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Abstract

The aim of the study is to obtain new binomial transforms for the k−Narayana sequence. The first
of these is the binomial transform, which is its normal form, and in the first step, after finding the
recurrence relation of this new binomial transform, the generating function and Binet formula were
obtained. Finally, Pascal’s triangle was calculated. In the rest of the article, k−binomial transform
was performed for the k−Narayana sequence and the recurrence relation, generating function, Binet
formula and Pascal’s triangle were examined for the new sequence obtained. Then, by performing
the falling binomial transform and the rising binomial transform, the features listed above were
found again for these sequences.

1. Introduction

Some special sequences of numbers such as Fibonacci, Lucas, Horadam and Narayana have been of great interest to the
scientific world in recent years. Generalizations of these number sequences in various ways abound in the literature, in
particular you can look at [1]. One of the most popular transforms is the binomial transform and it is sufficiently available in
the literature.
Authors [2] presented the k−Fibonacci sequence also the same authors for this sequences of numbers [3] introduced different
binomial transforms, such as falling and rising binomial transforms. Binomial transforms and properties of k−Lucas sequences
are presented in [4]. Spivey and Steil [5] gave various binomial transforms. In [6], they obtained some applications for the
generalized (s, t) matrix sequences. In [7], authors obtained binomial transforms of Padovan and Perrin numbers from the third
order.
The person who discovered the Narayana sequence is Narayana, an Indian mathematician, and is as follows

Nm = Nm−1 +Nm−3 with m≥ 3 (1.1)

where

N0 = 0, N1 = 1, N2 = 1,

see [8]. The first few terms are 0,1,1,1,2,3,4,6,9,13,19,28,41,60, · · · .
The characteric equation of (1.1) is :

Ψ
3−Ψ

2−1 = 0,
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and roots of the characteristic equation are :
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Hence, the Narayana sequence can be obtained by Binet’s formula:
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Generating function found for Narayana equation is:

1
1−Ψ−Ψ3 =

∞

∑
n=0

Nm+1Ψ
n
1 , for n≥ 1, n ∈ Z.

Narayana sequence which has attracted the attention of more mathematicians in recent years and its generalizations. Some of
them are as follows:
Some basic properties of Fibonacci-Narayana numbers are proved in [9]. Bilgici in [10], defined a generalized order k
Fibonacci-Narayana sequence and by using this generalization and some matrix properties, established some identities related
to Fibonacci-Narayana numbers. Soykan studied on Narayana sequence in [11]. Ramirez and Sirvent in [12], introduced the
k−Narayana sequence and found the identities between these numbers.
For any nonzero integer number k , k−Narayana sequence is defined by the following recurrence relation:

Nk,m = kNm−1 +Nm−3 with m≥ 3 (1.2)

where

Nk,0 = 0, Nk,1 = 1, Nk,2 = k,

see [12]. The first few terms are 0,1,k,k2,k3 +1,k4 +2k,k5 +3k2,k6 +4k3 +1,k7 +5k4 +3k · · · .
The characteric equation of (1.2) is :

λ
3− kλ

2−1 = 0,

and the roots of characteristic equation are :
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where µ = 1+i

√
3

2 is the primitive cube root of unity.
The generating function of the k−Narayana sequence is

1
1− kλ −λ 3 .

Therefore the k−Narayana sequence can be obtained by Binet’s formula:

Nk,n =
λ

n+1
1

(λ1−λ2)(λ1−λ3)
+

λ
n+1
2

(λ2−λ1)(λ2−λ3)
+

λ
n+1
3

(λ3−λ1)(λ3−λ2)
, n≥ 0.

Other recent research ([13],[14],[15]) has also investigated various binomial transforms for various special sequences. These
transforms are valuable because they bring a new approach. For details on the binomial transform, see ([16],[17]).
The focus of this paper is to apply binomial transforms and its generalization (like k−binomial transform, rising transform
and falling transform) to the k−Narayana sequence. In addition to these, the recurrence relation, Binet’s formula, generating
function, Pascal triangle and matrix representation of related transforms were derived.
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2. Binomial transform of k−Narayana sequences

The binomial transform of k−Narayana sequence
{

Nk,n
}

n∈N is shown as
{

bk,n
}

n∈N where bk,n is dedicated by

bk,n =
n

∑
i=0

(
n
i

)
Nk,i.

To find the recurrence relation of
{

bk,n
}

, we first need a Lemma.

Lemma 2.1. Let n is a positive integer greater than 1, then
{

bk,n
}

contents the next equation
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Proof. We have,
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If we bear in mind summation feature of binomial numbers
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Also thanks to the operations performed on the sums
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The next theorem presents recurrence relation for
{

bk,n
}

.

Theorem 2.2. The recurrence relation obtained for
{

bk,n
}

is as follows:

bk,n+3 = (k+3)bk,n+2− (2k+3)bk,n+1 +(k+2)bk,n (2.1)

where bk,0 = 0,bk,1 = 1, and bk,2 = k+2.

Proof. To find the coefficients in (2.1)

bk,n+3 = A1bk,n+2 +A2bk,n+1 +A3bk,n.

If we take n = 0,1 and 2, we have the system

bk,3 = A1bk,2 +A2bk,1 +A3bk,0 = k2 +3k+3

bk,4 = A1bk,3 +A2bk,2 +A3bk,1 = k3 +4k2 +6k+5

bk,5 = A1bk,4 +A2bk,3 +A3bk,2 = k4 +5k3 +10k2 +12k+10.

By Cramer rule for the system, we get

A1 = k+3, A2 =−2k−3, and A3 = k+2.

So which is completed the proof .
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The characteristic equation of sequences bk,n in (2.1) is

α
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Next we derive the Binet formula for
{

bk,n
}

.

Theorem 2.3. The Binet formula for the k−Narayana sequence is as follows:

bk,n =
p1αn

1
(α1−α2)(α1−α3)

+
p2αn

2
(α2−α1)(α2−α3)

+
p3αn

3
(α3−α1)(α2−α3)

where

p1 = bk,2− (α2 +α3)bk,1 +α2α3bk,0 = k+2− (α2 +α3),

p2 = bk,2− (α1 +α3)bk,1 +α1α3bk,0 = k+2− (α1 +α3),

p3 = bk,2− (α1 +α2)bk,1 +α1α2bk,0 = k+2− (α1 +α2).

Proof. To obtain Binet formula let us write

bk,n = B1α
n
1 +B2α

n
2 +B3α

n
3

If we take n = 0,1 and 2, we have the system

bk,0 = B1 +B2 +B3 = 0
bk,1 = B1α1 +B2α2 +B3α3 = 1

bk,2 = B1α
2
1 +B2α

2
2 +B3α

2
3 = k+2

By Cramer rule for the system, we get

B1 =
bk,2− (α2 +α3)bk,1 +α2α3bk,0

(α1−α2)(α1−α3)

B2 =
bk,2− (α1 +α3)bk,1 +α1α3bk,0

(α2−α1)(α2−α3)

B2 =
bk,2− (α1 +α2)bk,1 +α1α2bk,0

(α3−α1)(α2−α3)

So which is completed the proof .

Now let’s obtain the generating function for the k−Narayana binomial transform.

Theorem 2.4. The generating function of
{

bk,n
}

is:

bk(x) =
(1− kx−3x+2kx2 +3x2)bk,0 +(x− kx2−3x2)bk,1 + x2bk,2

1− (k+3)x− (2k+3)x2− (k+2)x3 .
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Proof. We have, bk(x) = bk,0 +bk,1x+bk,2x2 +bk,3x3 + · · ·+bk,nxn + · · · . After doing simple operations we obtain

bk(x) = bk,0 +bk,1x+bk,2x2 +bk,3x3 + · · ·
−(k+3)xbk(x) = −bk,0(k+3)x−bk,1(k+3)x2−bk,3(k+3)x3 + · · ·
−(2k+3)x2bk(x) = −bk,0(2k+3)x2−bk,1(2k+3)x3−bk,3(2k+3)x4 + · · ·
−(k+2)x3bk(x) = −bk,0(k+2)x3−bk,1(k+2)x4−bk,3(k+2)x5 + · · · .

From these equations and (2.1), we get[
1− (k+3)x− (2k+3)x2− (k+2)x3]bk(x) = (1− kx−3x+2kx2 +3x2)bk,0 +(x− kx2−3x2)bk,1 + x2bk,2.

So the generating function for the binomial transform of the k−Narayana sequence is

bk(x) =
(1− kx−3x+2kx2 +3x2)bk,0 +(x− kx2−3x2)bk,1 + x2bk,2

1− (k+3)x− (2k+3)x2− (k+2)x3 .

Let’s give a new triangle
{

bk,n
}

for each k to help with the next rules:

1. The part forming the left corner of the triangle consists of the elements of k− Narayana numbers,
2. When we take any number and think that it is chosen outside the left diagonal, it is considered to be the sum of the

number to the left of this number and also the number above its diagonal on the left side.
3. On the right diagonal is

{
bk,n
}

.

The next triangle is an example of the 1−Narayana sequence:

0
1 1

1 2 3
1 2 4 7

2 3 5 9 16

Figure 1: 1−Narayana sequence

3. The k−Binomial transform of the k−Narayana sequence

The k−binomial transform of the k−Narayana sequence
{

Nk,n
}

n∈N is denoted by
{

wk,n
}

n∈N where

wk,n =
n

∑
i=0

(
n
i

)
knNk,i.

Lemma 3.1. Let n is an integer greater than and equal to 1, and k−binomial transform of k−Narayana sequence satisfies the
following relation

wk,n+1 =
n

∑
i=0

(
n
i

)
kn+1(Nk,i +Nk,i+1).

Proof. We know that

wk,n =
n

∑
i=0

(
n
i

)
Nk,i.
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If we take n+1 instead of n and consider the binomial properties then we have

wk,n+1 =
n+1

∑
i=0

(
n+1

i

)
Nk,i

= kn+1Nk,0 +
n+1

∑
i=1

(
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i

)
kn+1Nk,i

= kn+1Nk,0 +
n+1

∑
i=1

(
n
i

)(
n

i−1

)
kn+1Nk,i

= kn+1Nk,0 +
n+1

∑
i=1

(
n
i

)
Nk,i +

n+1

∑
i=1

(
n

i−1

)
Nk,i

= kn+1Nk,0 +
n

∑
i=1

(
n
i

)
kn+1Nk,i +

n

∑
i=1

(
n
i

)
kn+1Nk,i+1

so we get

wk,n =
n

∑
i=0

(
n
i

)
kn+1(Nk,i +Nk,i+1).

The next theorem will provides the recurrence relation for
{

wk,n
}

.

Theorem 3.2. The recurrence relation obtained for
{

wk,n
}

is as follows:

wk,n+3 = (k2 +3k)wk,n+2− (2k3 +3k2)wk,n+1 +(k4 +2k3)wk,n. (3.1)

Proof. From the recurrence relation of the corresponding transform, there is a general solution as follows

wk,n+3 =C1wk,n+2 +C2wk,n+1 +C3wk,n.

If n = 0,1 and 2, the following system is obtained

wk,3 = C1wk,2 +C2wk,1 +C3wk,0 = k5 +3k4 +3k3

wk,4 = C1wk,3 +C2wk,2 +C3wk,1 = k7 +4k6 +6k5 +5k4

wk,5 = C1wk,4 +C2wk,3 +C3wk,2 = k9 +5k8 +10k7 +12k6 +10k5

By Cramer rule for the system, we get

C1 = k2 +3k, C2 =−2k3−3k2, and C3 = k4 +2k3.

so that the evidence is completed.

The characteristic equation of sequences wk,n in (3.1) is

β
3− (k2 +3k)β 2 +(2k3 +3k2)β − (k4 +2k3) = 0,

whose solutions are β1, β2, and β3.
Now we construct the Binet formula for

{
wk,n

}
.

Theorem 3.3. Whichever term of
{

wk,n
}

can be computed using the Binet formula. It is indicated by

wk,n =
q1β n

1
(β1−β2)(β1−β3)

+
q2β n

2
(β2−β1)(β2−β3)

+
q3β n

3
(β3−β1)(β2−β3)

where

q1 = wk,2− (β2 +β3)wk,1 +β2β3wk,0 = k
[
k2 +2k− (β2 +β3)

]
q2 = wk,2− (β1 +β3)wk,1 +β1β3wk,0 = k

[
k2 +2k− (β1 +β3)

]
q3 = wk,2− (β1 +β2)wk,1 +β1β2wk,0 = k

[
k2 +2k− (β1 +β2)

]
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0
1 2

2 6 16
4 12 36 104

9 26 76 224 656

Figure 2: 2−Narayana sequence

Proof. To obtain Binet formula let us write

wk,n = D1α
n
1 +D2α

n
2 +D3α

n
3

If we take n = 0,1and 2, we have the system

wk,0 = D1 +D2 +D3 = 0
wk,1 = D1β1 +D2β2 +D3β3 = k

wk,2 = D1β
2
1 +D2β

2
2 +D3β

2
3 = k3 +2k2

By Cramer rule for the system, we get

D1 =
wk,2− (β2 +β3)wk,1 +β2β3wk,0

(β1−β2)(β1−β3)
,

D2 =
wk,2− (β1 +β3)wk,1 +β1β3wk,0

(β2−β1)(β2−β3)
,

D2 =
wk,2− (β1 +β2)wk,1 +β1β2wk,0

(β3−β1)(β2−β3)
.

So which is completed the proof .

Theorem 3.4. The generating function of
{

wk,n
}

is:

wk(x) =
(1− k2x−3kx+2k3x2 +3k2x2)wk,0 +(x− k2x2−3kx2)wk,1 + x2wk,2

1− k2x−3kx+2k3x2 +3k2x2− k4x3−2k3x3 .

Proof. We have wk(x) = wk,0 +wk,1x+wk,2x2 +wk,3x3 · · ·+wk,nxn + · · ·
Then, if multiplication is done −(k2 +3k)x, (2k3 +3k2)x2, and −(k4 +2k3)x3 , we obtain

wk(x) = wk,0 +wk,1x+wk,2x2 +wk,3x3 + · · ·
−(k2 +3k)xwk(x) = −wk,0(k2 +3k)x−wk,1(k2 +3k)x2−wk,3(k2 +3k)x3 + · · ·

(2k3 +3k2)x2wk(x) = wk,0(2k3 +3k2)x2 +wk,1(2k3 +3k2)x3 +wk,3(2k3 +3k2)x4 + · · ·
−(k4 +2k3)x3wk(x) = −wk,0(k4 +2k3)x3−wk,1(k4 +2k3)x4−wk,3(k4 +2k3)x5 + · · ·

from these equations and (3.1), we get[
1− k2x−3kx+2k3x2 +3k2x2− k4x3−2k3x3]wk(x) = (1−k2x−3kx+2k3x2+3k2x2)wk,0+(x−k2x2−3kx2)wk,1+x2wk,2

and so the generating function for the k−binomial transform of the k−Narayana sequence is

wk(x) =
(1− k2x−3kx+2k3x2 +3k2x2)wk,0 +(x− k2x2−3kx2)wk,1 + x2wk,2

1− k2x−3kx+2k3x2 +3k2x2− k4x3−2k3x3 .

Now, we present a new triangle of the k−binomial transform of the k−Narayana sequence for each k. The next triangle is an
example of the 2−Narayana sequence:
Since the proofs in this section are similar to the proof steps in the previous section, the theorems are given without proofs.
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4. The rising k−binomial transform of the k−Narayana sequence

The rising k−binomial transform of the k−Narayana sequence
{

Nk,n
}

n∈N is denoted by
{

rk,n
}

n∈N where

rk,n =
n

∑
i=0

(
n
i

)
kiNk,i.

Theorem 4.1. The recurrence relation obtained for
{

rk,n
}

is as follows:

rk,n+3 = (k2 +3)rk,n+2− (2k2 +3)rk,n+1 +(k3 + k2 +1)rk,n. (4.1)

The characteristic equation of
{

bk,n
}

in (4.1) is

γ
3− (k2 +3)γ2 +(2k2 +3)γ− (k3 + k2 +1) = 0,

whose solutions are γ1, γ2, and γ3.
Next we derive the Binet formula for the rising k−binomial transform of the k−Narayana sequence.

Theorem 4.2. Whichever term of
{

rk,n
}

can be computed using the Binet formula. It is indicated by

rk,n =
u1γn

1
(γ1− γ2)(γ1− γ3)

+
u2γn

2
(γ2− γ1)(γ2− γ3)

+
u3γn

3
(γ3− γ1)(γ2− γ3)

where

u1 = k3− γ2k− γ3k+2k

u2 = k3− γ1k− γ3k+2k

u3 = k3− γ1k− γ2k+2k

Theorem 4.3. The generating function of
{

rk,n
}

is:

rk(x) =
(1− kx2−3+2k2x2 +3x2)rk,0 +(1− k2x2−3x2)rk,1 + x2rk,2

1− kx2−3+2k2x2 +3x2− k3x3− k2x3− x3 .

Now, we present a new triangle of
{

rk,n
}

for each k. The next triangle is an example of the 2−Narayana sequence:

0
1 2

2 5 12
4 10 25 62

9 22 54 133 328

Figure 3: 2−Narayana sequence and its rising 2−binomial transform

5. The falling k−Binomial transform of the k−Narayana sequence

The falling k−binomial transform of the k−Narayana sequence
{

Nk,n
}

n∈N is denoted by
{

fk,n
}

n∈N where

fk,n =
n

∑
i=0

(
n
i

)
kn−iNk,i.

Theorem 5.1. The recurrence relation obtained for
{

fk,n
}

is as follows:

fk,n+3 = 4k fk,n+2−5k2 fk,n+1 +(2k3 +1) fk,n. (5.1)

The characteristic equation of sequences
{

bk,n
}

in (5.1) is

θ
3−4kθ

2 +5k2
θ − (2k3 +1) = 0,

whose solutions are θ1, θ2, and θ3.
Next we derive the Binet formula for

{
fk,n
}

.
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Theorem 5.2. Whichever term of
{

fk,n
}

can be computed using the Binet formula. It is indicated by

fk,n =
t1θ n

1
(θ1−θ2)(θ1−θ3)

+
t2θ n

2
(θ2−θ1)(θ2−θ3)

+
t3θ n

3
(θ3−θ1)(θ2−θ3)

where

t1 = 3k−θ2−θ3

t2 = 3k−θ1−θ3

t3 = 3k−θ1−θ2

Theorem 5.3. The generating function of
{

fk,n
}

is:

fk(x) =
(1−4kx+5k2x2) fk,0 +(x−4kx2) fk,1 + x2 fk,2

1−4kx+5k2x2−2k3x3− x3 .

Now, we present a new triangle of
{

fk,n
}

for each k. For example following triangle is for 2−Narayana sequence and its
falling 2−binomial transform

0
1 1

2 4 6
4 8 16 28

9 17 33 65 121

Figure 4: 2−Narayana sequence and its falling 2−binomial transform
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