝑑7 = 2 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐7 = $2085, 𝑓𝑜𝑟 𝑥7 = 2

 

 

𝑑8 𝑎𝑛𝑑 𝑐8

= {
𝑑8 = 6 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐8 = $2750, 𝑓𝑜𝑟 𝑥8 = 0

𝑑8 = 5 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐8 = $2790, 𝑓𝑜𝑟 𝑥8 = 1
 

 

𝑑9 𝑎𝑛𝑑 𝑐9

=

{
 

 
𝑑9 = 5 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐9 = $1800, 𝑓𝑜𝑟 𝑥9 = 0

𝑑9 = 4 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐9 = $1820, 𝑓𝑜𝑟 𝑥9 = 1

𝑑9 = 3 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐9 = $1855, 𝑓𝑜𝑟 𝑥9 = 2

𝑑9 = 2 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐9 = $1905, 𝑓𝑜𝑟 𝑥9 = 3

 

 

𝑑10 𝑎𝑛𝑑 𝑐10

= {

𝑑10 = 4 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐10 = $850, 𝑓𝑜𝑟 𝑥10 = 0

𝑑10 = 3 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐10 = $895, 𝑓𝑜𝑟 𝑥10 = 1

𝑑10 = 2 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐10 = $950, 𝑓𝑜𝑟 𝑥10 = 2

 

 

𝑑11 𝑎𝑛𝑑 𝑐11

=

{
 

 
𝑑11 = 8 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐11 = $3800, 𝑓𝑜𝑟 𝑥11 = 0

𝑑11 = 7 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐11 = $3850, 𝑓𝑜𝑟 𝑥11 = 1

𝑑11 = 6 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐11 = $3900, 𝑓𝑜𝑟 𝑥11 = 2

𝑑11 = 5 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐11 = $3950, 𝑓𝑜𝑟 𝑥11 = 3

 

 

𝑑12 𝑎𝑛𝑑 𝑐12

=

{
 

 
𝑑12 = 10 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐12 = $2500, 𝑓𝑜𝑟 𝑥12 = 0

𝑑12 = 9 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐12 = $2515, 𝑓𝑜𝑟 𝑥12 = 1

𝑑12 = 8 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐12 = $2535, 𝑓𝑜𝑟 𝑥12 = 2

𝑑12 = 7 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐12 = $2560, 𝑓𝑜𝑟 𝑥12 = 3

 

 

 
Figure 7. CPM analysis after 3rd crash 

 

Stating the constraints 

 

Another significant part of the optimization 

problems is the statement of the constraints. The 

constraints are the limitations the variables are 

subjected to. The constraints in project crashing 

events are about the number of times an activity 

can be crashed. An activity can be subjected to 

crashing for a minimum of zero times 

(corresponding to normal duration and cost) and 

for a maximum of 1-3 times as follows: 

 

 

0 ≤ 𝑥1 ≤ 3 
0 ≤ 𝑥2 ≤ 2 
0 ≤ 𝑥3 ≤ 2 
0 ≤ 𝑥4 ≤ 2 
0 ≤ 𝑥5 ≤ 2 
0 ≤ 𝑥6 ≤ 2 
0 ≤ 𝑥7 ≤ 2 
0 ≤ 𝑥8 ≤ 1 
0 ≤ 𝑥9 ≤ 3 
0 ≤ 𝑥10 ≤ 2 
0 ≤ 𝑥11 ≤ 3 
0 ≤ 𝑥12 ≤ 3 
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Figure 8. CPM analysis after 4th crash 

 

Table 4. Transformed version of the activity costs/durations 

Activity Predecessor 

Normal  

Duration / Cost 

(days / $) 

1st crash  

Duration / Cost 

(days / $) 

2nd crash  

Duration / Cost 

(days / $) 

3rd crash  

Duration / Cost 

(days / $) 

1 - 8 / 2500 7 / 2520 6 / 2545 5 / 2580 

2 - 6 / 1200 5 / 1230 4 / 1275 - 

3 - 7 / 1450 6 / 1480 5 / 1515 - 

4 1, 2, 3 6 / 1350 5 / 1380 4 / 1410 - 

5 1, 2, 3 4 / 1250 3 / 1270 2 / 1300 - 

6 2, 3 5 / 2300 4 / 2340 3 / 2395 - 

7 3 4 / 2000 3 / 2040 2 / 2085 - 

8 4, 5 6 / 2750 5 / 2790 - - 

9 6, 7 5 / 1800 4 / 1820 3 / 1855 2 / 1905 

10 4, 5, 9 4 / 850 3 / 895 2 / 950 - 

11 7 8 / 3800 7 / 3850 6 / 3900 5 / 3950 

12 3 10 / 2500 9 / 2515 8 / 2535 7 / 2560 

*Overhead cost: 100 $/day

Setting the objective function 

 

The final step of the genetic algorithm approach 

is to define and express the objective function. 

The aim of the project crashing event is to 

minimize the project cost (𝑐𝑃𝑟𝑜𝑗𝑒𝑐𝑡). As already 

mentioned, the project cost is equal to the sum of 

the direct and indirect costs. The direct costs are 

calculated by summing the individual cost of 

each activity (𝑐1 + 𝑐2 + 𝑐3…+ 𝑐12). The indirect 

costs are calculated by multiplying the overhead 

cost (100 $/day) by the project duration (𝑑𝑃𝑟𝑜𝑗𝑒𝑐𝑡). 

The objective function is formulated as follows: 

 
𝑐𝑃𝑟𝑜𝑗𝑒𝑐𝑡 = 𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 + 𝑐5 + 𝑐6 + 𝑐7 + 𝑐8

+ 𝑐9 + 𝑐10 + 𝑐11 + 𝑐12 + 100
∗ 𝑑𝑃𝑟𝑜𝑗𝑒𝑐𝑡 

 

In this equation, the individual cost of each 

activity is a function of the decision variables and 

the overhead cost is 100 $/day. The project 

duration should also be expressed as a function 

of the decision variables. The project duration is 

calculated according to CPM as in the traditional 

approach. However, rather than calculating the 

project duration after each crash, the relations 

between the activities are formulated for once. 

The early start (ES) and early finish (EF) times 

of each activity are expressed as a function of the 

activity durations (𝑑𝑖), which are already stated 

as a function of the decision variables (𝑥𝑖). The 

project duration is equal to the EF of the last 

activity (Finish). The late start (LS) and late 

finish (LF) times of the activities are not 

formulated because there is no need to identify 

the total float (TF) times and the critical path(s) 

in the genetic algorithm approach. In other 

words, calculation of the project duration is 

sufficient. The project duration is formulated as 

follows: 
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𝐸𝑆𝑆𝑡𝑎𝑟𝑡 = 0 

𝐸𝐹𝑆𝑡𝑎𝑟𝑡 = 0 
𝐸𝐹𝑖 = 𝐸𝑆𝑖 + 𝑑𝑖 , 𝑓𝑜𝑟 𝑖 = 1, 2, 3, … , 12 
𝐸𝑆1 = 𝐸𝐹𝑆𝑡𝑎𝑟𝑡 
𝐸𝑆2 = 𝐸𝐹𝑆𝑡𝑎𝑟𝑡 
𝐸𝑆3 = 𝐸𝐹𝑆𝑡𝑎𝑟𝑡 
𝐸𝑆4 = max (𝐸𝐹1, 𝐸𝐹2, 𝐸𝐹3) 
𝐸𝑆5 = max (𝐸𝐹1, 𝐸𝐹2, 𝐸𝐹3) 
𝐸𝑆6 = max (𝐸𝐹2, 𝐸𝐹3) 
𝐸𝑆7 = 𝐸𝐹3 
𝐸𝑆8 = max (𝐸𝐹4, 𝐸𝐹5) 
𝐸𝑆9 = max (𝐸𝐹6, 𝐸𝐹7) 
𝐸𝑆10 = max (𝐸𝐹4, 𝐸𝐹5, 𝐸𝐹9) 
𝐸𝑆11 = 𝐸𝐹7 
𝐸𝑆12 = 𝐸𝐹3 
𝐸𝑆𝐹𝑖𝑛𝑖𝑠ℎ = max (𝐸𝐹8, 𝐸𝐹10, 𝐸𝐹11, 𝐸𝐹12) 
𝐸𝐹𝐹𝑖𝑛𝑖𝑠ℎ = 𝐸𝑆𝐹𝑖𝑛𝑖𝑠ℎ 
𝑑𝑃𝑟𝑜𝑗𝑒𝑐𝑡 = 𝐸𝐹𝐹𝑖𝑛𝑖𝑠ℎ 

4. Research Results and Discussion 
 

The steps indicated for adopting the genetic 

algorithm approach is coded in MATLAB and 

the results are obtained. The genetic algorithm 

toolbox options, which are essential for the 

optimization process are presented in Table 5. It 

should be noted that the options are highly 

dependent on experience and trial and error [52]. 

Arbitrarily estimated options may lead to 

convergence to a local optimum [53]. If the 

population size and maximum generations are 

insufficiently estimated, the algorithm may end 

up with a misleading solution. However, 

overestimation of these toolbox options can lead 

to an inefficient and time-consuming algorithm. 

 

Table 5. Genetic algorithm options 
Option Description Value 

Population size Number of individuals in the population 150 

Selection Selection of individuals for the next generation Stochastic uniform 

Maximum 

generations 
Maximum number of iterations 100 

Elitism 
How many individuals in the current generation are guaranteed to 

survive 
0.12 * 100 

Tolerance 

function 

Whether the average relative change in the best fitness function value 

is less than or equal to Funtool 
10-8 

Cross-over 

function 
The function that the algorithm uses to create cross-over members 

Constraint 

dependent 

Cross-over 

fraction 
The fraction of the population created by the cross-over function 0.8 

Mutation 

function 
The function that produces mutation children 

Constraint 

dependent 

The genetic algorithm iterations are shown in 

Figure 9. It is noticed that the best members of 

the population do not show noticeable 

improvement after the 40th generation. It can be 

explained by the fact that the algorithm 

developed for the project crashing problem 

reaches nearly optimum values in 40 generations 

and stays there. Nevertheless, in an attempt to 

make sure that the optimum solution is obtained, 

the maximum number of iterations is selected as 

100 (much greater than 40) as shown in Table 5. 

As the average change in the penalty fitness is 

lower than the tolerance function (10-8), the 

process stops nearly at the 80th generation. 

 

The values of the decision variables for the 

optimum solution are shown in Table 6. The 

optimum solution requires that Activity 1, 

Activity 2, Activity 3, Activity 4, and Activity 9 

are crashed for 2, 1, 2, 1, and 2 times, 

respectively. Such a situation implies that greater 

resources are assigned to these activities. The 

other activities are realized in their normal 

durations and costs. The optimum cost of the 

project is determined as $25675. The solution is 

exactly the same as the solution in the traditional 

approach.  

 

The solution of the project crashing problem is 

presented with two different approaches, namely 

the traditional approach and the proposed genetic 

algorithm approach. These two approaches arrive 

at the same solution by following entirely 

different steps. The traditional approach follows 

an iterative process that requires drawing the 

network diagram, identifying the critical path(s), 

and detecting the cheapest combination of 

activities to reduce the project duration by one 

day. These operations need to be realized before 



Sakarya University Journal of Science, 28(5) 2024, 959-977 

972 
 

each crash, which results in a multi-phase 

process. 

 

The most challenging part of the traditional 

approach is the selection of cheapest 

combination of activities to crash. This part 

might be relatively easy in the first crashes as the 

network diagram results in a reasonable number 

of critical paths. However, as the process 

continues, the number of critical paths is 

increased and the selection becomes 

complicated. The critical paths and the number of 

crashing options before each crash are 

summarized in Table 7. It is seen that the number 

of critical paths is less than three before the first 

and second crashes. However, it is increased up 

to five in the following crashes. The activities in 

the critical paths are the candidates for selection. 

Each activity can either be “crashed” or “not 

crashed”. Thus, there are 24, 27, 28, 210, and 210 

options before the first, second, third, fourth, and 

fifth crashes, respectively. It is necessary to 

select the cheapest option (among more than a 

thousand options before the fourth and fifth 

crashes) that can crash all the critical paths. 

 

 
Figure 9. Genetic algorithm iterations 

  

Table 6. The values of the decision variables at optimality 

# 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒙𝟕 𝒙𝟖 𝒙𝟗 𝒙𝟏𝟎 𝒙𝟏𝟏 𝒙𝟏𝟐 

Result 2 1 2 1 0 0 0 0 2 0 0 0 

 
Table 7. Number of crashing options in the traditional approach 

Crash No Critical Path(s) Activities Concerned # of Options 

1 3 – 6 – 9 – 10 3, 6, 9, 10 16 

2 
3 – 6 – 9 – 10 

1 – 4 – 8 
1, 3, 4, 6, 8, 9, 10 128 

3 

3 – 6 – 9 – 10 

1 – 4 – 8 

2 – 6 – 9 – 10 

1, 2, 3, 4, 6, 8, 9, 10 256 

4 

3 – 6 – 9 – 10 

1 – 4 – 8 

2 – 6 – 9 – 10 

3 – 4 – 8 

3 – 7 – 11 

1, 2, 3, 4, 6, 7, 8, 9, 10, 11 1024 

5 

3 – 6 – 9 – 10 

1 – 4 – 8 

2 – 6 – 9 – 10 

3 – 7 – 11 

1, 2, 3, 4, 6, 7, 8, 9, 10, 11 1024 
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5. Conclusion 

 

Project managers quite often suffer from delays 

and cost overruns in consequence of poor project 

scheduling. An efficient resource allocation 

process is essential for achieving the project 

success. It is a complicated process valid for 

many industries including construction and 

manufacturing. Numerous studies have been 

conducted in an attempt to create schedules 

minimizing the cost and duration. This study has 

proposed a genetic algorithm approach to 

achieve the most efficient resource allocation and 

minimize the total cost of the project with project 

crashing. The project crashing event has been 

visualized, alternative approaches have been 

described, and their implementations have been 

illustrated with a case study. 

 

The results show that the same solution can be 

obtained with both approaches that follow 

entirely different steps. The main advantage of 

the genetic algorithm approach is that the 

solution is obtained in a single phase. Once the 

problem is appropriately transformed, decision 

variables are defined, and objective function is 

expressed in terms of the decision variables; the 

optimum solution can be easily obtained. The 

traditional approach is a multi-phase crashing 

process where a number of operations should be 

realized at each phase. On the other hand, it 

should be noted that the genetic algorithm 

approach may not reach optimum solution if the 

toolbox options are not appropriately selected. 

Selection of inappropriate toolbox options may 

lead to identification of the local optimum rather 

than the global optimum. 

 

This study contributes to the body of knowledge 

by describing the philosophy behind the use of a 

genetic algorithm for cost minimization, 

demonstrating its applicability to the project 

crashing events, expressing the procedures 

required for its adaptation, and indicating the 

advantages and disadvantages compared to the 

traditional approach. It goes beyond optimizing a 

single phenomenon in the field of project 

management and enters into the spirit of 

integrating a genetic algorithm into any 

optimization event. It expresses how the problem 

should be handled, and data should be 

transformed to enable proper execution of the 

optimization process with genetic algorithm. The 

proposed approach is intended to encourage 

project managers to create effective schedules 

and allocate resources efficiently in their projects 

by means of such contemporary algorithms. The 

genetic algorithm adaptation procedures are 

expected to promote research focusing on the 

integration of metaheuristic approaches into 

optimization events in various fields. 

 

The main limitation of the study is that both the 

traditional and proposed genetic algorithm 

approaches assume deterministic activity 

durations and costs. In practice, projects may 

involve uncertainty in these parameters [54]. The 

results at optimality might be subjected to 

variations as these parameters are subjected to 

changes. Nevertheless, it must be noted that the 

project crashing events are most of the time 

expressed in this format in the project 

management literature and potential solutions are 

developed accordingly. In addition, the steps 

followed in these approaches have been 

illustrated with a theoretical case rather than a 

real case. Illustration with a real case can be more 

influential and preferred in further studies. 

Further studies may also concentrate on the 

integration of the other metaheuristic algorithms 

(ant colony optimization, simulated annealing, 

particle swarm optimization, etc.) into various 

optimization events in different fields through 

following the steps expressed for the adaptation. 
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