

Cost Minimization with Project Crashing: Comparison of the Traditional Solution and Genetic

Algorithm Approach

Semih Cağlayan1* , Sadık Yiğit2

1 Sakarya University of Applied Sciences, Dept. of Civil Engineering, Sakarya, Türkiye, semihcaglayan@subu.edu.tr
2 Zurich University of Applied Sciences, Centre for Building Technologies and Processes, Winterthur, Switzerland,

sadik.yigit@zhaw.ch
*Corresponding Author

ARTICLE INFO ABSTRACT

Keywords:

Project crashing

Resource allocation

Project scheduling

Cost minimization

Metaheuristic algorithms

Genetic algorithm

Article History:
Received: 13.04.2024

Accepted: 10.09.2024

Online Available: 14.10.2024

Existence of delays and cost overruns frequently puts the project viability in

jeopardy. The integrated nature of these threats brings forward project scheduling as

the primary determinant of project management success. The quality of project

scheduling depends highly on the way resources are assigned to activities. In the

project management literature, the efficiency of resource allocation is examined

closely by the phenomenon called project crashing. This study introduces traditional

and genetic algorithm approaches for the project crashing events and explains their

steps in achieving the most efficient resource allocation. Within this context, the

project crashing event is visualized, the insights of alternative approaches are

described, and their implementations are illustrated with a case study. Besides, the

procedures required for adopting the genetic algorithm approach to a typical problem

are expressed. The case study illustration reveals the advantages and disadvantages

of the genetic algorithm approach over the traditional approach. It is observed that

the genetic algorithm approach can reach the solution in a single phase while the

traditional approach requires multiple phases. On the other hand, the genetic

algorithm approach may not reach the optimum solution unless the toolbox options

are appropriately selected. This study presents the contribution of operational

research to the project management body of knowledge by demonstrating the

applicability and efficiency of genetic algorithm in the project crashing events.

Researchers and industry practitioners may benefit from the proposed approach by

following the indicated procedures to incorporate genetic algorithm into optimization

issues in different fields.

1. Introduction

The subject of project management has attracted

the attention of practitioners and researchers

from different disciplines such as management

science, organization theory, operations

management, and social psychology [1]. Even

though many factors have been defined for the

successful delivery of projects [2], it is an

undeniable fact that many projects fail to perform

as intended and experience delays and cost

overruns [3, 4], which may put project viability

at risk [5]. The integrated nature of delays and

cost overruns implies that these two phenomena

should be studied together [6]. Poor scheduling,

therefore, has been frequently specified as the

main reason behind the project management

failures [7].

Management of large-scale projects necessitates

coordination of many activities with different

costs and durations [8]. Achievement of project

success requires organizations to efficiently

assign resources to these activities. The project

scheduling optimization has a wide range of

applications in the fields of construction,

Research Article

Sakarya University Journal of Science

ISSN : 2147-835X

Publisher : Sakarya University

Vol. 28, No. 5, 959-977, 2024
DOI: https://doi.org/10.16984/saufenbilder.1467829

Cite as: S. Çağlayan, S. Yiğit (2024). Cost Minimization with Project Crashing: Comparison of the Traditional Solution and Genetic Algorithm Approach, Sakarya

University Journal of Science, 28(5), 959-977. https://doi.org/10.16984/saufenbilder.1467829

 This is an open access paper distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International License.

https://orcid.org/0000-0003-2052-0954
https://orcid.org/0000-0002-6257-1306

Sakarya University Journal of Science, 28(5) 2024, 959-977

960

production planning, and manufacturing [9]. The

issue lies at the heart of project management and

has attracted great attention in academia [10].

Many researchers have attempted to find

solutions to the issue since 1960s. The solutions

have focused on creating a project schedule to

minimize the project cost and duration [11].

Project crashing is a schedule compression

technique that aims to minimize the total cost of

the project. The technique is based on analyzing

the cost and duration trade-offs to obtain the

greatest compression in project schedule for the

least incremental cost. The project duration is

reduced by shortening the critical path, which

corresponds to the longest sequence of activities.

Even though shortening the critical path requires

greater resource allocation to certain activities on

the critical path (implying an increase in activity

costs), reduction in the project duration can

provide savings in penalty associated with the

project delay. As long as the savings obtained

outweigh the increase in activity costs, such an

attempt helps the project managers decrease the

total cost of the project.

Project crashing has been traditionally carried

out with a multi-phase schedule compression

method. In recent years, development of

metaheuristic algorithms like the genetic

algorithm has enabled researchers to identify the

optimized solutions for such complicated issues.

Several researchers have utilized metaheuristic

algorithms to overcome the challenges

encountered in such events [12]. This study

makes a comparison between the traditional

solution and genetic algorithm approach for the

project crashing events. In this regard, the project

crashing event is visualized; the project crashing

concept is introduced; and a typical problem is

represented in a table format. The steps followed

by the traditional approach are presented and the

procedures necessary to adopt the genetic

algorithm approach are clarified. Implementation

of these alternative approaches on a typical

problem is illustrated with a case study. The

advantages and disadvantages of genetic

algorithm adoption over the traditional solution

are observed.

The paper is organized as follows: Section 2

describes the genetic algorithm concept and

summarizes the fields genetic algorithm have

been used for. Section 3 explains the

methodology; visualization of the project

crashing event, description of the alternative

approaches, and illustration with a case study.

The steps followed by the traditional solution and

genetic algorithm approach are explained, and

advantages/disadvantages are discussed in

Section 4. Finally, Section 5 presents the

conclusion; summary of the results, contribution

to the body of knowledge, and limitations of the

study.

2. Research Background

2.1. The genetic algorithm concepts

Genetic algorithm is a well-known population-

based metaheuristic algorithm inspired from the

biological evolution process [13]. The algorithm

was proposed by John Holland in 1970s and is

based on the Darwinian theory of the survival of

the fittest [14]. The optimization process of

genetic algorithm is illustrated in Figure 1. The

process starts with randomly generating an initial

population. A certain number of individuals are

created, where each individual represents a

solution the problem [15]. A fitness function is

used to evaluate the fitness of each individual

[16]. The fitness value indicates the likelihood of

each individual to survive and reproduce in the

new population [17].

Generation of the initial population is followed

by evolution toward better solutions by means of

genetic operators: selection, cross-over, and

mutation [18]. The selection operator chooses the

fitter individuals in the current population as

parents to give birth to individuals in the new

population [19]. The cross-over operator takes

the chosen individuals and generates the new

individuals by crossing the genes between pairs

of parents [20]. The mutation operator changes

the genes in the new population to increase the

diversity [21]. It helps the algorithm exploit all

the search space [22]. In short, the cross-over

operator provides better future generations, while

the mutation operator prevents the algorithm

from getting stuck at local optima [23].

Generation of the new population by subjecting

the current population to the genetic operators is

Semih Çağlayan, Sadık Yiğit

961

an iterative process. The iteration is repeated

until the number of iterations equals to a

predefined value for maximum generations,

which implies that the termination criterion is

met [24]. Satisfaction of the criterion results in

termination of the algorithm [25]. The best-so-far

solution, the individual with the most satisfactory

fitness value, is regarded as the optimal solution.

The results obtained for the optimal solution are

displayed.

Figure 1. Genetic algorithm optimization process

2.2. Utilization of genetic algorithms for

optimization

The metaheuristic algorithms, especially the

genetic algorithms, have been utilized for various

optimization purposes such as construction

material design, energy efficiency in buildings,

project layout planning, and project scheduling.

A group of studies have attempted to optimize

the design of construction elements. Genetic

algorithms have been developed to optimize the

design of multi-story composite steel frames

[26], to minimize the construction cost of mass

concrete [27], to produce asphalt mixtures

complying with applicable specification

requirements [28], to predict the adhesion

strength [29], to mitigate the risk of early-age

thermal cracking and delayed ettringite

formation in mass concrete [30], to identify

optimum parameter settings for aluminum-based

hybrid metal matrix composite material [31].

Other metaheuristics-based algorithms have also

been proposed for the design of cantilever

retaining walls [32] and cantilever beams [33].

Another group of studies have used genetic

algorithm to improve the energy efficiency in

buildings. Several researchers have aimed at

improving the energy efficiency through

developing building retrofitting strategies [34].

Retrofitting has been done for school buildings

[35], green building compliance [36], and

residential buildings within a budget constraint

[37]. Energy efficiency has been enhanced in

another group of study with a focus on the

heating energy consumption. The researchers

have either developed algorithms to forecast the

heating loads [38] or determined the optimum

thermal design [39].

Several researchers have conducted studies for

the optimization of project layout planning and

logistics network design with the use of

metaheuristic algorithms. Elements of the

industrial production systems have been arranged

in a number of studies as a part of the business

operation strategy [40]. Multi-objective particle

swarm optimization algorithm was proposed to

minimize the construction safety risks of cranes

and the total travelling distance of resources [41].

Sakarya University Journal of Science, 28(5) 2024, 959-977

962

Non-dominated sorting genetic algorithm

(NSGA) II was adapted to find the optimum

location of facilities and transport network

design to obtain sustainable supply-chain-

network [42]. The link capacities and

environmental protection were expressed as the

problem constraints. A genetic algorithm-based

model was proposed to solve the bus terminal

location problem through finding efficient

allocation patterns for assigning stations

terminals [43]. The path planning in an unknown

or partially known environment was resolved

with artificial bee colony algorithm and

evolutionary programming [44].

Project/program scheduling has been another

application field of genetic algorithms.

Algorithms have been used by several

researchers for resource constraint optimization

problems in construction [45, 46]. A genetic

algorithm using a two-point crossover operator

was proposed to a resource-constrained project

scheduling problem with sequence dependent

transfer times and the proposed algorithm could

efficiently solve these problems [47]. A novel

genetic algorithm incorporating complicated

activity-dependencies for the resource leveling

problem was developed by Li et al. [48]. The

model could achieve near optimal solutions in

fractions of a second. A NSGA-III-based

algorithm was produced for a bi-objective

hierarchical resource-constrained program

scheduling problem [49]. The computational

simulations confirmed the satisfactory

performance of the model. In another study, a

construction schedule was automatically

generated by extracting data from a building

information modeling product [50]. Behera and

Sobhanayak [51] utilized genetic algorithm to

optimize task scheduling in heterogeneous cloud

computing environments.

Previous studies using the genetic algorithm

concept for addressing certain optimization

issues have mainly attempted to come up with

solutions to these specific issues and have not

clarified the steps that should be followed for

repetition of the study in different fields. The

literature obviously lacks an informative and

explanatory study that visualizes a typical

mathematical optimization problem and

expresses the philosophy of utilizing the genetic

algorithm to solve it. The procedures necessary

for genetic algorithm adaptation need to be

described so that the approach can also be

adjusted for optimization issues in other fields

and the use of genetic algorithm can be

popularized.

This study aims to fill the gap in the literature by

providing a detailed description for the use of

genetic algorithm in project crashing events and

demonstrating its advantages and disadvantages

over the traditional solution through an

illustrative case study. This study goes beyond

optimization of a specific project scheduling

issue and explains the philosophy behind

integration of genetic algorithms into the project

crashing events for the purpose of cost

minimization. It clarifies the steps to be followed

for proper integration of genetic algorithms into

optimization problems.

3. Research Methodology

The flowchart of methodology is presented in

Figure 2. It is composed of three main phases,

namely (i) visualization of project crashing, (ii)

description of alternative approaches, and (iii)

case study illustration.

In the first phase, the project crashing event is

introduced and visually represented.

Categorization of the project cost is clarified, the

project crashing concept is explained, and a

typical problem is represented. The second phase

presents the philosophy behind the traditional

and proposed genetic algorithm approaches. It

elaborates on the steps followed by the traditional

and proposed genetic algorithm approaches to

optimize resource allocation with the project

crashing. The iterative process of the traditional

approach is introduced and the requirements for

adopting the genetic algorithm are expressed.

The third phase involves implementation of the

steps followed by these approaches on a case

study.

Semih Çağlayan, Sadık Yiğit

963

Figure 2. Flowchart of the methodology

3.1. Visualizing the project crashing events

The project cost is categorized into two different

costs, namely the direct and indirect costs. The

direct costs represent the costs directly

attributable to the product. These may include the

cost of raw materials, labor, and equipment costs.

In project crashing events, the individual cost of

each activity is evaluated under this category. In

other words, the sum of the activity costs equals

the direct costs. The indirect costs extend beyond

the expenses realized in creating the product.

General administration, supplies, and building

rental costs can be given as the examples of

indirect costs. Indirect costs are assumed to be

linearly related to the project duration in the

project crashing events.

Project crashing is a technique used to speed up

the timeline of a project by providing more

resources to certain activities in the critical path.

More resources can be provided to the activities

by assigning additional personnel or paying a

premium. Shortening the project duration

through allocating greater resources increases the

direct cost. However, the indirect cost is

decreased as it is directly associated with the

duration of the project. Project crashing aims to

shorten the project while keeping the project cost

at a minimum. Determining the minimum project

cost via the project crashing technique can be

achieved through the traditional approach or the

proposed genetic algorithm approach. These

approaches follow different steps to calculate the

optimum duration and cost of the project.

A typical project crashing problem is represented

in Table 1. The first two columns show the list of

activities and the relations between them. The

third column indicates the normal duration (the

duration when no crashing occurs) of each

activity. The crushed duration stands for the

duration of each activity after all the possible

crashes are applied. Thus, the difference between

the normal and crashed duration implies the

number of crashes applicable to the

corresponding activity.

To illustrate, if the difference is equal to two, the

activity cannot be crashed more than two times

(the duration cannot be decreased by more than

two days). The remaining columns are the

normal costs and the cost of each crash. The

direct cost of the project is equal to the sum of

the normal costs and costs of the crashes realized.

The indirect cost is obtained by multiplying the

overhead cost by the project duration determined

by the critical path method (CPM).

3.2. Alternative approaches for project

crashing

The steps followed by the two alternative

approaches to minimize cost with project

crashing are presented in Figure 3. In the

traditional approach, it is firstly assumed that all

the activities are realized in their normal

durations/costs and the project duration/cost is

calculated accordingly. CPM is used to calculate

the project duration and identify the critical

Sakarya University Journal of Science, 28(5) 2024, 959-977

964

Table 1. Representation of a typical project crashing problem

Activity Predecessor

Normal

Duration

(days)

Crashed

Duration

(days)

Normal

Cost

($)

Cost of Crashes ($)

1st Crash 2nd Crash 3rd Crash

A … … … … … … …

B … … … … … … …

C … … … … … … …

D … … … … … … …

…
…

.

…
…

.

…
…

.

…
…

.

…
…

.

…
…

.

…
…

.

…
…

.

*Overhead cost: … $/day

path(s). Acquisition of saving in indirect costs

requires the project duration to be decreased by

one unit. Therefore, the cheapest combination of

activities is determined such that crushing these

activities can satisfy the specified condition.

Shortening the project duration by one unit

requires crashing all the critical paths. It is also

necessary to explain the difference between

crashing an activity and crashing a critical path.

While the former implies decreasing the duration

of the activity by one unit, the latter means

crashing at least one of the activities in the

corresponding path. The cost of crashing the

selected activities is compared with the saving

obtained from indirect costs. If the saving

exceeds the cost of crashing; the selected

activities are crashed, the new project duration

and cost are calculated, and the process is

repeated. Otherwise, the current project duration

and cost are regarded as the optimum.

The proposed genetic algorithm approach

follows totally different steps. Implementation of

the proposed genetic algorithm approach requires

transformation of the problem (Table 2). The

duration/cost alternatives are presented for each

activity rather than expressing the costs of

crashes. Such a transformation is required for the

formulations to be described in the following

steps. A decision variable is defined for each

activity as the number of times the corresponding

activity is crashed. Afterwards, the duration and

cost of each activity is expressed as a function of

the decision variable. The number of times each

activity can be crashed becomes the constraints

for the decision variables. The objective function

is defined as the minimization of the project cost.

The project cost is formulated such that it

becomes a function of the decision variables.

3.3. Case study illustration

The steps followed by two different approaches

for the project crashing events are illustrated in a

case study. A typical project crashing problem is

presented in Table 3. The problem includes a

total of 12 activities. The relations between the

activities are given in the second column. A

finish-to-start relationship exists between them.

The normal and crashed duration of each activity

are shown in the third and fourth columns.

For activity 1, the normal and crashed durations

are 8 and 5 days, respectively. It is implied that

the activity has the potential to be crashed for

three days (8 days – 5 days). The fifth column

shows the cost of the activity when it is

completed in its normal duration. The last three

columns show the cost of crashes. It is realized

that the cost of crashing increases in each

additional crash.

3.3.1. The traditional approach

The first step in the traditional approach is to

calculate the project cost based on the normal

durations and costs of activities. As already

mentioned, the project cost is composed of the

direct and indirect costs. The direct cost is

calculated by summing up the costs stated in the

fifth column of Table 3, which is determined as

Semih Çağlayan, Sadık Yiğit

965

Figure 3. Steps followed by alternative approaches for project crashing events

Table 2. Representation of the transformed version of the problem

Activity Predecessor

Normal

Duration / Cost

(days / $)

1st crash

Duration / Cost

(days / $)

2nd crash

Duration / Cost

(days / $)

3rd crash

Duration / Cost

(days / $)

A … … / … … / … … / … … / …

B … … / … … / … … / … … / …

C … … / … … / … … / … … / …

D … … / … … / … … / … … / …

…
…

.

…
…

.

…
…

.

…
…

.

…
…

.

…
…

.

*Overhead cost: … $/day

$23750. The indirect cost is calculated by

multiplying the overhead cost by the project

duration determined according to the CPM

(Figure 4). The project duration and cost are

identified as 21 days and $25850 (direct and

indirect costs), respectively. The critical path is

Activity 3 - Activity 6 - Activity 9 - Activity 10.

The situation before crashing is summarized as:

• Duration: 21 days

• Cost: 23750 + 21 * 100 = $25850

• Critical path(s):

o Act. 3 – Act. 6 – Act. 9 – Act. 10

Completing the project one day earlier provides

a $100 saving in indirect cost. Reducing the

project duration by one day requires all the

critical paths to be crashed. Therefore, the

cheapest combination of activities crashing all

the critical paths is determined and compared

with the saving in indirect cost. It is noticed that

crashing Activity 9 by 1 day is cheapest way to

crash the identified critical path and it is less than

the saving realized ($20 vs $100).

The activity is crashed, the resultant project

duration and cost are calculated, and the new

critical paths are determined (Figure 5). The

situation after the first crash is summarized as:

• 1st crash: Crash Activity 9 by 1 day

• Resultant duration: 20 days

• Resultant cost: 2585 + 20 – 100 = $25770

• Resultant critical path(s):

o Act. 3 – Act. 6 – Act. 9 – Act. 10

o Act. 1 – Act. 4 – Act. 8

Two critical paths are identified at the end of the

first crash. The cheapest combination of the

activities that can crash these critical paths are

determined as Activity 1 and Activity 3.

Sakarya University Journal of Science, 28(5) 2024, 959-977

966

Table 3. Information about the activity costs/durations

Activity Predecessor

Normal

Duration

(days)

Crashed

Duration

(days)

Normal

Cost

($)

Cost of Crashes ($)

1st Crash 2nd Crash 3rd Crash

1 - 8 5 2500 20 25 35

2 - 6 4 1200 30 45 -

3 - 7 5 1450 30 35 -

4 1, 2, 3 6 4 1350 30 30 -

5 1, 2, 3 4 2 1250 20 30 -

6 2, 3 5 3 2300 40 55 -

7 3 4 2 2000 40 45 -

8 4, 5 6 5 2750 40 - -

9 6, 7 5 2 1800 20 35 50

10 4, 5, 9 4 2 850 45 55 -

11 7 8 5 3800 50 50 50

12 3 10 7 2500 15 20 25

*Overhead cost: … $/day

Crashing these activities costs $50 ($20+$30),

which is less than the additional saving to be

realized. These activities are crashed and project

duration is decreased by one day (Figure 6). The

situation after the second crash is summarized as:

• 2nd crash: Crash Activity 1 and Activity 3

by 1 day

• Resultant duration: 19 days

• Resultant cost: 25770 + 20 + 30 – 100 =

$25720

• Resultant critical path(s):

o Act. 3 – Act. 6 – Act. 9 – Act. 10

o Act. 1 – Act. 4 – Act. 8

o Act. 2 – Act. 6 – Act. 9 – Act. 10

Realization of the second crash leads to an

additional critical path. The number of critical

paths is increased to three. The cheapest

combination to crash these paths is determined as

Activity 1 and Activity 9. It should be noted that

Activity 1 and Activity 9 are already crashed for

one day in the second and first crashes,

respectively. Thus, the cost of crashing becomes

$25 for Activity 1 and $35 for Activity 9. It is

realized that these three critical paths can be

crashed simultaneously by crashing two

activities because Activity 9 is the mutual

activity in the first and third critical paths. As the

cost of crashing ($25+$35) is less than the

additional saving, the activities are crashed

(Figure 7). The situation after the third crash is:

• 3rd crash: crash Activity 1 and Activity 9

by 1 day

• Resultant duration: 18 days

• Resultant cost: 25720 + 25 + 35 – 100 =

$25680

• Resultant critical path(s):

o Act. 3 – Act. 6 – Act. 9 – Act. 10

o Act. 1 – Act. 4 – Act. 8

o Act. 2 – Act. 6 – Act. 9 – Act. 10

o Act. 3 – Act. 4 – Act. 8

o Act. 3 – Act. 7 – Act. 11

Two additional critical paths occur after the third

crash, resulting in a total of five critical paths.

The cheapest way to crash these critical paths is

to crash Activity 2, Activity 3, and Activity 4.

Activity 3 is already crashed for one day in the

second crash, so the crashing cost becomes $35

for Activity 3. The cost of crashing

($30+$35+$30) is still less than the potential

saving in indirect costs. Thus, the fourth crash is

also realized (Figure 8). The situation after the

fourth crash is summarized as:

• 4th crash: crash Activity 2, Activity 3, and

Activity 4 by 1 day

• Resultant duration: 17 days

• Resultant cost: 25680 + 30 + 35 + 30 –

100 = $25675

• Resultant critical path(s):

o Act. 3 – Act. 6 – Act. 9 – Act. 10

Semih Çağlayan, Sadık Yiğit

967

Figure 4. CPM analysis before crashing

Figure 5. CPM analysis after 1st crash

Figure 6. CPM analysis after 2nd crash

o Act. 1 – Act. 4 – Act. 8

o Act. 2 – Act. 6 – Act. 9 – Act. 10

o Act. 3 – Act. 7 – Act. 11

Four critical paths are identified after the fourth

crash. The cheapest way to decrease project

duration by one day is to crash Activity 4,

Activity 6, and Activity 7. The cost of crashing

Sakarya University Journal of Science, 28(5) 2024, 959-977

968

($30+$40+$40) exceeds the potential saving in

indirect costs. It implies that crashing these

activities results in an increase in total project

cost. Therefore, the process is terminated and the

current situation is described as the optimum.

The optimum project duration and project cost

are obtained as 17 days and $25675. The

optimum situation is achieved by crashing

Activity 1 by 2 days, Activity 2 by 1 day, Activity

3 by 2 days, Activity 4 by 1 day, and Activity 9

by 2 days. The other activities are realized in their

normal durations and costs.

3.3.2. The genetic algorithm approach

The proposed genetic algorithm approach

follows entirely different steps to optimize

project crashing events. Adaptation of the genetic

algorithm approach principally requires

transformation of the problem. After the original

problem is transformed, necessary coding is done

in a programming platform that supports the

genetic algorithm optimization. MATLAB has

been preferred as a commercial programming

platform. Definition of the decision variables,

formulation of the durations/costs, statement of

the constraints, and the expression of the

objective function are explained to demonstrate

the use of the genetic algorithm concept for the

optimization of project crashing events.

Transforming the problem

A typical project crashing problem is most of the

time presented as shown in Table 3. The normal

duration/cost of each activity is given and costs

of the crashes are indicated if available. The

genetic algorithm approach requires a clear

presentation of the alternatives for each activity.

The cost and duration of an activity after each

crash should be presented as a package. In this

context, the presentation of the problem is

transformed (Table 4). The alternatives for each

activity are clearly observed in the transformed

version. The number of alternatives for the

activities ranges between two and four.

Multiplication of the number of alternatives

results in more than one million solutions. To be

more precise, the genetic algorithm is expected

to find the optimal solution among 1,119,744

solutions.

Defining the decision variables

The way the decision variables are defined is one

of the most critical part of the genetic algorithm

approach. The decision variable should be

defined such that all the other variables and the

objective function can be expressed as a function

of the decision variable. For this purpose, the

decision variable is defined as:

𝑥𝑖 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖 𝑖𝑠 𝑐𝑟𝑎𝑠ℎ𝑒𝑑
𝑥𝑖 𝜖 ℤ

𝑛

The decision variable is an integer that shows the

number of times the corresponding activity is

crashed. Thus, with this approach, the project

crashing problem is transformed into a selection

of how many times each activity should be

crashed. The other variables that are to be

expressed as a function of the decision variables

are defined as follows:

𝑑𝑖 = 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖
𝑐𝑖 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖
𝐸𝑆𝑖 = 𝐸𝑎𝑟𝑙𝑦 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖
𝐸𝐹𝑖 = 𝐸𝑎𝑟𝑙𝑦 𝑓𝑖𝑛𝑖𝑠ℎ 𝑡𝑖𝑚𝑒 𝑜𝑓 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖

Formulating the durations/costs

It is already mentioned that the other variables

and the objective function must be expressed as

a function of the decision variables. The duration

and cost of each activity are formulated as

follows:

𝑑1 𝑎𝑛𝑑 𝑐1

=

{

𝑑1 = 8 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐1 = $2500, 𝑓𝑜𝑟 𝑥1 = 0

𝑑1 = 7 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐1 = $2520, 𝑓𝑜𝑟 𝑥1 = 1

𝑑1 = 6 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐1 = $2545, 𝑓𝑜𝑟 𝑥1 = 2

𝑑1 = 5 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐1 = $2580, 𝑓𝑜𝑟 𝑥1 = 3

𝑑2 𝑎𝑛𝑑 𝑐2

= {

𝑑2 = 6 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐2 = $1200, 𝑓𝑜𝑟 𝑥2 = 0

𝑑2 = 5 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐2 = $1230, 𝑓𝑜𝑟 𝑥2 = 1

𝑑2 = 4 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐2 = $1275, 𝑓𝑜𝑟 𝑥2 = 2

𝑑3 𝑎𝑛𝑑 𝑐3

= {

𝑑3 = 7 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐3 = $1450, 𝑓𝑜𝑟 𝑥3 = 0

𝑑3 = 6 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐3 = $1480, 𝑓𝑜𝑟 𝑥3 = 1

𝑑3 = 5 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐3 = $1515, 𝑓𝑜𝑟 𝑥3 = 2

𝑑4 𝑎𝑛𝑑 𝑐4

= {

𝑑4 = 6 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐4 = $1350, 𝑓𝑜𝑟 𝑥4 = 0

𝑑4 = 5 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐4 = $1380, 𝑓𝑜𝑟 𝑥4 = 1

𝑑4 = 4 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐4 = $1410, 𝑓𝑜𝑟 𝑥4 = 2

Semih Çağlayan, Sadık Yiğit

969

𝑑5 𝑎𝑛𝑑 𝑐5

= {

𝑑5 = 4 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐5 = $1250, 𝑓𝑜𝑟 𝑥5 = 0

𝑑5 = 3 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐5 = $1270, 𝑓𝑜𝑟 𝑥5 = 1

𝑑5 = 2 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐5 = $1300, 𝑓𝑜𝑟 𝑥5 = 2

𝑑6 𝑎𝑛𝑑 𝑐6

= {

𝑑6 = 5 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐6 = $2300, 𝑓𝑜𝑟 𝑥6 = 0

𝑑6 = 4 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐6 = $2340, 𝑓𝑜𝑟 𝑥6 = 1

𝑑6 = 3 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐6 = $2395, 𝑓𝑜𝑟 𝑥6 = 2

𝑑7 𝑎𝑛𝑑 𝑐7

= {

𝑑7 = 4 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐7 = $2000, 𝑓𝑜𝑟 𝑥7 = 0

𝑑7 = 3 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐7 = $2040, 𝑓𝑜𝑟 𝑥7 = 1

𝑑7 = 2 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐7 = $2085, 𝑓𝑜𝑟 𝑥7 = 2

𝑑8 𝑎𝑛𝑑 𝑐8

= {
𝑑8 = 6 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐8 = $2750, 𝑓𝑜𝑟 𝑥8 = 0

𝑑8 = 5 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐8 = $2790, 𝑓𝑜𝑟 𝑥8 = 1

𝑑9 𝑎𝑛𝑑 𝑐9

=

{

𝑑9 = 5 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐9 = $1800, 𝑓𝑜𝑟 𝑥9 = 0

𝑑9 = 4 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐9 = $1820, 𝑓𝑜𝑟 𝑥9 = 1

𝑑9 = 3 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐9 = $1855, 𝑓𝑜𝑟 𝑥9 = 2

𝑑9 = 2 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐9 = $1905, 𝑓𝑜𝑟 𝑥9 = 3

𝑑10 𝑎𝑛𝑑 𝑐10

= {

𝑑10 = 4 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐10 = $850, 𝑓𝑜𝑟 𝑥10 = 0

𝑑10 = 3 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐10 = $895, 𝑓𝑜𝑟 𝑥10 = 1

𝑑10 = 2 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐10 = $950, 𝑓𝑜𝑟 𝑥10 = 2

𝑑11 𝑎𝑛𝑑 𝑐11

=

{

𝑑11 = 8 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐11 = $3800, 𝑓𝑜𝑟 𝑥11 = 0

𝑑11 = 7 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐11 = $3850, 𝑓𝑜𝑟 𝑥11 = 1

𝑑11 = 6 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐11 = $3900, 𝑓𝑜𝑟 𝑥11 = 2

𝑑11 = 5 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐11 = $3950, 𝑓𝑜𝑟 𝑥11 = 3

𝑑12 𝑎𝑛𝑑 𝑐12

=

{

𝑑12 = 10 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐12 = $2500, 𝑓𝑜𝑟 𝑥12 = 0

𝑑12 = 9 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐12 = $2515, 𝑓𝑜𝑟 𝑥12 = 1

𝑑12 = 8 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐12 = $2535, 𝑓𝑜𝑟 𝑥12 = 2

𝑑12 = 7 𝑑𝑎𝑦𝑠 𝑎𝑛𝑑 𝑐12 = $2560, 𝑓𝑜𝑟 𝑥12 = 3

Figure 7. CPM analysis after 3rd crash

Stating the constraints

Another significant part of the optimization

problems is the statement of the constraints. The

constraints are the limitations the variables are

subjected to. The constraints in project crashing

events are about the number of times an activity

can be crashed. An activity can be subjected to

crashing for a minimum of zero times

(corresponding to normal duration and cost) and

for a maximum of 1-3 times as follows:

0 ≤ 𝑥1 ≤ 3
0 ≤ 𝑥2 ≤ 2
0 ≤ 𝑥3 ≤ 2
0 ≤ 𝑥4 ≤ 2
0 ≤ 𝑥5 ≤ 2
0 ≤ 𝑥6 ≤ 2
0 ≤ 𝑥7 ≤ 2
0 ≤ 𝑥8 ≤ 1
0 ≤ 𝑥9 ≤ 3
0 ≤ 𝑥10 ≤ 2
0 ≤ 𝑥11 ≤ 3
0 ≤ 𝑥12 ≤ 3

Sakarya University Journal of Science, 28(5) 2024, 959-977

970

Figure 8. CPM analysis after 4th crash

Table 4. Transformed version of the activity costs/durations

Activity Predecessor

Normal

Duration / Cost

(days / $)

1st crash

Duration / Cost

(days / $)

2nd crash

Duration / Cost

(days / $)

3rd crash

Duration / Cost

(days / $)

1 - 8 / 2500 7 / 2520 6 / 2545 5 / 2580

2 - 6 / 1200 5 / 1230 4 / 1275 -

3 - 7 / 1450 6 / 1480 5 / 1515 -

4 1, 2, 3 6 / 1350 5 / 1380 4 / 1410 -

5 1, 2, 3 4 / 1250 3 / 1270 2 / 1300 -

6 2, 3 5 / 2300 4 / 2340 3 / 2395 -

7 3 4 / 2000 3 / 2040 2 / 2085 -

8 4, 5 6 / 2750 5 / 2790 - -

9 6, 7 5 / 1800 4 / 1820 3 / 1855 2 / 1905

10 4, 5, 9 4 / 850 3 / 895 2 / 950 -

11 7 8 / 3800 7 / 3850 6 / 3900 5 / 3950

12 3 10 / 2500 9 / 2515 8 / 2535 7 / 2560

*Overhead cost: 100 $/day

Setting the objective function

The final step of the genetic algorithm approach

is to define and express the objective function.

The aim of the project crashing event is to

minimize the project cost (𝑐𝑃𝑟𝑜𝑗𝑒𝑐𝑡). As already

mentioned, the project cost is equal to the sum of

the direct and indirect costs. The direct costs are

calculated by summing the individual cost of

each activity (𝑐1 + 𝑐2 + 𝑐3…+ 𝑐12). The indirect

costs are calculated by multiplying the overhead

cost (100 $/day) by the project duration (𝑑𝑃𝑟𝑜𝑗𝑒𝑐𝑡).

The objective function is formulated as follows:

𝑐𝑃𝑟𝑜𝑗𝑒𝑐𝑡 = 𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 + 𝑐5 + 𝑐6 + 𝑐7 + 𝑐8

+ 𝑐9 + 𝑐10 + 𝑐11 + 𝑐12 + 100
∗ 𝑑𝑃𝑟𝑜𝑗𝑒𝑐𝑡

In this equation, the individual cost of each

activity is a function of the decision variables and

the overhead cost is 100 $/day. The project

duration should also be expressed as a function

of the decision variables. The project duration is

calculated according to CPM as in the traditional

approach. However, rather than calculating the

project duration after each crash, the relations

between the activities are formulated for once.

The early start (ES) and early finish (EF) times

of each activity are expressed as a function of the

activity durations (𝑑𝑖), which are already stated

as a function of the decision variables (𝑥𝑖). The

project duration is equal to the EF of the last

activity (Finish). The late start (LS) and late

finish (LF) times of the activities are not

formulated because there is no need to identify

the total float (TF) times and the critical path(s)

in the genetic algorithm approach. In other

words, calculation of the project duration is

sufficient. The project duration is formulated as

follows:

Semih Çağlayan, Sadık Yiğit

971

𝐸𝑆𝑆𝑡𝑎𝑟𝑡 = 0

𝐸𝐹𝑆𝑡𝑎𝑟𝑡 = 0
𝐸𝐹𝑖 = 𝐸𝑆𝑖 + 𝑑𝑖 , 𝑓𝑜𝑟 𝑖 = 1, 2, 3, … , 12
𝐸𝑆1 = 𝐸𝐹𝑆𝑡𝑎𝑟𝑡
𝐸𝑆2 = 𝐸𝐹𝑆𝑡𝑎𝑟𝑡
𝐸𝑆3 = 𝐸𝐹𝑆𝑡𝑎𝑟𝑡
𝐸𝑆4 = max (𝐸𝐹1, 𝐸𝐹2, 𝐸𝐹3)
𝐸𝑆5 = max (𝐸𝐹1, 𝐸𝐹2, 𝐸𝐹3)
𝐸𝑆6 = max (𝐸𝐹2, 𝐸𝐹3)
𝐸𝑆7 = 𝐸𝐹3
𝐸𝑆8 = max (𝐸𝐹4, 𝐸𝐹5)
𝐸𝑆9 = max (𝐸𝐹6, 𝐸𝐹7)
𝐸𝑆10 = max (𝐸𝐹4, 𝐸𝐹5, 𝐸𝐹9)
𝐸𝑆11 = 𝐸𝐹7
𝐸𝑆12 = 𝐸𝐹3
𝐸𝑆𝐹𝑖𝑛𝑖𝑠ℎ = max (𝐸𝐹8, 𝐸𝐹10, 𝐸𝐹11, 𝐸𝐹12)
𝐸𝐹𝐹𝑖𝑛𝑖𝑠ℎ = 𝐸𝑆𝐹𝑖𝑛𝑖𝑠ℎ
𝑑𝑃𝑟𝑜𝑗𝑒𝑐𝑡 = 𝐸𝐹𝐹𝑖𝑛𝑖𝑠ℎ

4. Research Results and Discussion

The steps indicated for adopting the genetic

algorithm approach is coded in MATLAB and

the results are obtained. The genetic algorithm

toolbox options, which are essential for the

optimization process are presented in Table 5. It

should be noted that the options are highly

dependent on experience and trial and error [52].

Arbitrarily estimated options may lead to

convergence to a local optimum [53]. If the

population size and maximum generations are

insufficiently estimated, the algorithm may end

up with a misleading solution. However,

overestimation of these toolbox options can lead

to an inefficient and time-consuming algorithm.

Table 5. Genetic algorithm options
Option Description Value

Population size Number of individuals in the population 150

Selection Selection of individuals for the next generation Stochastic uniform

Maximum

generations
Maximum number of iterations 100

Elitism
How many individuals in the current generation are guaranteed to

survive
0.12 * 100

Tolerance

function

Whether the average relative change in the best fitness function value

is less than or equal to Funtool
10-8

Cross-over

function
The function that the algorithm uses to create cross-over members

Constraint

dependent

Cross-over

fraction
The fraction of the population created by the cross-over function 0.8

Mutation

function
The function that produces mutation children

Constraint

dependent

The genetic algorithm iterations are shown in

Figure 9. It is noticed that the best members of

the population do not show noticeable

improvement after the 40th generation. It can be

explained by the fact that the algorithm

developed for the project crashing problem

reaches nearly optimum values in 40 generations

and stays there. Nevertheless, in an attempt to

make sure that the optimum solution is obtained,

the maximum number of iterations is selected as

100 (much greater than 40) as shown in Table 5.

As the average change in the penalty fitness is

lower than the tolerance function (10-8), the

process stops nearly at the 80th generation.

The values of the decision variables for the

optimum solution are shown in Table 6. The

optimum solution requires that Activity 1,

Activity 2, Activity 3, Activity 4, and Activity 9

are crashed for 2, 1, 2, 1, and 2 times,

respectively. Such a situation implies that greater

resources are assigned to these activities. The

other activities are realized in their normal

durations and costs. The optimum cost of the

project is determined as $25675. The solution is

exactly the same as the solution in the traditional

approach.

The solution of the project crashing problem is

presented with two different approaches, namely

the traditional approach and the proposed genetic

algorithm approach. These two approaches arrive

at the same solution by following entirely

different steps. The traditional approach follows

an iterative process that requires drawing the

network diagram, identifying the critical path(s),

and detecting the cheapest combination of

activities to reduce the project duration by one

day. These operations need to be realized before

Sakarya University Journal of Science, 28(5) 2024, 959-977

972

each crash, which results in a multi-phase

process.

The most challenging part of the traditional

approach is the selection of cheapest

combination of activities to crash. This part

might be relatively easy in the first crashes as the

network diagram results in a reasonable number

of critical paths. However, as the process

continues, the number of critical paths is

increased and the selection becomes

complicated. The critical paths and the number of

crashing options before each crash are

summarized in Table 7. It is seen that the number

of critical paths is less than three before the first

and second crashes. However, it is increased up

to five in the following crashes. The activities in

the critical paths are the candidates for selection.

Each activity can either be “crashed” or “not

crashed”. Thus, there are 24, 27, 28, 210, and 210

options before the first, second, third, fourth, and

fifth crashes, respectively. It is necessary to

select the cheapest option (among more than a

thousand options before the fourth and fifth

crashes) that can crash all the critical paths.

Figure 9. Genetic algorithm iterations

Table 6. The values of the decision variables at optimality

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒙𝟕 𝒙𝟖 𝒙𝟗 𝒙𝟏𝟎 𝒙𝟏𝟏 𝒙𝟏𝟐

Result 2 1 2 1 0 0 0 0 2 0 0 0

Table 7. Number of crashing options in the traditional approach

Crash No Critical Path(s) Activities Concerned # of Options

1 3 – 6 – 9 – 10 3, 6, 9, 10 16

2
3 – 6 – 9 – 10

1 – 4 – 8
1, 3, 4, 6, 8, 9, 10 128

3

3 – 6 – 9 – 10

1 – 4 – 8

2 – 6 – 9 – 10

1, 2, 3, 4, 6, 8, 9, 10 256

4

3 – 6 – 9 – 10

1 – 4 – 8

2 – 6 – 9 – 10

3 – 4 – 8

3 – 7 – 11

1, 2, 3, 4, 6, 7, 8, 9, 10, 11 1024

5

3 – 6 – 9 – 10

1 – 4 – 8

2 – 6 – 9 – 10

3 – 7 – 11

1, 2, 3, 4, 6, 7, 8, 9, 10, 11 1024

Semih Çağlayan, Sadık Yiğit

973

5. Conclusion

Project managers quite often suffer from delays

and cost overruns in consequence of poor project

scheduling. An efficient resource allocation

process is essential for achieving the project

success. It is a complicated process valid for

many industries including construction and

manufacturing. Numerous studies have been

conducted in an attempt to create schedules

minimizing the cost and duration. This study has

proposed a genetic algorithm approach to

achieve the most efficient resource allocation and

minimize the total cost of the project with project

crashing. The project crashing event has been

visualized, alternative approaches have been

described, and their implementations have been

illustrated with a case study.

The results show that the same solution can be

obtained with both approaches that follow

entirely different steps. The main advantage of

the genetic algorithm approach is that the

solution is obtained in a single phase. Once the

problem is appropriately transformed, decision

variables are defined, and objective function is

expressed in terms of the decision variables; the

optimum solution can be easily obtained. The

traditional approach is a multi-phase crashing

process where a number of operations should be

realized at each phase. On the other hand, it

should be noted that the genetic algorithm

approach may not reach optimum solution if the

toolbox options are not appropriately selected.

Selection of inappropriate toolbox options may

lead to identification of the local optimum rather

than the global optimum.

This study contributes to the body of knowledge

by describing the philosophy behind the use of a

genetic algorithm for cost minimization,

demonstrating its applicability to the project

crashing events, expressing the procedures

required for its adaptation, and indicating the

advantages and disadvantages compared to the

traditional approach. It goes beyond optimizing a

single phenomenon in the field of project

management and enters into the spirit of

integrating a genetic algorithm into any

optimization event. It expresses how the problem

should be handled, and data should be

transformed to enable proper execution of the

optimization process with genetic algorithm. The

proposed approach is intended to encourage

project managers to create effective schedules

and allocate resources efficiently in their projects

by means of such contemporary algorithms. The

genetic algorithm adaptation procedures are

expected to promote research focusing on the

integration of metaheuristic approaches into

optimization events in various fields.

The main limitation of the study is that both the

traditional and proposed genetic algorithm

approaches assume deterministic activity

durations and costs. In practice, projects may

involve uncertainty in these parameters [54]. The

results at optimality might be subjected to

variations as these parameters are subjected to

changes. Nevertheless, it must be noted that the

project crashing events are most of the time

expressed in this format in the project

management literature and potential solutions are

developed accordingly. In addition, the steps

followed in these approaches have been

illustrated with a theoretical case rather than a

real case. Illustration with a real case can be more

influential and preferred in further studies.

Further studies may also concentrate on the

integration of the other metaheuristic algorithms

(ant colony optimization, simulated annealing,

particle swarm optimization, etc.) into various

optimization events in different fields through

following the steps expressed for the adaptation.

Article Information Form

Funding

The author(s) have not received any financial

support for the research, authorship, or

publication of this study.

Authors' Contribution

The authors contributed equally to the study.

The Declaration of Conflict of Interest/

Common Interest

No conflict of interest or common interest has

been declared by the authors.

The Declaration of Ethics Committee Approval

This study does not require ethics committee

permission or any special permission.

Sakarya University Journal of Science, 28(5) 2024, 959-977

974

The Declaration of Research and Publication

Ethics

The authors of the paper declare that they comply

with the scientific, ethical and quotation rules of

SAUJS in all processes of the paper and that they

do not make any falsification on the data

collected. In addition, they declare that Sakarya

University Journal of Science and its editorial

board have no responsibility for any ethical

violations that may be encountered, and that this

study has not been evaluated in any academic

publication environment other than Sakarya

University Journal of Science.

Copyright Statement

Authors own the copyright of their work

published in the journal and their work is

published under the CC BY-NC 4.0 license.

References

[1] H. L. Chen, “Performance measurement

and the prediction of capital project

failure,” International Journal of Project

Management, vol. 33, no. 6, pp. 1393-

1404, 2015.

[2] E. Durna, B. Ozorhon, S. Caglayan,

“Identifying critical success factors of

public private partnership projects in

Türkiye,” Sakarya University Journal of

Science, vol. 28, no. 1, pp. 30-50, 2024.

[3] T. Huo, H. Ren, W. Cai, G. Q. Shen, B. Liu,

M. Zhu, H. Wu, “Measurement and

dependence analysis of cost overruns in

megatransport infrastructure projects: Case

study in Hong Kong,” Journal of

Construction Engineering and

Management, vol. 144, no. 3, pp.

05018001, 2018.

[4] P. Ballesteros-Perez, E. Sanz-Ablanedo, R.

Soetanto, M. C. González-Cruz, G. D.

Larsen, A. Cerezo-Narváez, “Duration and

cost variability of construction activities:

An empirical study,” Journal of

Construction Engineering and

Management, vol. 146, no. 1, pp.

04019093, 2020.

[5] C. Callegari, A. Szklo, R. Schaeffer, “Cost

overruns and delays in energy

megaprojects: How big is big enough?”

Energy Policy, vol. 114, pp. 211-220,

2018.

[6] G. Heravi, M. Mohammadian,

“Investigating cost overruns and delay in

urban construction projects in Iran,”

International Journal of Construction

Management, vol. 21, no. 9, pp. 958-968,

2021.

[7] S. Durdyev, “Review of construction

journals on causes of project cost

overruns,” Engineering, Construction and

Architectural Management, vol. 28, no. 4,

pp. 1241-1260, 2020.

[8] S. Zareei, “Project scheduling for

constructing biogas plant using critical

path method,” Renewable and Sustainable

Energy Reviews, vol. 81, pp. 756-759,

2018.

[9] H. F. Rahman, R. K. Chakrabortty, M. J.

Ryan, “Memetic algorithm for solving

resource constrained project scheduling

problems,” Automation in Construction,

vol. 111, pp. 103052, 2020.

[10] R. Pellerin, N. Perrier, F. Berthaut, “A

survey of hybrid metaheuristics for the

resource-constrained project scheduling

problem,” European Journal of Operational

Research, vol. 280, no. 2, pp. 395-416,

2020.

[11] M. Á. Vega-Velázquez, A. García-Nájera,

H. Cervantes, “A survey on the software

project scheduling problem,” International

Journal of Production Economics, vol. 202,

pp. 145-161, 2018.

[12] E. Osaba, E. Villar-Rodriguez, J. Del Ser,

A. J. Nebro, D. Molina, A. LaTorre, P. N.

Suganthan, C. A. C. Coello, F. Herrera, “A

tutorial on the design, experimentation and

application of metaheuristic algorithms to

real-world optimization problems,” Swarm

and Evolutionary Computation, vol. 64, pp.

100888, 2021.

Semih Çağlayan, Sadık Yiğit

975

[13] S. Katoch, S. S. Chauhan, V. Kumar, “A

review on genetic algorithm: past, present,

and future,” Multimedia Tools and

Applications, vol. 80, no. 5, pp. 8091-8126,

2021.

[14] Y. Fang, S. T. Ng, “Genetic algorithm for

determining the construction logistics of

precast components,” Engineering,

Construction and Architectural

Management, vol. 26, no. 10, pp. 2289-

2306, 2019.

[15] K. Kim, J. Walewski, Y. K. Cho,

“Multiobjective construction schedule

optimization using modified niched pareto

genetic algorithm,” Journal of

Management in Engineering, vol. 32, no. 2,

pp. 04015038, 2016.

[16] S. Mirjalili, J. S. Dong, A. S. Sadiq, H.

Faris, “Genetic algorithm: Theory,

literature review, and application in image

reconstruction,” Nature-Inspired

Optimizers, pp. 69-85, 2020.

[17] M. S. El-Abbasy, A. Elazouni, T. Zayed,

“MOSCOPEA: Multi-objective

construction scheduling optimization using

elitist non-dominated sorting genetic

algorithm,” Automation in Construction,

vol. 71, pp. 153-170, 2016.

[18] S. Sabharwal, P. Bansal, N. Mittal, S.

Malik, “Construction of mixed covering

arrays for pair-wise testing using

probabilistic approach in genetic

algorithm,” Arabian Journal for Science

and Engineering, vol. 41, no. 8, pp. 2821-

2835, 2016.

[19] A. Elkelesh, M. Ebada, S. Cammerer, S.

ten Brink, “Decoder-tailored polar code

design using the genetic algorithm,” IEEE

Transactions on Communications, vol. 67,

no. 7, pp. 4521-4534, 2019.

[20] Z. Tong, “A genetic algorithm approach to

optimizing the distribution of buildings in

urban green space,” Automation in

Construction, vol. 72, pp. 46-51, 2016.

[21] S. M. Lim, A. B. M. Sultan, M. N.

Sulaiman, A. Mustapha, K. Y. Leong,

“Crossover and mutation operators of

genetic algorithms,” International Journal

of Machine Learning and Computing, vol.

7, no. 1, pp. 9-12, 2017.

[22] Z. Shen, A. Hassani, Q. Shi, “Multi-

objective time-cost optimization using

Cobb-Douglas production function and

hybrid genetic algorithm,” Journal of Civil

Engineering and Management, vol. 22, no.

2, pp. 187-198, 2016.

[23] M. Mangal, J. C. Cheng, “Automated

optimization of steel reinforcement in RC

building frames using building information

modeling and hybrid genetic algorithm,”

Automation in Construction, vol. 90, pp.

39-57, 2018.

[24] S. RazaviAlavi, S. AbouRizk, “Genetic

algorithm–simulation framework for

decision making in construction site layout

planning,” Journal of Construction

Engineering and Management, vol. 143,

no. 1, pp. 04016084, 2017.

[25] L. Zhang, T. N. Wong, “An object-coding

genetic algorithm for integrated process

planning and scheduling,” European

Journal of Operational Research, vol. 244,

no. 2, pp. 434-444, 2015.

[26] M. Artar, A. Daloglu, “The optimization of

multi-storey composite steel frames with

genetic algorithm including dynamic

constraints,” Technical Journal, vol. 26, no.

2, pp. 7077-7098, 2015.

[27] M. Rita, E. Fairbairn, F. Ribeiro, H.

Andrade, H. Barbosa, “Optimization of

mass concrete construction using a twofold

parallel genetic algorithm,” Applied

Sciences, vol. 8, no. 3, pp. 399, 2018.

[28] H. Sebaaly, S. Varma, J. W. Maina,

“Optimizing asphalt mix design process

using artificial neural network and genetic

algorithm,” Construction and Building

Materials, vol. 168, pp. 660-670, 2018.

Sakarya University Journal of Science, 28(5) 2024, 959-977

976

[29] E. Hazir, T. Ozcan, K. H. Koç, “Prediction

of adhesion strength using extreme

learning machine and support vector

regression optimized with genetic

algorithm,” Arabian Journal for Science

and Engineering, vol. 45, pp. 6985-7004,

2020.

[30] A. A. Chiniforush, M. Gharehchaei, A. A.

Nezhad, A. Castel, F. Moghaddam, L.

Keyte, D. Hocking, S. Foster, “Minimising

risk of early-age thermal cracking and

delayed ettringite formation in concrete–A

hybrid numerical simulation and genetic

algorithm mix optimisation approach,”

Construction and Building Materials, vol.

299, pp. 124280, 2021.

[31] A. Kumar, N. Grover, A. Manna, R.

Kumar, J. S. Chohan, S. Singh, S. Singh, C.

I. Pruncu, “Multi-objective optimization of

WEDM of aluminum hybrid composites

using AHP and genetic algorithm,”

Arabian Journal for Science and

Engineering, vol. 47, no. 7, pp. 8031-8043,

2022.

[32] E. Uray, O. Tan, S. Carbas, I. H. Erkan,

“Metaheuristics-based pre-design guide for

cantilever retaining walls,” Technical

Journal, vol. 32, no. 4, pp. 10967-10993,

2021.

[33] A. M. Rayeni, H. G. Arab, M. R. Ghasemi,

“An effective improved multi-objective

evolutionary algorithm (IMOEA) for

solving constraint civil engineering

optimization problems,” Technical

Journal, vol. 32, no. 2, pp. 10645-10674,

2021.

[34] I. Costa-Carrapiço, R. Raslan, J. N.

González, “A systematic review of genetic

algorithm-based multi-objective

optimisation for building retrofitting

strategies towards energy efficiency,”

Energy and Buildings, vol. 210, pp.

109690, 2020.

[35] Q. Li, L. Zhang, L. Zhang, X. Wu,

“Optimizing energy efficiency and thermal

comfort in building green retrofit,” Energy,

vol. 237, pp. 121509, 2021.

[36] Y. Fan, X. Xia, “Energy-efficiency

building retrofit planning for green

building compliance,” Building and

Environment, vol. 136, pp. 312-321, 2018.

[37] Y. He, N. Liao, J. Bi, L. Guo, “Investment

decision-making optimization of energy

efficiency retrofit measures in multiple

buildings under financing budgetary

restraint,” Journal of Cleaner Production,

vol. 215, pp. 1078-1094, 2019.

[38] L. T. Le, H. Nguyen, J. Dou, J. Zhou, “A

comparative study of PSO-ANN, GA-

ANN, ICA-ANN, and ABC-ANN in

estimating the heating load of buildings’

energy efficiency for smart city planning,”

Applied Sciences, vol. 9, no. 13, pp. 2630,

2019.

[39] S. N. Al-Saadi, K. S. Al-Jabri,

“Optimization of envelope design for

housing in hot climates using a genetic

algorithm (GA) computational approach,”

Journal of Building Engineering, vol. 32,

pp. 101712, 2020.

[40] P. Pérez-Gosende, J. Mula, M. Díaz-

Madroñero, “Facility layout planning. An

extended literature review,” International

Journal of Production Research, vol. 59,

no. 12, pp. 3777-3816, 2021.

[41] M. Oral, S. Bazaati, S. Aydinli, E. Oral,

“Construction site layout planning:

Application of multi-objective particle

swarm optimization,” Technical Journal,

vol. 29, no. 6, pp. 8691-8713, 2018.

[42] M. A. Brahami, M. Dahane, M. Souier,

“Sustainable capacitated facility

location/network design problem: a Non-

dominated Sorting Genetic Algorithm

based multiobjective approach,” Annals of

Operations Research, vol. 311, pp. 821-

852, 2020.

[43] A. Taghavi, R. Ghanbari, K. Ghorbani-

Moghadam, A. Davoodi, A. Emrouznejad,

Semih Çağlayan, Sadık Yiğit

977

“A genetic algorithm for solving bus

terminal location problem using data

envelopment analysis with multi-objective

programming,” Annals of Operations

Research, vol. 309, pp. 259-276, 2022.

[44] S. Kumar, A. Sikander, “Optimum mobile

robot path planning using improved

artificial bee colony algorithm and

evolutionary programming,” Arabian

Journal for Science and Engineering, vol.

47, no. 3, pp. 3519-3539, 2022.

[45] A. Mahdavian, A. Shojaei, “Hybrid genetic

algorithm and constraint-based simulation

framework for building construction

project planning and control,” Journal of

Construction Engineering and

Management, vol. 146, no. 12, pp.

04020140, 2020.

[46] J. Liu, Y. Liu, Y. Shi, J. Li, “Solving

resource-constrained project scheduling

problem via genetic algorithm,” Journal of

Computing in Civil Engineering, vol. 34,

no. 2, pp. 04019055, 2020.

[47] R. L. Kadri, F. F. Boctor, “An efficient

genetic algorithm to solve the resource-

constrained project scheduling problem

with transfer times: The single mode case,”

European Journal of Operational Research,

vol. 265, no. 2, pp. 454-462, 2018.

[48] H. Li, L. Xiong, Y. Liu, H. Li, “An

effective genetic algorithm for the resource

levelling problem with generalised

precedence relations,” International

Journal of Production Research, vol. 56,

no. 5, pp. 2054-2075, 2018.

[49] W. Peng, J. Zhang, L. Chen, “A bi-

objective hierarchical program scheduling

problem and its solution based on NSGA-

III,” Annals of Operations Research, vol.

308, no. 1, pp. 389-414, 2022.

[50] Z. Wu, G. Ma, “Automatic generation of

BIM-based construction schedule:

Combining an ontology constraint rule and

a genetic algorithm,” Engineering,

Construction and Architectural

Management, vol. 30, no. 10, pp. 5253-

5279, 2023.

[51] I. Behera, S. Sobhanayak, “Task

scheduling optimization in heterogeneous

cloud computing environments: A hybrid

GA-GWO approach,” Journal of Parallel

and Distributed Computing, vol. 183, pp.

104766, 2024.

[52] S. Caglayan, S. Yigit, B. Ozorhon, G.

Ozcan-Deniz, “A genetic algorithm-based

envelope design optimisation for

residential buildings,” Proceedings of the

Institution of Civil Engineers - Engineering

Sustainability, vol. 173, no. 6, pp. 280-290,

2020.

[53] H. G. Lee, C. Y. Yi, D. E. Lee, D. Arditi,

“An advanced stochastic time‐cost tradeoff

analysis based on a CPM‐guided genetic

algorithm,” Computer‐Aided Civil and

Infrastructure Engineering, vol. 30, no. 10,

pp. 824-842, 2015.

[54] S. Tao, C. Wu, Z. Sheng, X. Wang,

“Stochastic project scheduling with

hierarchical alternatives,” Applied

Mathematical Modelling,” vol. 58, pp.

181-202, 2018.

