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ABSTRACT

The Burkholder-Davis-Gundy’s inequalities and the sharp maximal function inequalities for martingale inequalities
are established for rearrangement invariant quasi-Banach function spaces. Martingale inequalities very important in
mathematic Martingale inequalities are worked by very mathematicians. We will establish some weighted
Martingale inequalities for rearrangement invariant quasi-Banach function spaces.
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Yeniden Diizenlenmis Degismez Quasi-Banach Fonksiyon Uzaylarinda Agirhkh
Martingale Esitsizlikler

Oz

Daha 6nce yeniden diizenlenmis degismez quasi Banach fonksiyon uzaylarinda Martingale esitsizligi i¢in sharp
maksimal fonksiyon ve Burkholder-Davis-Gundy’s esitsizlikleri kurulmustu. Martingale esitsizlikleri matematikte
¢ok onemli bir yere sahiptir. Bir ¢ok matematikgi tarafindan tizerinde durulmustur. Bizde yeniden diizenlenmis
degismez quasi- Banach fonksiyon uzaylarinda agirlikli Martingale esitsizliklerini ingsa edecegiz.

Anahtar Kelimeler: Banach uzayi, Martingale esitsizlikleri, Sharp maksimal fonksiyon

INTRODUCTION

Our aim in this paper is the generalization of some
weighted martingale inequalities to rearrangement
invariant quasi-Banach function spaces. The study of
martingale inequalities on Banach function spaces have
been further extended to Doob’s inequality, Davis
inequalities and Doob’s decompositions in [1, 2]. Since
the establishment of some important martingale
inequalities in Lebesgue spaces, such as the Burkholder-
Davis-Gundy’s inequalities [3], there are several
generalizations on these inequalities to general function
spaces. The martingale inequalities for sharp functions
on Lebesgue spaces was obtained in [4-11]. For
instance, the Burkholder-Davis-Gundy’s inequalities is
generalized to Banach function spaces in [12, 13, 14,
15-18]. The Burkholder-Davis-Gundy’s inequalities and
the sharp maximal function inequalities for martingale
are established for rearrangement invariant quasi-
Banach function spaces in [19, 20]. Furthermore, we are
also interested in the some weighted martingale
inequalities for sharp functions. In [21-25], the
corresponding results in Orlicz spaces and in term of
modular were obtained. The martingale inequalities of
sharp functions on Lorentz spaces is recently showed in

[26]. In this paper, we extend the Burkholder-Davis-
Gundy’s inequalities and the martingale inequalities of
sharp functions to quasi-Banach function spaces.

The result for martingale inequalities of sharp functions
is also motivated by the following inequality for locally

integrable functions on B™

13, (Flle < ClF* e

where £ € LP{R™), f#is the sharp maximal function

of f and M (£ is the dyadic maximal function of f
[27, 28]. For the Burkholder-Davis-Gundy’s
inequalities, they are valid for any quasi-Banach

function spaces X with 1 < Py = g, <= €©. The
Burkholder Davis-Gundy’s inequalities cannot be
generalized to quasi-Banach function spaces with

Px == 1. For instance, in [28, Proposition 2.16], a
counterexample is given to show that the Burkholder-

Davis-Gundy’s inequalities are not valid on L? with
0 << p == 1. Therefore, our result already cover the
range 1 = Py = g, < @ | the only possible
generalization isto the range 1 <X p = g5 =2 00

0=p="rco
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Auxillary Statements and Definitions

Let {11,%, %) be a complete probability space. We
denote the space of measurable function on (11X, %}
by K. Let 4 = (A, ),.0 be a filtration. That is,
(n‘lﬂ]ﬂ_au is a nondecreasing sequence of sub @
algebras of Zwith £ = a5 e, ].

Let 'E-"q-_j_ = 'E-"qru.

The conditional expectation operators relative to e,
are denoted by ML, For any martingale f = ()20
on 1, write d;f = f, — fi_y , i = 0. The maximal
function, the square function (quadratic variation) and
the conditional square function (conditional quadratic

variation) of f are defined by

M, (f) = suPgeienl fil, M(F) = sup,qlfil,
5.(F) = (Ereld F12)Y2,
S(F) = (EZ4ld F1Y2,
Fﬂ.':f:' = ':E?:u M,_,. |dff|2j1f2,
s(F) = (X2, M,_,. |d, fIDY?

respectively.

Let O="r =03 For any uniformly integrable
martingale f = (fn]ngl} on I, the sharp functions of
F are defined by

FAr=sup,. M, If — f,_1l, y
£S5 = suppeo (M, [S2(F) —S2_. (A7) ™,
1
£2 = supp (M, [s20F) — 525 (]72) 7"

respectively. For any f € X the distribution function
of f is given by

WD =Ax e nlf(x)| >4, A=0
The decreasing rearrangement of f is defined by
FO=imflA (A<t} t=0

Definition 2.1. A quasi-Banach space X © X is called
a rearrangement invariant quasi-Banach function space
if there exists a quasi Banach function space £ on (0,00)
with quasi-norm pgz H{(0,c0) = [0,00] so that
IFll, = pz(f*), F €EX where K(0,c0] denote
the set of Lebesgue measurable functions on (0,).
Notice that whenever X is a rearrangement-invariant

Banach function space studied in [4, Chapter 2,
Definition 4.1] over an nonatomic measure space, the

existence £ of associated with X is guaranteed by the
Luxemburg representation theorem [4, Chapter 2,
Theorem 4.10]). Therefore, Definition 2.1 is a
generalization of the notion of rearrangement-invariance
to quasi Banach function spaces. We recall the
definition of the Boyd indices on quasi-Banach function

spaces. For any 5 = 0 and f € K(0,c0), define
(D f)(x) = f(5x), x € (0,c0).

Let || D, |l +_, #be the operator norm of I, on X

Definition 2.2. Let X be a quasi-Banach function space
on X', The lower Boyd index of X, ¥, and the upper
Boyd index of X, & , are defined by

px=mp{p:EIC:=D such that ¥ 0= 5 =

-1
L IDlgag < €57 72}

and
G5 = inf{q: AC >0 such thatv 1=

-1
5, 11D, llgag < €57 e}

respectively.

The following inequalities give the connection between

the decreasing rearrangements of K ( f) and ¥, which
plays a fundamental role on the proof of the martingale
inequalities of sharp functions on quasi-Banach function
spaces.

Definition 2.3. A weight function on a set Q is a
mapping from € to the real numbers W s
nonnegative, almost everywhere positive function
onQ).

w:Q—>R

Proposition 2.1. Let 1 = r = ¢©. For any uniformly

integrable martingale f = [fﬂjﬂgu onll, andt = 0
we have

(M) () < a(r*)(8/,) + (M(P) (21),
(2.1)

(SCAY (&) = 4(F7 (E,) + (S0 (20),
(2.2)

(s() (0 = alF (8,) + (s(F) (20,

(2.3)

For the proof of (2.1), the reader is referred to [22,
Lemma 4]. The reader is refereed to [26, Lemma 1] for
the proofs of (2.2) and (2.3). We report a result from
Bagby and Kurtz which is originally used to establish
the rearranged good # inequality for maximal singular
integral operator and Hardy-Littlewood maximal

functions on E™. The proof of the following proposition
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is given in [22, Theorem 3.6.9]. For completeness, we
provide the proof of the following proposition.

Proposition 2.2. Let f, & be a pair of measurable
functions on I1 . If f, g satisfy

FrEs e+ cgtf)e=0

2.4)

then

o sa2cg(ty)+c [T g (s) ‘:—3 t = 0.
2.5)

For the proof of Proposition 2.2, the reader is referred to
see [20, Proposition 2.2.]

We obtain the martingale inequalities for sharp
functions and the Burkholder Davis-Gundy’s
inequalities on quasi-Banach function spaces in this
section. We begin with the martingale inequalities for
sharp functions.

MAIN RESULT

Theorem 3.1. Let 1 =¥ =0c and let W is
nonnegative, almost every where positive function on [l
and let X be a rearrangement-invariant quasi Banach
function space on K with 0 << Py = ff <= €C. For
any uniformly integrable martingale f = {_f,,J =0 On
I, we have

180 f, will, < CICFwI®ly,
(3.1)

ISCFw)ll, = Cll[f wiZll .

(3.2
50, will, = CIIIZf wizlly,
(3.3)

Proof. We only give the proof for (3.1) because the
proofs for (3.2) and (3.3) follow similarly. Proposition
2.1 assures that

(MOFw)) () < 4((Fw)™) (5,) + (MOF,w)) (20,

In view of Proposition 2.2, we find that

(05, )) (8 = 2007 w)™) (E,) +
R CAGWNGIE

As [ F#7* is a decreasing function, this yields

(MF,w)) (6) < 20((F, w)*) (/5] +

C E?;u[f: W:'#:'* [th]
(3.4)

According to Aoki-Rolewicz theorem [13, Theorem
1.3], we have a & = 0 such that g7 (. satisfies the

triangle inequality. Therefore, applying p;[.j on both
sides of (3.4), we find that

pr((Mfw))® = .
2o (23, 1)) " +
CEZyp7((Dulfow)®))"

That is,

12 £, wllE < Coe(Dpu(Fiw)*) +
CE20pz(Dulf, W)™

Since 0 << P = ffx <= £O, we have
0= p <P, < g, < g < 00 such that for some
=0

-1
D77 = Cs ’(?;,
1D Nlsuz < Cs 79,

0=s5=1,

The above bounds on the operator norms of I
0= 5 < 0 yjeld

IMCF WA < CICF, w)?, + cz

=0

2 e O, w12
= ClCF,wi® I3

for some £ = O which gives our desired result.
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