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Abstract 

Mutagenicity is both a toxic risk to humans and an indicator of carcinogenicity. Hence, estimating mutagenicity in the early stages of 

drug design is crucial to minimize last-stage failures and withdrawals in drug discovery. Recently, in-silico methods have started to 

play critical and essential roles in the drug development process because they are low cost and low effort procedures. This study aims 

to predict mutagenicity of chemicals using in-silico methods. To achieve this goal, a two-phased flexible framework was proposed: 1) 

searching the effective and representative descriptors subset with Butterfly Optimization Algorithm (BOA) and Particle Swarm 

Optimization and 2) predicting mutagenicity of chemicals by the selected descriptor using gradient boosted tree-based ensemble 

methods. The study used two datasets: one including 8167 compounds for descriptor selection and modelling, and another containing 

716 external compounds to validate the efficacy of our models. The datasets comprise 162 descriptors calculated using PaDEL. The 

results of both the cross-validation and the external data showed that descriptors reduced by nearly one-third by BOA (51 descriptors) 

yielded similar or slightly better predictive results than results obtained with the entire data set. The accuracy range attained by the 

proposed approach using BOA is approximately 91.9% to 97.91% for the external set and 83.35% to 86.47% for the test set. This 

research contributes that using optimization techniques for improving early drug design and minimizing risks in drug discovery can be 

considered as a valuable insights and advances in the field of drug toxicity prediction, based on the findings. 

Keywords: Machine Learning, Feature Selection, Metaheuristics, Gradient Boosting Algorithms, Mutagenicity Prediction, In-Silico 

Modelling 

In-silico Mutajenite Tahmini için Hibrit Metasezgisel Tabanlı Özellik Seçimi 

Çerçevesi 

Öz 

Mutajenite hem insanlar için toksik bir risk hem de kanserojenitenin bir göstergesidir. Bu nedenle, ilaç tasarımının erken aşamalarında 

mutajenitenin tahmin edilmesi, ilaç keşfinde son aşama başarısızlıklarını ve geri çekilmeleri en aza indirmek için çok önemlidir. Son 

zamanlarda, in-silico yöntemler, düşük maliyetli ve az çaba gerektiren prosedürler olmaları nedeniyle ilaç geliştirme sürecinde kritik 

ve önemli roller oynamaya başlamıştır. Bu çalışma, in-silico yöntemler kullanarak kimyasalların mutajenitesini tahmin etmeyi 

amaçlamaktadır. Bu amaca ulaşmak için iki aşamalı esnek bir çerçeve önerilmiştir: 1) Kelebek Optimizasyon Algoritması (BOA) ve 

Parçacık Sürü Optimizasyonu ile etkili ve temsili değişken alt kümesinin aranması ve 2) gradyan destekli ağaç tabanlı topluluk 

yöntemleri kullanılarak seçilen değişkenlere göre kimyasalların mutajenitesinin tahmin edilmesi. Çalışmada iki veri kümesi 

kullanılmıştır: biri değişken seçimi ve modelleme için 8167 bileşik, diğeri ise modellerimizin etkinliğini doğrulamak için 716 harici 

bileşik içermektedir. Veri kümeleri PaDEL kullanılarak hesaplanan 162 değişkeni içermektedir. Hem çapraz doğrulama hem de harici 

verilerin sonuçları, BOA ile neredeyse üçte bir oranında azaltılan değişkenlerin (51 adet), tüm veri setiyle elde edilen sonuçlara benzer 

veya biraz daha iyi tahmin sonuçları verdiğini göstermiştir. BOA kullanılarak önerilen yaklaşımla elde edilen doğruluk aralığı harici 

set için yaklaşık %91,9 ila %97,91 ve test seti için %83,35 ila %86,47'dir. Bu araştırma, bulgulara dayanarak, erken ilaç tasarımını 

iyileştirmek ve ilaç keşfindeki riskleri en aza indirmek için optimizasyon tekniklerinin kullanılmasının, ilaç toksisitesi tahmini alanında 

değerli bir içgörü ve ilerleme olarak kabul edilebileceğine katkıda bulunmaktadır. 

Anahtar Kelimeler: Makine Öğrenmesi, Özellik Seçimi, Metasezgisel, Gradyan Boosting Algoritmaları, Mutajenite Tahmini, In-

Silico Modelleme   
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1. Introduction  

Mutagenicity can be defined as the capacity of a 

compound to cause permanent mutations in the DNA 

sequence (Bakhtyari et al. 2013). It could lead to a toxic 

risk to humans. Moreover, it is the indicator of 

carcinogenicity which means healthy cell transforms 

themselves into cancer cells. Assessment of 

mutagenicity at the early stages of the drug approval 

process is crucial to swift eliminate such compounds 

from the drug development pipeline (Raghavan 2005). 

Among the toxicity tests, the in-vitro Ames test has 

become a standard for assessing mutagenicity (Zhang 

2017). However, these in-vitro experiments are highly 

expensive, laborious, and time-consuming. On the other 

hand, both in-vivo experiments and in-vitro experiments 

have begun to give up their places to statistical and 

computational methods and tools developed in the 

computer environment without requiring laboratory 

experiments. Therefore, to prevent drug failure and 

withdrawal due to late-stage mutagenicity, it is 

necessary to predict mutagenicity by developing in-

silico methods. Computational methods used for in-

silico approaches can be grouped basically as expert 

rule-based systems, also referred to as structural alerts, 

and statistics-based models, known as quantitative 

structure-activity relationship tools (Bakhtyari et al. 

2013; Honma 2019; Hansch 1980). Difficulties in 

explainability and interpretability, which are the main 

drawbacks of computational approaches, are almost 

non-existent in expert systems. Therefore, expert 

systems are widely used because they provide 

comprehensive outputs that can be understood, 

questioned and judged by the user. Despite this 

transparency, their prediction success is lower than that 

of statistical approaches (Wichard 2017). It is worth 

noting that expert systems for in-silico research are 

available both commercially and open access (Honma 

2019; Çakmak Pehlivanlı and Çakmak 2022).  

A well-designed in silico approach can yield several 

benefits, including the ability to plan studies with fewer 

animals, identify the concentration that will be used in 

advance, save time and money, and guide whether the 

information obtained about the molecule should proceed 

to laboratory experiments (Toropov et al. 2014). 

Metaheuristic optimization algorithms are ideally 

suited for efficiently exploring the complex and high-

dimensional feature spaces encountered in feature 

selection problems due to their stochastic, adaptable, 

and global search characteristics.  

To the best of our knowledge, no studies address the 

estimation of drug toxicity, particularly mutagenicity, 

except for the limited number of studies in which 

metaheuristic optimization algorithms have been 

applied to drug discovery (Houssein et al. 2020; 

Algamal et al. 2020; Subaş and Çakmak Pehlivanlı 

2020). The main contributions and scope of this paper 

are summarized as follows in order to fill this gap; 

• We propose a flexible approach that hybridized 

metaheuristic algorithms with several machine 

learning algorithms to select descriptors and 

compare the classification models that promise 

the best prediction results of mutagenicity,  

• We show that metaheuristic algorithms and 

machine learning algorithms can work together 

in in-silico studies such as drug toxicity 

prediction,  

• We conclude whether metaheuristic 

approaches are suitable for searching the 

descriptor space and enhancing mutagenicity 

classification based on the chosen descriptors. 

It should be noted that our motivation is not only the 

success of the optimization part but also mostly 

obtaining higher accuracy with fewer descriptors. To 

address these aforementioned aims, we introduce a 

flexible approach by hybridizing metaheuristic and 

machine learning algorithms on mutagenicity. 

The rest of this paper is organized as follows. After 

introducing the related work of this paper in Section 2, 

dataset and the proposed model are described in Section 

3. Experimental results, discussions and conclusions are 

presented in Sections 4, 5 and 6 respectively. 

2. Related works 

Early studies on systems based on rules and expert 

knowledge gained speed, especially at the end of the 

’90s. The relationships between chemical structures and 

observed toxic effects and outcomes were examined, 

and various software was presented comparatively 

(Greene et al. 1999). This study was followed by several 

in-silico studies (White et al. 2003; Cariello et al. 2002). 

In the early 2000s, modelling based on statistical 

learning algorithms was commonly used to predict 

mutagenicity in in-silico studies. Zheng et al. developed 

a mutagenic probability model with support vector 

machines (SVM) for the mutagenicity prediction and 

achieved better performance than the TOPKAT, a tool 

based on rules and expert knowledge (Zheng 2006). 

Liao et al. applied a combination of recursive 

partitioning (RP) and SVM on different data sets to 

predict mutagenic toxicity and achieved between 80.2% 

and 87.3% performances with two models (Liao et al. 

2007). In order to improve in-silico methodologies used 

to predict mutagenicity in the first decade of the 2000s, 

Mazzatorta et al. proposed a novel system named robust 

hybrid classifier (RHC) by combining a fragment-based 

structure activity relationship (SAR) model and AI-

based approaches on Bursi mutagenicity data set. The 

performance of the proposed methods was tested with 

external test data and obtained 85% both in sensitivity 

and specificity (Mazzatorta et al. 2007; Kazius et al. 

2005). In order to build a public Ames mutagenicity data 

set, Hansen et al. constructed a data set that comprised 

about 6500 compounds, in the format of SMILES 

(simplified molecular input line entry specification) and 
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SDF (structure data format), with biological activity 

(Hansen 2009). In the same study, this benchmark data 

set was used to compare commercial tools (DEREK, 

Pipeline Pilot, and MultiCase) based on expert 

knowledge with machine learning algorithms (SVM, 

random forest (RF), k-nearest neighbour (KNN), and 

Gaussian process (GP)). As a result of this study, while 

the best performance was obtained by SVM with 0.86 

AUC, DEREK yielded the lowest sensitivity and 

specificity (Hansen 2009). 

Since toxicity is one of the most critical issues that 

cause late-stage drug failure or withdrawal, the in-silico 

studies in the prediction of mutagenicity gained speed in 

the last decade. In most of these studies, machine 

learning and statistical learning-based methods such as 

SVM, RF, artificial neural networks (ANN), KNN, 

genetic algorithms, radial basis function (RBF), partial 

least squares (PLS), naïve Bayes methods were 

preferred (Sharma et al. 2011; Webb et al. 2014b; Xu et 

al. 2012). Since the experimental screening of chemical 

compounds for biological activity is time consuming 

and expensive, Seal et al. applied supervised learning 

approaches on two different data sets to generate an 

alternative predictive model. As a result of the study, the 

RF algorithm achieved the best performance with 

89.27% with a new mutagenicity data set comprising 

two well-known data (Seal et al. 2012). Webb et al. 

published a study emphasizing that interpretability of 

Ames mutagenicity prediction is more important than 

successful performance to interpret the model. They 

tried to extract the pattern of biological activity through 

the descriptors importance (Webb et al. 2014a). Zhang 

aimed to investigate the prediction of agents as 

mutagens and non-mutagens using a naive Bayes 

classifier in several studies. In addition to this purpose, 

they focused on identifying the most informative 

molecular descriptors related to mutagenicity. Although 

the prediction performance was similar to previous 

studies, their model identified four simple molecular 

descriptors (apol, number of H donors, number of rings, 

and Wiener) related to mutagenicity (Zhang 2017, 2015, 

2016). Another research group has provided machine 

learning-based models for toxicity prediction of 

approximately 1500 diverse chemical compounds in 

various species. It has been reported that 70% of 

compounds were classified correctly based on the 

random forest algorithm and listed the physicochemical 

descriptors based on their importance (Moorthy et al. 

2017). 

Several kinds of research have recently been 

published on the prediction of toxicity and in-silico drug 

discovery with new approaches such as deep learning 

and ensemble methods such as XGBoost (Fan 2018; 

Rifaioğlu et al. 2019; Ji et al. 2019). Most recent studies 

in this area generally examine the current impact of AI 

studies on drug toxicity, potential challenges and future 

perspectives and potential (Tran et al. 2023; Zhang et al. 

2019; Chu et al. 2021). In their 2023 review, Tran et al. 

provide an overview of recent AI driven advances in 

drug toxicity prediction, including machine learning and 

deep learning techniques on various toxicity traits (Tran 

et al. 2023). Zhang et al. conducted a study on chemical 

toxicity prediction with LightGBM, a machine learning 

algorithm, using Tox21 and Mutagenicity databases (Ji 

et al. 2019). Similarly, Chu et al. tried to present robust 

in silico models accurately estimate a compound’s 

mutagenicity before synthesis to get around the 

limitations (costly, time consuming) of the Ames test 

(Chu et al. 2021). 

Providing the most related descriptors that 

effectively classify mutagenic and non-mutagenic 

compounds also emerges as another important research 

area. Feature selection which can be conducted either 

based on the wrapper or filter approach, is considered a 

preprocessing for machine learning algorithms. It is 

generally hard to obtain the best feature subset set using 

traditional approaches. Therefore, metaheuristic 

approaches can be another alternative in order to select 

optimal subsets. In 2020, Houssein et al. built a novel 

hybrid Harris Hawks optimization (HHO) and SVM in 

drug discovery. As they reported, this was the first time 

HHO had been applied in the field of drug design 

(Houssein et al. 2020). Similarly, Algamal et al. 

developed the pigeon optimization algorithm with a new 

time varying transfer function to select the features most 

relevant to high dimensional QSAR / QSPR 

classification modeling (Algamal et al. 2020). 

3. Material and Methods 

3.1. Data preparation 

This study used a combination of two popular data 

sets, namely The Benchmark and Bursi Mutagenicity 

data sets. The Benchmark data set consists of 6512 

compounds, and the Bursi data set has 4337 compounds. 

These data sets were collected by Hansen et al. and 

Kazius et al., respectively (Kazius et al. 2005; Hansen 

2009). According to Ames results, each compound in 

the data sets was given its canonical SMILES format and 

corresponding label, indicating whether it was mutagen 

or non-mutagen. In addition to this training data set, an 

external validation set has been included to study to 

make a fair measurement of the proposed approach. The 

external data set consisted of canonical SMILES format 

of 731 compounds was collected by Xu et al. (Xu et al. 

2012). After removing duplicate compounds based on 

their SMILES format, 8167 unique compounds in the 

training set and 716 unique compounds in the external 

validation set were left. All the descriptors of molecules 

were calculated by PaDEL-Descriptor software (Yap 

2010). Among 1444 1D and 2D physicochemical 

descriptors, i.e., properties, 225 descriptors were chosen 

based on several studies (Xu et al. 2012; Fan 2018; 

Gupta and Rana 2019; Guan et al. 2018). During the 

preprocessing and selection process, only the training 

data set was used. The limited number of missing values 

was imputed by using mean. Correlated descriptors 
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given in the correlation matrix across all pairs of 

descriptors with 0.95 or higher correlations were 

assumed to be redundant and removed from the data set. 

Finally, the entire data set used in this study consisted of 

162 descriptors, and the details were presented in Table 

1. 

3.2. Butterfly optimization algorithm 

BOA, proposed by Arora et al., is a metaheuristic 

algorithm that models the food foraging behavior of 

butterflies in nature (Arora and Singh 2019). Through 

chemoreceptors scattered on their bodies, butterflies can 

separate different fragrances of food (flowers), sense 

(smell) their intensities, and perform foraging 

movements (Tubishat et al. 2020). During their 

movements, butterflies can produce fragrance with an 

intensity that is directly proportional to their fitness. 

Butterflies communicate with each other by the 

fragrance they emit. BOA is a global optimization 

method based on the communication behaviors of 

butterflies. The intensity of the fragrance a butterfly 

emits is as much as other butterflies can feel it. The most 

crucial feature of BOA that differs from different 

metaheuristic algorithms is that the intensity of 

fragrance felt by the butterfly is unique. The most 

critical part of BOA algorithm is how the fragrance is 

calculated based on concepts of sensing and processing 

the modality like the smell, sound, temperature, etc. As 

reported in the original study of Arora et al., modality is 

fragrance in BOA Arora and Singh (2019). Three terms 

should be clearly explained for this; sensory modality 

(c), stimulus intensity (I), and power exponent (a). The 

formulation of the perceived fragrance intensity for each 

butterfly is given in Eq.(1) based on Steven’s Law of 

Power (Arora and Singh 2019; Stevens 1986). 

 

𝑓 = 𝑐𝐼𝑎                 (1) 

 

where f is the emitted magnitude of the fragrance, i.e., 

how intensively other butterflies emit the fragrances 

within the search space, c is a proportionality constant 

taken as the sensory modality taken in the range [0, 1], I 

is the stimulus magnitude of the perceived fragrance by 

butterfly, and a is the power exponent characterizing the 

degree of absorption of sensory modality with its values 

over the range [0, 1]. Since a and c directly affect the 

convergence speed of the BOA algorithm, it is a crucial 

point to choose suitable values for both c and a. This can 

be expressed as, at the extreme points of the range, the 

fragrance emitted by the butterfly, if a = 0 it is not 

perceived by other butterflies if a = 1, it is perceived by 

other butterflies at the same intensity. 

Butterflies share information with each other about 

their positions according to the fragrance intensity they 

produce. Thus, the butterflies change their positions 

towards the best butterfly closest to the food with the 

optimum fragrance intensity in the search space. This 

movement of butterflies is called global search and 

determined as in Eq. (2). 

 

𝑥𝑖
𝑡+1 =  𝑥𝑖

𝑡 +  (𝑟2  ×  𝑔∗ − 𝑥𝑖
𝑡)  ×  𝑓𝑖     (2) 

 

where the solution vector x_i^t is the position of ith 

butterfly in movement t, g^* is the current fittest 

position decided among the available positions at the 

current movement of all butterflies, sensed fragrance 

magnitude of the butterfly is symbolized by f_i and r is 

a uniform random number in the range of [0, 1]. 

On the other hand, when butterflies cannot detect the 

fragrance of different butterflies in the search space, 

they move randomly. This movement of butterflies is 

called local search and formulated as in Eq. (3). 

 

𝑥𝑖
𝑡+1 =  𝑥𝑖

𝑡 +  (𝑟2  ×  𝑥𝑗
𝑡 −  𝑥𝑘

𝑡 )  × 𝑓𝑖              (3) 

 

where the solution vector x_j^t and x_k^t are the 

position of jth and kth butterfly in movement t. If x_j^t 

and x_k^t  are located in the same neighborhood, and r 

is a random number in the range of [0, 1], then Eq. (3) 

turns out to be a local random stride. In order to control 

switching between global search and local search space 

in BOA, the switching probability (p) parameter is 

utilized. 

3.3. Particle swarm optimization algorithm 

First introduced by Kennedy et al., PSO is one of the 

metaheuristic search algorithms inspired by the bird’s 

swarm’s social behaviour (Kennedy and Eberhart 1995). 

PSO is a population-based algorithm that consists of the 

particles, i.e., a possible set of solutions. These particles 

move through in the multidimensional search space in 

order to find the best solution. While their movement, 

they have a memory in keeping track of their previous 

best position, namely best solution. Besides concerning 

their own best solutions, they considered the best 

solution of the swarm as well (Mirjalili and Lewis 2013). 

There are two types of particle positions, namely local 

(personal) best and global best.  

 

Table 1. Distribution of the mutagens and non-mutagens in training and external validation set 

Data Sets Mutagens Non-Mutagens Total 

Training data set (Kazius et al. 2005; Hansen 2009) 4524 3643 8167 

External validation set (Xu et al. 2012) 599 117 716 

Total 5123 3760 8883 
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Each particle owns certain information in order to 

update its position; the current position, the current 

velocity, distance to the local best solution (p), and 

distance to the global best solution (𝑔∗). The 

mathematical definition of the PSO model consists of 

both the velocity of the 𝑖th particle at iteration t + 1 and 

also the new position of the 𝑖th particle given in Eq. (4) 

and Eq. (5), respectively. 

 
𝑣𝑖

𝑡+1 = 𝑤𝑣𝑖
𝑡 + 𝑐1. 𝑟(𝑝𝑖 − 𝑥𝑖

𝑡) + 𝑐2. 𝑟(𝑔∗ − 𝑥𝑖
𝑡) (4) 

 

𝑥𝑖
𝑡+1 =  𝑥𝑖

𝑡 +  𝑣𝑖
𝑡+1    (5) 

 

where 𝑣𝑖
𝑡 is the velocity of the 𝑖th particle at iteration 𝑡, 

𝑐1 and 𝑐2 are acceleration constants, 𝑟 is a uniform 

random number in the range of [0, 1], 𝑤 is the inertia 

weighting function predefined by the user, 𝑥𝑖
𝑡 represents 

the current position of 𝑖th particle at iteration 𝑡, 𝑝𝑖  is the 

best solution that obtained previously by 𝑖th particle, 

and global best solution g∗ is the best position of all 

particles, i.e., swarm. Once  𝑣𝑖
𝑡+1 (the velocity of the 𝑖th 

particle at iteration 𝑡 + 1) is obtained by Eq. (4), the 

position of the 𝑖th particle is updated by Eq. (5). 

The general idea of Eq. (4) can be explained as the 

combination of exploration ability  𝑤𝑣𝑖
𝑡 , individual 

thinking (𝑐1  × 𝑟 × (𝑝𝑖 −  𝑥𝑖
𝑡)) and collaboration of 

particles (𝑐2  × 𝑟 × (𝑔∗ −  𝑥𝑖
𝑡)). Initially, each particle 

placed in the search space has a random position, 

velocity, and fitness value calculated by the fitness 

function. At each iteration, the velocity and the position 

of particles are updated until the stopping criterion is 

met (Mirjalili and Lewis 2013). 

3.4. Machine learning based models 

Machine learning as a branch of artificial 

intelligence seeks to build analytical computational 

models by learning automatically from data and 

improving with experience (Mitchell 1997). In this 

work, several machine learning methods have been used 

both for feature selection and prediction phases. Support 

vector machine (SVM) as a binary learning machine is 

based on statistical learning theory introduced by 

Vapnik (Vapnik 1995). SVM aims to construct a 

decision hyperplane that the margin of separation 

between a set of objects of different classes is 

maximized (Haykin 2011). K-nearest neighbour (KNN), 

the most basic instance-based method, was designed to 

approximate real-valued or discrete valued target 

functions with instances consisting of the k closest 

training examples in the training data (Mitchell 1997; 

Cover and Hart 1967). Logistic regression (LR), known 

as the discriminative classifier, is one of the baseline 

machine learning algorithms used widely for binary and 

multinomial classifications. Random forest (RF), 

proposed by Breiman, is one of the commonly used 

ensemble algorithms. Basically, it combines the results 

of the tree predictors applying on the random 

subsamples from a standard data set. The strength of the 

individual trees in the forest and their correlation affects 

the generalization error of a forest (Breiman 2001). 

Randomness, the most crucial property of RF, can be 

defined as a combination of bagging and random 

subspace methods (Ho 1998). Extremely randomized 

trees (ExTrees) and RF can be similar ensemble 

algorithms that follow almost identical procedures. The 

main differences are in the subsampling approach and 

the split points selections. While RF obtains subsamples 

with replacement, ExTrees uses the original sample. The 

cut points are decided randomly in ExTrees, whereas RF 

selects the optimum cut point (Geurts et al. 2006). 

Extreme gradient boosting (XGBoost) is an ensemble of 

decision tree models utilized based on the principle of 

gradient boosting machines (Chen and Guestrin 2016). 

Although training based on the gradient boosting 

principle can be diffcult, it can achieve a lower model 

bias than the RF. XGBoost follows the idea to correct 

the previous mistakes done by the model and propagate 

the experience to the next step for improving the 

performance. Light gradient boosting (LightGBM) like 

XGBoost is also a supervised learning method based on 

the gradient boosting framework. The main difference 

between them is faster training speed, especially on a 

large data set. LightGBM is a histogram-based 

algorithm with low memory usage since it transforms 

numerical values to discrete bins (Ke et al. 2017). 

3.5. Model evaluation 

The data sets used in this study have binary classes 

as mutagen and non-mutagen. Since our main focus is to 

identify mutagen compounds, mutagen labelled class is 

assumed as 1 which indicates positive class, and non-

mutagen labelled class is accepted as 0, i.e. negative 

class. True positive (TP) and true negative (TN) results 

show that the compound is correctly predicted to be 

mutagenic and non-mutagenic, respectively. On the 

other hand, false positive (FP) and false negative (FN) 

results indicate that the compound has been incorrectly 

predicted to be positive and negative, respectively (John 

et al., 2023). In this study, several statistics had been 

calculated based on the confusion matrix to measure the 

models’ performance. All the experiments were 

evaluated in terms of sensitivity (recall), specificity, F-

measure, and accuracy. In addition to these 

measurements, AUC and probability excess had been 

preferred to compare models. The reason to choose the 

probability excess is that relative class frequencies, i.e., 

imbalanced class distribution, do not affect the 

probability excess, whereas accuracy (success rate) is 

affected by imbalance class distribution (Yang et al. 

2005). 

3.6. Proposed approach 

Since each metaheuristic optimization algorithm 

follows different search strategies, each of them may 

propose different subsets of features for a given dataset. 

The proposed approach consists of feature selection and  
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Algorithm 1. Hybrid Feature Selection and Prediction 

Inputs 

n: number of features 

OPi : Optimization algoritm, i=1,…,nbOP, nbOP: number of optimization algorithms  

CLj : Classification algorithm, j=1,…,nbCL, nbCL: number of classification algorithms 

𝐹𝑆𝑗
𝑖: Feature Subset selected with with OPi and CLj 

error : error obtained by classifier 

d: number of selected features   

FFSi : Final Feature Subset selected with with OPi and CLj 

w1 = importance of the classification error (w1 = 1- w2) 

w2 = importance of the number of selected features   

Feature Selection Phase 

for each OPi; i=1 to nbOP 

for each CLj ; j=1 to nbCL 

perform optimization algorithm OPi to get the best subset of features 

calculate fitness value by objective function 

calculate classification error by CLj  

evaluate the candidate subset and get d 

fitness w1 x error + w2 x (d/n) 

save the best subset of features found during the OPi process, as 𝐹𝑆𝑗
𝑖 

end for 

determine the final feature set by majority voting strategy by selecting the most seen features among 𝐹𝑆𝑗
𝑖 

and save as FFSi 

end for 

Prediction Phase 

Evaluate the performance of the classification algorithms on dataset with FFSi (Final Feature Subset obtained from 

Feature Selection Phase) 

mutagenicity prediction phases described in the pseudo 

code seen in Algorithm 1. The feature selection phase 

provided in Algorithm 1 basically selects the final 

significant and representative feature subsets by 

consensus of several hybridization of optimization 

algorithms with classifiers. To obtain this outcome, 

different machine learning algorithms had been chosen 

as part of the fitness function, which is essential for the 

optimization algorithm. The fitness function allows to 

determine the distance of each unit (particle, butterfly, 

etc) to the best solution based on the nature of the chosen 

optimization algorithm. The units receive a fitness value 

by sending their position values to the fitness function. 

In this frame, the optimization had a two-fold aim; 

obtaining the lowest error with the minimum number of 

features (Arora and Singh 2019). The solution for this 

multi-objective problem had been given as a fitness 

function in Eq. (6) 

 

𝑓𝑖𝑠𝑡𝑛𝑒𝑠𝑠 = 𝑤1 × 𝑒𝑟𝑟𝑜𝑟(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟) + 𝑤2 × 
𝑑

𝑛
      (6) 

 

where 𝑒𝑟𝑟𝑜𝑟(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟) is the classification error rate 

of the 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟, 𝑑 is the number of selected 

descriptors, and 𝑛 represents the number of descriptors 

in the original data set. The importance of accuracy and 

the number of selected features were weighted by 𝑤1 

and 𝑤2, respectively and chosen as 𝑤2 =  1 −  𝑤1. 

Thus, a balance was provided between classification 

accuracy and subset length utilizing the fitness function. 

Once relevant and informative descriptors from each 

hybrid of optimization and classifier, the final subset is 

determined based on the majority voting strategy by 

selecting the most seen features obtained from each 

hybrid. Several machine learning algorithms were 

applied on data sets consisting of descriptor subsets 

obtained from the feature selection phase in the 

mutagenicity prediction phase. In order to validate the 

proposed model, besides cross-validation, an external 

data set was also used. It should be noted that the most 

promising property of the proposed approach is the 

flexibility. It can be used either the same optimization 

algorithms with different classifiers or different 

optimization algorithms with other classifiers. 

4. Experimental Results 

As stated earlier, the main purpose of this study is to 

select the most informative descriptor subset for the 

early prediction of the mutagenicity by following the 

flow given in Algorithm 1. In order to explore the 

performance and effectiveness of the proposed 

approach, BOA and PSO were hybridized with KNN, 

SVM, and LR respectively for the feature selection 
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phase, and DT, ExTree, LightGBM, RF, and XGBoost 

were involved for the early prediction of mutagenicity 

with the features obtained from feature selection phase. 

All the experiments were conducted by using both 

PaDEL data set and the external data set explained 

before. 

Normalization was applied to the data sets before the 

feature selection process and the models fitted with the 

selected variables. In order to avoid the effect of the 

parameters, no data set-specific parameter optimization 

was performed. The parameters of the classification 

algorithms preferred in this study were predetermined 

and preferred as the same for all data sets. 

The optimization part of the proposed hybrid 

framework was operated with classifiers using the 

fitness function. The hybrid framework was run with 

different parameter combinations using KNN, SVM, 

and LR for BOA and PSO, respectively. To ensure both 

reproducibility and diversity, combinations were run 

using different seeds randomly generated by a seed 

function for each combination. Accordingly, feature 

selection was made for BOA and PSO using KNN with 

different parameter sets including different K values, 

different distance metrics – Manhattan and Euclidean; 

SVM with different parameter sets including a different 

number of C coefficients, different maximum iteration 

numbers, and LR with different parameter sets including 

C, different iteration numbers. 

Table 2 outlines the parameter setting for BSO and 

PSO. The parameter values were decided based on the 

outcomes of the preliminary runs. Besides these 

parameters, different number of population size and 

number of iterations were obtained applied in trial-and 

error manner. Considering huge number of 

computational time and the obtained results, population 

size and number of iterations were chosen as 15 and 50, 

respectively. 

All simulations were carried out in a cloud 

environment on Intel(R) Xeon(R) CPU @ 2.00GHz, 

Linux operating system, and 16 GB RAM. 
Table 2 Parameter setting for optimization algorithms. 

Methods Parameters Values 

PSO 

Search domain [0, 1] 

Interia w 0.9 

Acceleration constants 

[c1, c2] 
[2, 2] 

BOA 

Search domain [0, 1] 

Sensory modality (c) 0.01 

Power exponent (a) 
Increased from 0.1 to 

0.3 with iterations 

Switching probability (p) 0.8 

 

The reason for preferring the cloud environment is the 

high resource requirement and time cost. On the other 

hand, mutagenicity prediction part was implemented 

using Python 3.8. All predictive models were performed 

on an AMD Ryzen 5 2600X @ 3.6GHz, Windows 10, 

and 16GB RAM computer. 

Before feature selection, the PaDEL data set was 

partitioned into 80% training and 20% test set, and 

experiments for feature selection were conducted using 

only the training set. In the modelling phase, 5-fold cross 

validation was preferred. Different iteration numbers 

were tried with varying numbers of particles for BOA 

and PSO. As a result of this selection, about 54 trials of 

3 models were conducted for both methods, and feature 

selection outputs were obtained. With the intention of 

evaluating if optimization algorithms work with 

mutagenetic datasets, a comprehensive statistical 

analysis of the best, worst, mean and standard deviations 

of the fitness scores, average number of features and 

computational time were provided in Table 3. It can be 

observed based on the statistical fitness measurements 

given in Table 3, while BOA-SVM has better fitness 

measures than PSO-SVM, PSO-KNN and PSO-LR are 

slightly better than the results of BOA-KNN and BOA-

LR. Conversely, the models constructed with BOA 

outperformed PSO in terms of the average number of 

selected features and the average computational time. 

Table 3 Statistical analysis obtained by the hybridized algorithms based on mean, standard deviation, best and worst of the fitness 

scores, average number of features and computational times 

Algorithm Mean ± SD Best Worst 
Avg. Number of 

Features 

Avg. Computational 

Time ± SD 

BOA-KNN 0.2366± 0.0129 0.22616 0.26694 41.17 225.8189±97.04 

PSO-KNN 0.2330± 0.0086 0.22463 0.26236 53.58 357.7957±76.22 

BOA-LR 0.2755± 0.0088 0.26663 0.29611 40.83 907.8523±895.52 

PSO-LR 0.2671± 0.0085 0.25900 0.29444 57.08 1490.8023±1102.32 

BOA-SVM 0.2882± 0.0132 0.27664 0.31983 40.28 368.8617±279.68 

PSO-SVM 0.2965± 0.0071 0.29209 0.32129 68.00 627.1484±356.65 

SD: standard deviation, Avg: average 
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Table 4 Comparison of different classification methods with all features sets and feature subsets obtained by PSO and BOA for 

PaDEL Test Data 

Classification  

Method 
data sets (#of Features) F1-score Acc Precision Recall Spec ProbEx AUC 

DT Baseline (162) 85.25 83.41 86.52 84.01 79.56 63.57 83.04 

PSO (87) 86.00 84.46 86.19 85.81 82.30 68.11 84.25 

BOA (51) 85.57 83.78 86.85 84.33 79.97 64.31 83.41 

ExTrees Baseline (162) 87.97 86.47 89.28 86.70 82.99 69.69 86.14 

PSO (87) 87.90 86.41 89.06 86.76 83.13 69.89 86.09 

BOA (51) 87.32 85.68 89.06 85.65 81.48 67.14 85.27 

LightGBM Baseline (162) 86.76 84.88 89.39 84.27 79.29 63.56 84.34 

PSO (87) 86.45 84.64 88.51 84.49 79.84 64.33 84.17 

BOA (51) 85.34 83.35 87.51 83.28 78.19 61.47 82.85 

RF Baseline (162) 87.71 86.23 88.73 86.72 83.13 69.84 85.93 

PSO (87) 87.40 85.92 88.18 86.64 83.13 69.77 85.65 

BOA (51) 87.89 86.47 88.62 87.17 83.81 70.99 86.22 

XGBoost Baseline (162) 87.78 86.17 89.72 85.93 81.76 67.68 85.74 

PSO (87) 87.86 86.41 88.73 87.00 83.54 70.54 86.13 

BOA (51) 87.79 86.29 88.95 86.65 82.99 69.64 85.97 

Overall Baseline (162) 87.09 85.43 88.728 85.53 81.35 66.87 85.04 

PSO (87) 87.12 85.57 88.134 86.14 82.39 68.53 85.26 

BOA (51) 86.78 85.11 88.198 85.42 81.29 66.71 84.75 

DT: Decision Tree, ExTrees: Extra Trees, RF: Random Forest Acc: Accuracy, Spec: Specificity, ProbEx: Probability Excess, AUC: 

Area Under Curve 
The variables selected from each experiment were 

combined, and the most repetitive (majority voting) 

features were chosen uniquely. By following these 

approaches for BOA and PSO separately, the 87 most 

repetitive variables among the variables selected for 

PSO and the first 51 most repetitive variables for BOA 

were chosen for the final feature subset due to the feature 

selection phase. 

In the second phase of the study, models were fitted 

with PaDEL data set using treebased methods (DT, RF, 

XGBoost, ExTree, and LightGBM) with selected 

features, and predictions were obtained for both test set 

and External data set. In Tables 4-5, one can compare 

the results obtained by using a data set with full features 

named Baseline with 162 features and the data sets 

which were reduced by BOA and PSO involved in the 

proposed feature selection approach with 51 features 

and 87 features respectively in terms of F1-score, 

Accuracy (Acc), Precision, Recall, Specificity (Spec), 

Probability Excess (ProbEx) and Area Under Curve 

(AUC). All experiments were conducted by 5-fold cross 

validation. 

The results presented in Table 4 were obtained using 

PaDEL test data reserved for testing at the beginning of 

the experiments. It can be analysed that although 

ExTrees got the highest F1 score with 162 features, there 

is no significant difference between the reduced data sets 

by using the proposed feature selection scheme. It is 

worth noting that results obtained with almost a third of 

the data set yielded similar or slightly better prediction 

results than the results obtained with the entire data set. 

It can be observed by analysing the results of BOA with 

RF in Table 4. The highest ProbEx, the unbiased 

measurement for evaluating prediction performance, 

was obtained with 51 features. On the other hand, the 

results of feature selection phased conducted by PSO 

were yielded by XGBoost based on the results given in 

Table 4. According to the overall results reported in 

Table 4, the proposed feature selection approach used 

with BOA provided almost the best results with the 

smallest number of features. 

The proposed approach was applied to a completely 

unseen external data set explained in the Data 

Preparation section to meet the fair comparison. As 

given in Table 1, External data set can be assumed as an 

imbalanced data set. Since the relative class frequency 

does not influence ProbEx, most of the analyses and 

explanations for External data set given in Table 5 were 

done by ProbEx.
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Table 5 Comparison of different classification methods with all features sets and feature subsets obtained by PSO and BOA for 

External Data 

Classification  

Method 

data sets (#of 

Features) 

F1-

score 
Acc Precision Recall Spec ProbEx AUC 

DT Baseline (162) 97.22 95.25 99.33 95.20 74.36 69.56 86.85 

PSO (87) 96.47 93.99 98.16 94.84 72.65 67.49 85.41 

BOA (51) 97.44 95.67 98.50 96.41 81.20 77.60 89.85 

ExTrees Baseline (162) 98.76 97.91 99.83 97.71 88.03 85.75 93.93 

PSO (87) 98.60 97.63 99.83 97.39 86.32 83.72 93.08 

BOA (51) 98.76 97.91 100.00 97.56 87.18 84.74 93.59 

LightGBM Baseline (162) 96.37 93.72 99.67 93.28 63.25 56.53 81.46 

PSO (87) 95.37 91.90 99.83 91.30 51.28 42.58 75.56 

BOA (51) 95.46 92.04 100.00 91.31 51.28 42.59 75.64 

RF Baseline (162) 98.60 97.63 100.00 97.24 85.47 82.71 92.74 

PSO (87) 97.88 96.37 100.00 95.84 77.78 73.62 88.89 

BOA (51) 98.27 97.07 99.83 96.76 82.91 79.67 91.37 

XGBoost Baseline (162) 97.87 96.37 99.83 95.99 78.63 74.62 89.23 

PSO (87) 96.69 94.27 99.83 93.73 65.81 59.54 82.82 

BOA (51) 97.56 95.81 100.00 95.23 74.36 69.59 87.18 

Overall Baseline (162) 97.76 96.18 99.73 95.89 77.95 73.83 88.84 

PSO (87) 97.00 94.83 99.53 94.62 70.77 65.39 85.15 

BOA (51) 97.50 95.70 99.67 95.45 75.39 70.84 87.53 

DT: Decision Tree, ExTrees: Extra Trees, RF: Random Forest Acc: Accuracy, Spec: Specificity, ProbEx: Probability Excess, AUC: 

Area Under Curve 

In the model-based analysis, a comparison of the 

overall metrics in both Table 4 and Table 5 reveals that 

ExTrees and RF consistently outperform other methods. 

They achieve high accuracy, precision, and AUC while 

exhibiting minimal declines in recall and specificity. 

This suggests that these methods are suitable for 

handling both the Baseline feature sets and the reduced 

feature sets without significant performance 

degradation. In contrast, methods such as LightGBM, 

although effective with the full set of features, 

demonstrate greater sensitivity to feature reduction, 

particularly impacting recall and ProbEx. 

The Baseline feature set (162 features) consistently 

yields slightly better results across all metrics compared 

to the reduced feature sets (PSO and BOA). However, 

the differences are generally minimal. This observation 

indicates that while feature selection may lead to some 

loss in precision, recall, and other metrics, the trade-off 

is justified by the reduction in computational complexity 

and the potential for avoiding overfitting. By 

eliminating redundant or irrelevant features, the risk of 

overfitting can be mitigated, which can enhance the 

generalizability of the model despite minor performance 

losses in specific metrics. 

5. Discussion 

Regarding individual results obtained by the 

methods and the data sets in Table 5, it can be seen that 

there is no method-data set pair that consistently 

produces the best results. The results are varied across 

different methods and data sets, indicating that there is 

no one-size-fits-all solution. Based on the results 

presented in Table 5, the highest scores had been 

obtained by ExTrees. Although there is no observed 

difference among the results of the ExTrees, outcomes 

of the data set reduced a third by BOA can be assumed 

as promising to predict mutagenicity via in-silico 

methods. To summarize the comparison, the average 

results of the tree-based classification methods had been 

calculated. In the light of these averages of the metrics, 

one can say that when the proposed approach given in 

Algorithm 1 had been used with BOA, considerably 

better results had been obtained with reduced data sets 

both for test and external data sets. 

The results achieved by the reduced data set were 

compared with the results published in 2012 by Xu et al. 

(Xu et al. 2012) with the almost similar external data set 

for the sake of completeness of the study. While the 

external data set used in this study contained 599 

mutagens and 117 non-mutagens chemicals, the original 

data set used in the study of Xu et al. had 614 mutagens 
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and 117 non-mutagens. The accuracies they obtained by 

these data sets with different fingerprints (descriptors) 

were from 90.4% to 98%. On the other hand, the range 

of the accuracy achieved for the external set used in this 

study by the proposed approach with BOA is from about 

91.9% to 97.91%. It is essential to mention that both 

studies used the same chemicals with mutagenicity 

information, whereas their number of features and way 

of calculation is different. Seal et al. (Seal et al. 2012) 

have generated prediction models using RF classifier for 

predicting mutagenicity with the data set named Set3, 

similar to Baseline data set used in this study. The data 

set used in their study consists of the Bursi and 

Benchmark data sets explained in the Data Preparation 

section. According to the outcomes that they published 

in 2012, they have found the success rate of predicting 

mutagenicity as 85.15% and precision as 85.2% with 

154 descriptors (Seal et al. 2012). Our study shows that 

results of the data set were reduced into 51 descriptors 

with BOA and mutagenicity prediction conducted by RF 

given in Table 4 yielded better results with 86.47% and 

88.62% accuracy and precision, respectively. 

Each optimization method uses different strategies 

and metrics. Therefore, selected features can be vary 

based on the search strategy of the algorithm. Through 

the hybridization of several optimization techniques 

with classification algorithms, the suggested method 

may be able to overcome this variability, eliminate the 

characteristics of the dataset, and lower the risk of 

overfitting. To evaluate the effectiveness of the 

proposed method in terms of overfitting, 5-fold cross-

validation was applied alongside the dataset with an 

external validation test set. The test and validation sets 

results given in Table 4 and Table 5, respectively, are 

also a sign that there is no possible overfitting. 

Moreover, the proposed approach may effectively 

explore the complex and high-dimensional feature space 

of the drug toxicity datasets due to the stochastic, 

adaptive, and global search characteristics of the 

optimization algorithms. 

It is worth mentioning that this approach can be used 

not only for mutagenicity prediction but also for 

different problems requiring feature selection and 

prediction. Since the presented approach can be 

conducted with any number and kind of metaheuristic 

optimization algorithms and classification methods, it 

could be considered a general and flexible framework 

and a wide range of application fields. It should be noted 

that, flexibility is the strongest property of proposed 

hybrid approach. However, the computational 

complexity is the weakness of the hybrid approach, and 

it is planned in future studies to overcome this with the 

new approaches even in high dimensional datasets.  

6. Conclusions 

Recently, because of the laborious and expensive 

nature of the drug discovery process, in-silico 

approaches have played crucial and indispensable roles 

in the drug approval process. Predicting mutagenicity, 

which can be defined as the most critical endpoint of 

toxicity at the early stages of the drug discovery process, 

is one of the essential steps. This study recommended a 

flexible approach as an in-silico method both for the 

early prediction of chemical mutagenicity and reducing 

the search space into the most effective descriptors. The 

proposed framework was designed as two sequential 

phases: feature selection phase through nature inspired 

optimization algorithms and prediction phase by several 

statistical and machine learning classification methods. 

Incorporating metaheuristic algorithms into in-silico 

studies is not commonly seen in the literature. One of 

the primary purposes of this study is to conclude 

whether using the metaheuristic algorithms can be 

suitable to search the descriptor space in the field of 

mutagenicity prediction. In order to reach this aim, the 

butterfly optimization algorithm (BOA) was hybridized 

with several statistical machine learning algorithms to 

select the most critical descriptors that are effective in 

predicting mutagenicity. As mentioned earlier, to the 

best of our knowledge, no studies are searching for an 

effective and representative subset of descriptors for 

mutagenicity estimation through metaheuristic 

optimization algorithms. To fair comparison, besides 

BOA, inspired by social butterfly foraging strategy, 

particle swarm optimization algorithm (PSO), inspired 

by not a single animal but swarm which is coordinated, 

were used (Arora and Singh 2019). 

Two data sets were used to present the proposed 

approach: one for selecting the most informative 

descriptors and modelling; the other for validation. All 

descriptors were calculated by freely available PaDEL 

Descriptors software by using SMILES format of the 

molecules. The original data set contains 162 

descriptors. The proposed approach with BOA reduced 

the number of descriptors to 51, whereas 87 were 

obtained with PSO. The experimental results present 

that the outcomes obtained by the BOA have yielded 

better results, especially with a smaller number of the 

descriptors sets. In the test data obtained from PaDEL, 

the highest ProbEx was obtained with the features 

selected with BOA. While 69.84% ProbEx was obtained 

with a baseline containing 162 variables in total, due to 

the model established using 51 variables, approximately 

71% ProbEx value was reached with an increase of 

1.15% with PaDEL. External Data also achieved the 

highest ProbEx with Baseline, but the 51 variables 

selected with BOA performed higher than the 87 

variables selected with PSO. As a result, BOA and PSO 

methods were used for variable selection in the study, 

and the selected variables were classified using tree-

based methods such as DT, ExTrees, RF, LightGBM, 

and XGBoost. Since no parameter optimization is 

performed specifically for the data sets, methods that 

perform highly in PaDEL data may have lower 

performance in the External data set. Another reason is 

that while the class distribution is balanced in PaDEL 

data, the proportion of classes that are non-mutagen in 
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the External data set is lower. Parameter optimization 

can be performed to increase model performance in 

future studies. 

To ensure completeness of the study, the results were 

also compared with the results achieved by the studies 

Seal et al. (2012), Xu et al. (2012), which used similar 

chemicals. It could be concluded that our approach 

conducted with nature inspired BOA performed well in 

terms of accuracy and precisions. 

As stated earlier, in-silico studies, i.e., the 

computational approach to toxicity, has started to gain 

more attention since predicting mutagenicity at the 

beginning of the drug design process has been inevitable 

and is a crucial step to shorten the process and thereby 

reduce the cost. This study was conducted to present 

highlight the importance of this approach. The findings 

in this study suggest that in-silico approaches have a 

significant role in the drug discovery process by 

predicting mutagenicity, reducing the search space, and 

ultimately saving time and resources. The use of 

metaheuristic optimization algorithms in this context 

represents a flexible approach that can potentially 

effective feature selection and prediction in various 

fields. Further research, including parameter 

optimization and multi-objective algorithms, can 

continue to refine and expand upon this methodology. 

As the part of the future works, a wider range of 

metaheuristic algorithms and machine learning 

algorithms can be evaluated to identify the best 

combination for different drug toxicity endpoints on a 

larger and more diverse dataset of compounds based on 

the experimental process, findings and also limitations 

of the study. It is worth pointing out that, although the 

computational complexity is a challenge, aiming to 

address this issue can be also one of the future studies. 

In summary, this research demonstrates the potential 

of combining nature-inspired optimization algorithms 

with machine learning techniques for feature selection 

and mutagenicity prediction. The flexible framework 

presented here can be applied to a wide range of 

applications requiring feature selection and prediction. 
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