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Abstract
In this study, we deal with the Gauss map of tubular hypersurfaces in 4-dimensional
Lorentz-Minkowski space concerning the linearized operators L1 (Cheng-Yau) and L2.
We obtain the L1 (Cheng-Yau) operator of the Gauss map of tubular hypersurfaces that
are formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyper-
spheres whose centers lie on timelike or spacelike curves with non-null Frenet vectors in
E4

1 and give some classifications for these hypersurfaces which have generalized Lk 1-type
Gauss map, first kind Lk-pointwise 1-type Gauss map, second kind Lk-pointwise 1-type
Gauss map and Lk-harmonic Gauss map, k ∈ {1, 2}.
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1. Introduction
Let (M, g) be a hypersurface of (n + 1)-dimensional Minkowski space En+1

1 , ∆ denote
its Laplace operator. A smooth mapping ϕ : M → En+1

1 is said to be finite type if it can
be expressed as

ϕ = ϕ0 + ϕ1 + · · · + ϕk,

where ϕ0 is a constant vector and ϕi is an eigenvector of ∆ corresponding to the eigenvector
λi for i = 1, 2, . . . , k. More precisely, if λ1, λ2, . . . , λk are distinct, then ψ is said to be
k-type ([4, 6, 7]). Several results on the study of finite type mappings were summed up in
a report by B.-Y. Chen in [5] (See also [8, 24]).
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Let N denote the Gauss map of M . From the definition above, one can conclude that
N is of 1-type if and only if it satisfies the equation

∆N = λ(N + C) (1.1)

for a constant λ ∈ R and a constant vector C. However, Gauss map of some important
submanifolds such as catenoid and helicoid of the Euclidean 3-space E3 satisfies

∆N = f(N + C) (1.2)

which is weaker than (1.1), where f ∈ C∞(M) is a smooth function, [10]. These subman-
ifolds whose Gauss map N satisfying (1.2) are said to have pointwise 1-type Gauss map.
Submanifolds with pointwise 1-type Gauss map have been worked in several papers (cf.
[10, 20,23,24]).

On the other hand, the Gauss map of some hypersurfaces of semi-Euclidean spaces
satisfies the equation

∆N = f1N + f2C (1.3)

for some smooth functions f1, f2 and a constant vector C. A submanifold is said to have
generalized 1-type Gauss map if its Gauss map satisfies the condition (1.3), [25]. After
this definition was given, hypersurfaces of pseudo-Euclidean spaces have been considered
in terms of having generalized 1-type Gauss map, [17,19,25,26].

In the recent years, the definition of Lk-finite type maps has been obtained by replacing
∆ in the definition above with the sequence of operators L0, L1, L2, . . . , Ln−1, [1,2]. Note
that, by the definition of these operators, one can obtain L0 = −∆ and L1 = □ is called as
the Cheng-Yau operator introduced in [9]. By motivating this idea, notion of Lk-pointwise
1-type Gauss map and generalized Lk 1-type Gauss map was presented in [14] and [18],
respectively (see Definition 2.1). After the case k = 1 is studied in these papers, many
result obtained on hypersurfaces with certain type of Gauss map, [11–13,19,22,25,26].

On the other hand, in [3], the general expression of the canal hypersurfaces that are
formed as the envelope of a family of pseudo hyperspheres, pseudo hyperbolic hyperspheres
and null hypercones whose centers lie on a non-null curve with non-null Frenet vector fields
in E4

1 has been given and their some geometric invariants such as unit normal vector fields,
Gaussian curvatures, mean curvatures and principal curvatures have been obtained. Also,
tubular hypersurfaces in E4

1 by taking constant radius function have been studied in [3].
In this paper, we study the tubular hypersurfaces in Lorentz-Minkowski 4-space E4

1
with the aid of Lk operators, k ∈ {1, 2}. In Sect. 2, we give basic notation, facts and
definitions about hypersurfaces of Minkowski spaces. In Sect. 3 and Sect 4, we consider
some classifications of tubular hypersurfaces by considering their Gauss maps in terms of
their types with respect to the operators L1 and L2.

2. Preliminaries
Let En+1

1 be the (n+1)-dimensional Lorentz-Minkowski space with the canonical pseudo-
Euclidean metric ⟨ , ⟩ of index 1 and signature (−,+,+, ...,+) given by

⟨ , ⟩ = −dx2
1 + dx2

2 + dx2
3 + ...+ dx2

n+1

where (x1, x2, ..., xn+1) is a rectangular coordinate system in En+1
1 .

If Γ : M −→ En+1
1 is an isometric immersion from an n-dimensional orientable manifold

M to En+1
1 , then the induced metric on M by the immersion Γ can be Riemannian or

Lorentzian. Let N denotes a unit normal vector field and put ⟨N,N⟩ = ε = ±1, so that
ε = 1 or ε = −1 according to M is endowed with a Lorentzian or Riemannian metric,
respectively.
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The operator Lk acting on the coordinate functions of the Gauss map N of the hyper-
surface M in (n+ 1)-dimensional Lorentz-Minkowski space En+1

1 is

LkN = −εCk (∇Hk+1 + (nH1Hk+1 − (n− k − 1)Hk+2)N) . (2.1)

Here, (
n
k

)
Hk = (−ε)k ak,

((
n
k

)
= n!
k!(n− k)!

)
, (2.2)

such that

a1 = −
∑n

i=1 κi,

ak = (−1)k ∑n
i1<i2<...<ik

κi1κi2 ...κik
, k = 2, 3, ..., n

 (2.3)

and Hk is called the k-th mean curvature of order k of M .
Also, the constant Ck is given by

Ck =
(

n
k + 1

)
(−ε)k. (2.4)

(For more details about the linearized operator Lk, one can see [16].)

Definition 2.1. Let m and n be non-zero smooth functions on M , C ∈ En+1
1 be a non-zero

constant vector and k ∈ {0, 1, 2, ..., n}.
If the Gauss map N of an oriented submanifold M in E4

1 satisfies
i: LkN = mN + nC, then M has generalized Lk 1-type Gauss map;
ii: LkN = mN, then M has first kind Lk-pointwise 1-type Gauss map;
iii: LkN = m(N + C), then M has second kind Lk-pointwise 1-type Gauss map;
iv: LkN = 0, then N is called Lk-harmonic.

In this study, we will deal with Gauss maps of tubular hypersurfaces in 4-dimensional
Lorentz-Minkowski space E4

1 concerning linearized operators L1 and L2. So, let us give
some notions in E4

1.
Let −→u = (u1, u2, u3, u4), −→v = (v1, v2, v3, v4) and −→w = (w1, w2, w3, w4) be three vectors

in E4
1. The inner product and vector product are defined by

⟨−→u ,−→v ⟩ = −u1v1 + u2v2 + u3v3 + u4v4 (2.5)

and

−→u × −→v × −→w = det


−e1 e2 e3 e4
u1 u2 u3 u4
v1 v2 v3 v4
w1 w2 w3 w4

 , (2.6)

respectively. Here ei, (i = 1, 2, 3, 4) are standard basis vectors.
A vector −→u ∈ E4

1 is called spacelike, timelike or lightlike (null) if ⟨−→u ,−→u ⟩ > 0 (or
−→u = 0), ⟨−→u ,−→u ⟩ < 0 or ⟨−→u ,−→u ⟩ = 0, respectively. A curve β(s) in E4

1 is spacelike,
timelike or lightlike (null), if all its velocity vectors β′(s) are spacelike, timelike or lightlike,
respectively and a non-null (i.e. timelike or spacelike) curve has unit speed if ⟨β′, β′⟩ = ∓1.
Also, the norm of the vector −→u is ∥−→u ∥ =

√
|⟨−→u ,−→u ⟩| [15].

Let F1, F2, F3, F4 be unit tangent vector field, principal normal vector field, binormal
vector field, trinormal vector field of a timelike or spacelike curve β(s), respectively and
{F1, F2, F3, F4} be the moving Frenet frame along β(s) in E4

1. The Frenet equations can
be given according to the causal characters of non-null Frenet vector fields F1, F2, F3 and
F4 as follows [21]:
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If the curve β(s) is timelike, i.e. ⟨F1, F1⟩ = −1, ⟨Fi, Fi⟩ = 1 (i = 2, 3, 4), then

F ′
1 = k1F2,
F ′

2 = k1F1 + k2F3,
F ′

3 = −k2F2 + k3F4,
F ′

4 = −k3F3;

 (2.7)

if the curve β(s) is spacelike with timelike principal normal vector field F2, i.e. ⟨F2, F2⟩ =
−1, ⟨Fi, Fi⟩ = 1 (i = 1, 3, 4), then

F ′
1 = k1F2,
F ′

2 = k1F1 + k2F3,
F ′

3 = k2F2 + k3F4,
F ′

4 = −k3F3;

 (2.8)

if the curve β(s) is spacelike with timelike binormal vector field F3, i.e. ⟨F3, F3⟩ = −1,
⟨Fi, Fi⟩ = 1 (i = 1, 2, 4), then

F ′
1 = k1F2,
F ′

2 = −k1F1 + k2F3,
F ′

3 = k2F2 + k3F4,
F ′

4 = k3F3;

 (2.9)

if the curve β(s) is spacelike with timelike trinormal vector field F4, i.e. ⟨F4, F4⟩ = −1,
⟨Fi, Fi⟩ = 1 (i = 1, 2, 3), then

F ′
1 = k1F2,
F ′

2 = −k1F1 + k2F3,
F ′

3 = −k2F2 + k3F4,
F ′

4 = k3F3.

 (2.10)

Here k1, k2, k3 are the first, second and third curvatures of the non-null curve β(s).
Also, if p is a fixed point in E4

1 and r is a positive constant, then the pseudo-Riemannian
hypersphere and the pseudo-Riemannian hyperbolic space are defined by

S3
1(p, r) = {x ∈ E4

1 : ⟨x− p, x− p⟩ = r2}

and

H3
0 (p, r) = {x ∈ E4

1 : ⟨x− p, x− p⟩ = −r2},

respectively.
If M is an oriented hypersurface in E4

1, then the gradient of a smooth function f(s, t, w),
defined on M , can be obtained by

∇f = 1
g


((
g2

23 − g22g33
)
fs + (−g13g23 + g12g33) ft + (g13g22 − g12g23) fw

)
∂s

+
(
(−g13g23 + g12g33) fs +

(
g2

13 − g11g33
)
ft + (−g12g13 + g11g23) fw

)
∂t

+
(
(g13g22 − g12g23) fs + (−g12g13 + g11g23) ft +

(
g2

12 − g11g22
)
fw

)
∂w

 ,

(2.11)
where

g =g2
13g22 − 2g12g13g23 + g11g

2
23 + g2

12g33 − g11g22g33;

{s, t, w} is a local coordinat system of M ; fs, ft, fw are the partial derivatives of f
and g11 = ⟨∂s, ∂s⟩ , g12 = ⟨∂s, ∂t⟩ , g13 = ⟨∂s, ∂w⟩ , g22 = ⟨∂t, ∂t⟩ , g23 = ⟨∂t, ∂w⟩ ,
g33 = ⟨∂w, ∂w⟩.
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3. Some classifications for Tubular hypersurfaces generated by timelike
curves with Lk operators in E4

1

In this section, we obtain the L1 (Cheng-Yau) and L2 operators of the Gauss map of
the tubular hypersurfaces T(s, t, w) that are formed as the envelope of a family of pseudo
hyperspheres whose centers lie on a timelike curve with non-null Frenet vectors in E4

1 and
give some classifications for these hypersurfaces which have generalized Lk 1-type Gauss
map, first kind Lk-pointwise 1-type Gauss map and second kind Lk-pointwise 1-type Gauss
map and Lk-harmonic Gauss map, k ∈ {1, 2}.

The tubular hypersurfaces T(s, t, w) that are formed as the envelope of a family of
pseudo hyperspheres whose centers lie on a timelike curve with non-null Frenet vectors in
E4

1 can be parametrized by
T(s, t, w) = β(s) + r(cos t coswF2(s) + sin t coswF3(s) + sinwF4(s)). (3.1)

The unit normal vector field of (3.1) is
N = − (cos t coswF 2 + sin t coswF 3 + sinwF 4) (3.2)

and so,
⟨N,N⟩ = 1. (3.3)

The coefficients of the first fundamental form of (3.1) are

g11 = (rk2 cos t cosw − rk3 sinw)2+r2
(
k2

2+k2
3

)
sin2 t cos2w−(1 + rk1 cos t cosw)2,

g12 = g21 = r2(k2 cosw − k3 cos t sinw) cosw, g22 = r2 cos2w,
g13 = g31 = r2k3 sin t, g23 = g32 = 0, g33 = r2.


(3.4)

The principal curvatures of (3.1) are

κ1 = κ2 = 1
r
, κ3 = k1 cos t cosw

1 + rk1 cos t cosw
. (3.5)

For more details about these hypersurfaces, one can see [3].

3.1. Some classifications for Tubular hypersurfaces generated by timelike
curves with L1 (Cheng-Yau) operator in E4

1

The functions ak of the tubular hypersurfaces (3.1) in E4
1 are obtained from (2.3) and

(3.5) by

a1 = −2 − 3rk1 cos t cosw
r(1 + rk1 cos t cosw)

, a2 = 1 + 3rk1 cos t cosw
r2(1 + rk1 cos t cosw)

, a3 = − k1
r2(rk1 + sec t secw)

.

(3.6)
Also, from (2.11), (3.4) and (3.6), we have

∇a2 = −2 (k′
1 cos t+ k1k2 sin t) cosw
r(1 + rk1 cos t cosw)3 F1−k1

(
2 cos2 t cos(2w) + cos(2t) − 3

)
2r2(1 + rk1 cos t cosw)2 F2

− 2k1 sin t cos t cos2w

r2(1 + rk1 cos t cosw)2F3− 2k1 cos t sinw cosw
r2(1 + rk1 cos t cosw)2F4. (3.7)

So, from (2.1), (2.2), (3.2), (3.3), (3.6) and (3.7), we reach that

L1N = −2 (k1k2 sin t+ k′
1 cos t) cosw

r(1 + rk1 cos t cosw)3 F1

−2
(
rk1

(
3rk1 cos3 t cos3w + 2 cos2 t cos(2w) + cos(2t)

)
+ cos t cosw

)
r3(1 + rk1 cos t cosw)2 F2

−2(1 + 3rk1 cos t cosw) sin t cosw
r3(1 + rk1 cos t cosw)

F3−2(3rk1 cos t cosw + 1) sinw
r3(1 + rk1 cos t cosw)

F4. (3.8)



6 A. Kazan, M. Altın, N. C. Turgay

Now, let us give some classifications for the tubular hypersurfaces (3.1) which have
generalized L1 1-type Gauss map, first kind L1-pointwise 1-type Gauss map, second kind
L1-pointwise 1-type Gauss map and L1-harmonic Gauss map.

Let the tubular hypersurfaces T(s, t, w) have generalized L1 (Cheng-Yau) 1-type Gauss
map, i.e., L1N = mN + nC, where C = C1F1 +C2F2 +C3F3 +C4F4 is a constant vector.
Here, by taking derivatives of the constant vector C with respect to s, from (2.7) we obtain
that

C ′
1 + C2k1 = 0,

C ′
2 + C1k1 − C3k2 = 0,

C ′
3 + C2k2 − C4k3 = 0,

C ′
4 + C3k3 = 0.

 (3.9)

Also, by taking derivatives the constant vector C with respect to t and w separately, one
can see that the functions Ci depend only on s.

Firstly, let us classify the tubular hypersurfaces T(s, t, w) which have generalized L1
(Cheng-Yau) 1-type Gauss map.

From (3.2) and (3.8), we get

−2(k′
1 cos t+k1k2 sin t) cos w

r(1+rk1 cos t cos w)3 = nC1,

−2(rk1(3rk1 cos3 t cos3 w+2 cos2 t cos(2w)+cos(2t))+cos t cos w)
r3(1+rk1 cos t cos w)2 = m (− cos t cosw) + nC2,

−2(1+3rk1 cos t cos w) sin t cos w
r3(1+rk1 cos t cos w) = m (−sin t cosw) + nC3,

−2(1+3rk1 cos t cos w) sin w
r3(1+rk1 cos t cos w) = m (−sinw) + nC4.


(3.10)

Now, let us investigate the non-zero functions m(s, t, w) and n(s, t, w) from the above
four equations.

Firstly, let us assume that C1 ̸= 0.
In this case, from the first equation of (3.10) it’s easy to see that

n(s, t, w) = −2 (k′
1 cos t+ k1k2 sin t) cosw

r(1 + rk1 cos t cosw)3C1
. (3.11)

Here, when the equation (3.11) is successively substituted into the second, third and fourth
equations of (3.10), we obtain

m(s, t, w) =

2


(
rk1

(
3rk1 cos3 t cos3 w
+2 cos2 t cos (2w)+ cos (2t)

)
+ cos t cosw

)
C1(1 + rk1 cos t cosw)

−C2r
2 (k′

1 cos t+ k1k2 sin t) cosw


C1r3(1+rk1 cos t cos w)3 cos t cos w

,

m(s, t, w) = 2(C1(1+rk1 cos t cos w)2(1+3rk1 cos t cos w)−C3r2(k′
1 cot t+k1k2))

C1r3(1+rk1 cos t cos w)3 ,

m(s, t, w) = 2(C1(1+rk1 cos t cos w)2(1+3rk1 cos t cos w)−C4r2(k′
1 cos t+k1k2 sin t) cot w)

C1r3(1+rk1 cos t cos w)3 .
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When we equate the functions m(s, t, w) found above to each other, we arrive at the
following equations:

(C3 − C4 sin t cotw)
(
k′

1 cot t+ k1k2
)

= 0, (3.12)
k1(C1 sec t secw + k2r(C2 tan t− C4 sin t cotw)) + r(C1k

2
1 − k′

1(C4 cos t cotw − C2)) = 0,
(3.13)

k1(rk2(C3 − C2 tan t) − C1 sec t secw) − C1rk
2
1 + rk′

1(C3 cot t− C2) = 0. (3.14)

In the equation (3.12), it holds that k′
1 cot t + k1k2 ̸= 0. This is because, when k′

1 cot t +
k1k2 = 0, the function n(s, t, w) in the first equation of (3.10) becomes zero. This, in turn,
contradicts the definition of the function n(s, t, w) in our classification as L1N = mN+nC.
So, from the equation (3.12) and k′

1 cot t + k1k2 ̸= 0, we have C3 = C4 = 0. When
C3 = C4 = 0, substituting this into the equation (3.14) yields(

C1rk
2
1 + C2rk

′
1

)
cos t+ C1k1 secw + C2rk1k2 sin t = 0.

Thus, we have
C1k

2
1 + C2k

′
1 = C1k1 = C2k1k2 = 0

and so C1 = C2 = 0. This is a contradiction.
Secondly, let us assume that C1 = 0.
In this case, from the first equation of the set of equations (3.9) it’s easy to see that

C2k1 = 0. (3.15)

If k1 = 0 in (3.15), then from the second, third and fourth equations of (3.10), it is
calculated as

C2r
3n(s, t, w) =

(
m(s, t, w)r3 − 2

)
cos t cosw,

C3r
3n(s, t, w) =

(
m(s, t, w)r3 − 2

)
sin t cosw,

C4r
3n(s, t, w) =

(
m(s, t, w)r3 − 2

)
sinw,


(3.16)

respectively. Since the functions Ci depend only on s, there is no solution for functions
n(s, t, w) in (3.16).

Now, let us assume that C2 = 0 in (3.15). In this case, from the second equation of
(3.10), it’s easy to see that

m(s, t, w) = 2
(
cos t cosw + rk1

(
cos(2t) + 3rk1 cos3 t cos3w + 2 cos2 t cos(2w)

))
r3(1 + rk1 cos t cosw)2 cos t cosw

. (3.17)

Here, when the equation (3.17) is successively substituted into the third and fourth equa-
tions of (3.10), we obtain

n(s, t, w)C3 = −2k1
r2(1+r cos t cos wk1)2 tan t,

n(s, t, w)C4 = −2k1
r2(1+rk1 cos t cos w)2 sec t tanw.

Here, there is no solution for functions n(s, t, w).
Hence, we can state the following theorem:

Theorem 3.1. There are no tubular hypersurfaces (3.1), obtained by pseudo hyperspheres
whose centers lie on a timelike curve in E4

1, with generalized L1 1-type Gauss map.

Now, let us classify the tubular hypersurfaces T(s, t, w) which have second kind L1-
pointwise 1-type Gauss map, i.e., L1N = m (N + C) .
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From (3.2) and (3.8), we get

−2(k′
1 cos t+k1k2 sin t) cos w

r(1+rk1 cos t cos w)3 = mC1,

−2(rk1(3rk1 cos3 t cos3 w+2 cos2 t cos(2w)+cos(2t))+cos t cos w)
r3(1+rk1 cos t cos w)2 = m (− cos t cosw+C2) ,

−2(1+3rk1 cos t cos w) sin t cos w
r3(1+rk1 cos t cos w) = m (−sin t cosw+C3) ,

−2(1+3rk1 cos t cos w) sin w
r3(1+rk1 cos t cos w) = m (−sinw+C4) .


(3.18)

Here, from the fourth equation of (3.18) it’s easy to see that

m(s, t, w) = − 2 (1 + 3rk1 cos t cosw) sinw
r3(1 + rk1 cos t cosw) (−sinw+C4)

. (3.19)

When the equation (3.19) is successively substituted into the second and third equations
of (3.18), we obtain

3C2r
2k2

1 cos2 t cos2w + 4C2rk1 cos t cosw + C2 − rk1 = 0,
C4 sin t cosw − C3 sinw = 0.

So, we have

k1 = C2 = C3 = C4 = 0. (3.20)

Now, when the components of the equation (3.20) is substituted into the second, third or
fourth equations of (3.18), we calculated

m(s, t, w) = 2
r3 . (3.21)

Also, from the first equation of (3.18) and (3.21), we have C1 = 0.
From the calculations made above for classify the tubular hypersurfaces T(s, t, w) which

have second kind L1-pointwise 1-type Gauss map, i.e., L1N = m (N + C), we can give the
following theorem:

Theorem 3.2. There are no tubular hypersurfaces (3.1), obtained by pseudo hyperspheres
whose centers lie on a timelike curve in E4

1, with second kind L1-pointwise 1-type Gauss
map.

Moreover, if the function m is constant in Definition 2.1 (ii or iii), then we say M
has first or second kind Lk-(global) pointwise 1-type Gauss map. Thus, we can state the
following theorem:

Theorem 3.3. The tubular hypersurfaces (3.1), obtained by pseudo hyperspheres whose
centers lie on a timelike curve in E4

1, have first kind L1-(global) pointwise 1-type Gauss
map, i.e., L1N = mN if and only if k1 = 0, where m(s, t, w) = 2

r3 .

Finally, in the equation (3.8), since all of the coefficients of F1, F2, F3 and F4 cannot
be zero, we can give the following theorem:

Theorem 3.4. The tubular hypersurfaces (3.1), obtained by pseudo hyperspheres whose
centers lie on a timelike curve in E4

1, cannot have L1-harmonic Gauss map.
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3.2. Some classifications for Tubular hypersurfaces generated by timelike
curves with L2 operator in E4

1

Firstly, it is calculated from (2.11), (3.4) and (3.6) as

∇a3 =(k′
1 cos t+ k1k2 sin t) cosw
r2(1 + rk1 cos t cosw)3 F1 + k1

(
2 cos2 t cos(2w) + cos(2t) − 3

)
4r3(1 + rk1 cos t cosw)2 F2

+ k1 sin t cos t cos2w

r3(1 + rk1 cos t cosw)2F3 + k1 cos t sinw cosw
r3(1 + rk1 cos t cosw)2F4. (3.22)

So, from (2.1), (2.2), (3.2), (3.3), (3.6) and (3.22), we have

L2N = (k′
1 cos t+ k1k2 sin t) cosw
r2(1 + rk1 cos t cosw)3 F1

+

k1

 rk1
2

(
24rk1 cos4 t cos4w + 12 cos3 t cos(3w)
+19 cos t cosw + 9 cos(3t) cosw

)
+6 cos2 t cos(2w) + 3 cos(2t) − 1


4r3(1 + rk1 cos t cosw)3 F2

+ 3k1 sin t cos t cos2w

r3(1 + rk1 cos t cosw)
F3 + 3k1 cos t sinw cosw

r3(1 + rk1 cos t cosw)
F4. (3.23)

Now, let us give some classifications for the tubular hypersurfaces (3.1) which have
generalized L2 1-type Gauss map, first kind L2-pointwise 1-type Gauss map, second kind
L2-pointwise 1-type Gauss map and L2-harmonic Gauss map.

Now, let us classify the tubular hypersurfaces T(s, t, w) which have generalized L2 1-type
Gauss map. From (3.2) and (3.23), we get

(k′
1 cos t+k1k2 sin t) cos w

r2(1+rk1 cos t cos w)3 = nC1,

k1

 rk1
2

(
24rk1 cos4 t cos4w + 12 cos3 t cos(3w)
+19 cos t cosw + 9 cos(3t) cosw

)
+6 cos2 t cos(2w) + 3 cos(2t) − 1


4r3(1+rk1 cos t cos w)3 = m (− cos t cosw) + nC2,

3k1 sin t cos t cos2 w
r3(1+rk1 cos t cos w) = m (−sin t cosw) + nC3,

3k1 cos t sin w cos w
r3(1+rk1 cos t cos w) = m (−sinw) + nC4.


(3.24)

Firstly, let us assume that C1 ̸= 0.
In this case, from the first equation of (3.24) it’s easy to see that

n(s, t, w) = (k′
1 cos t+ k1k2 sin t) cosw

r2(1 + rk1 cos t cosw)3C1
. (3.25)

Here, when the equation (3.25) is successively substituted into the second, third and fourth
equations of (3.24), we obtain

m(s, t, w) =

(
2k1(−3C1 cos t cosw + C1 sec t secw + C2rk2 tan t) + 2C2rk

′
1

−6C1r
2k3

1 cos3 t cos3w − C1rk
2
1

(
6 cos2 t cos(2w) + 3 cos(2t) + 1

) )
2C1r3(1+rk1 cos t cos w)3 ,

m(s, t, w) = C3r(k′
1 cot t+k1k2)−3C1k1(1+rk1 cos t cos w)2 cos t cos w

C1r3(1+rk1 cos t cos w)3 ,

m(s, t, w) = C4r(k′
1 cos t+k1k2 sin t) cot w−3C1k1(1+rk1 cos t cos w)2 cos t cos w

C1r3(1+rk1 cos t cos w)3 .
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When we equate the functions m(s, t, w) found above to each other, we arrive at the
following equations:

(C4 sin t cosw − C3 sinw)
(
k′

1 cos t+ k1k2 sin t
)

= 0, (3.26)
k1(C1 sec t secw + rk2(C2 tan t− C4 sin t cotw)) + C1rk

2
1 + rk′

1(C2 − C4 cos t cotw)= 0,
(3.27)

k1(C1 sec t secw + rk2(C2 tan t− C3)) + C1rk
2
1 + rk′

1(C2 − C3 cot t) = 0. (3.28)

In the equation (3.26), it holds that k′
1 cos t+k1k2 sin t ̸= 0. This is because when k′

1 cos t+
k1k2 sin t = 0, the function n(s, t, w) in the first equation of (3.24) becomes zero. This,
in turn, contradicts the definition of the function n(s, t, w) in our classification as L2N =
mN +nC. So, from the equation (3.26) and k′

1 cos t+k1k2 sin t ̸= 0, we have C3 = C4 = 0.
When C3 = C4 = 0, substituting this into the equation (3.28) yields

r
(
C1k

2
1 + C2k

′
1

)
cos t+ C2rk1k2 sin t+ C1k1 secw = 0.

Thus, we have
C1k

2
1 + C2k

′
1 = C1k1 = C2k1k2 = 0

and so C1 = C2 = 0. This is a contradiction.
Secondly, let us assume that C1 = 0.
In this case, from the first equation of the set of equations (3.9) it’s easy to see that

C2k1 = 0. (3.29)

If k1 = 0 in (3.29), then from the second, third and fourth equations of (3.24), it is
calculated as

m(s, t, w) cos t cosw = n(s, t, w)C2,
m(s, t, w) sin t cosw = n(s, t, w)C3,
m(s, t, w) sinw = n(s, t, w)C4,

 (3.30)

respectively. Since the functions Ci depend only on s, there is no solution for functions
m(s, t, w) and n(s, t, w) in (3.30).

Now, let us assume that C2 = 0 in (3.29). In this case, from the second equation of
(3.24), it’s easy to see that

m(s, t, w) = −

k1

 rk1

(
24rk1 cos4 t cos4w + 12 cos3 t cos(3w)
+19 cos t cosw + 9 cos(3t) cosw

)
+12 cos2 t cos(2w) + 6 cos(2t) − 2


8r3(1 + rk1 cos t cosw)3 cos t cosw

. (3.31)

Here, when the equation (3.31) is successively substituted into the third and fourth equa-
tions of (3.24), we obtain

n(s, t, w)C3 = k1(rk1 sin t cos w+tan t)
r3(1+rk1 cos t cos w)3 ,

n(s, t, w)C4 = k1(rk1 sin w+sec t tan w)
r3(1+rk1 cos t cos w)3 .

Here, there is no solution for functions n(s, t, w).
Therefore, we can give the following theorem:

Theorem 3.5. There are no tubular hypersurfaces (3.1), obtained by pseudo hyperspheres
whose centers lie on a timelike curve in E4

1, with generalized L2 1-type Gauss map.

Now, let us classify the tubular hypersurfaces T(s, t, w) which have second kind L2-
pointwise 1-type Gauss map, i.e., L2N = m (N + C) .
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From (3.2) and (3.23), we get
(k′

1 cos t+k1k2 sin t) cos w

r2(1+rk1 cos t cos w)3 = mC1,

k1

 rk1
2

(
24rk1 cos4 t cos4w + 12 cos3 t cos(3w)
+19 cos t cosw + 9 cos(3t) cosw

)
+6 cos2 t cos(2w) + 3 cos(2t) − 1


4r3(1+rk1 cos t cos w)3 = m (− cos t cosw+C2) ,

3k1 sin t cos t cos2 w
r3(1+rk1 cos t cos w) = m (−sin t cosw+C3) ,

3k1 cos t sin w cos w
r3(1+rk1 cos t cos w) = m (−sinw+C4) .


(3.32)

Here, from the last equation of (3.32) it’s easy to see that

m(s, t, w) = 3k1 cos t sinw cosw
r3(1 + rk1 cos t cosw) (−sinw+C4)

. (3.33)

Here, when the equation (3.33) is substituted into the second equation of (3.32), we obtain
−1 + 3C2 cos t cosw + 3C2rk1 cos2 t cos2w = 0.

Since this is not possible, we can give the following theorem:

Theorem 3.6. There are no tubular hypersurfaces (3.1), obtained by pseudo hyperspheres
whose centers lie on a timelike curve in E4

1, with second kind L2-pointwise 1-type Gauss
map.

Now, let us classify the tubular hypersurfaces T(s, t, w) which have first kind L2-
pointwise 1-type Gauss map, i.e., L2N = mN.

From (3.2) and (3.23), we get
cos w(cos tk′

1+k1k2 sin t)
r2(1+rk1 cos t cos w)3 = 0,

k1

 1
2rk1

(
24rk1 cos4 t cos4w + 12 cos3 t cos(3w)
+19 cos t cosw + 9 cos(3t) cosw

)
+6 cos2 t cos(2w) + 3 cos(2t) − 1


4r3(1+rk1 cos t cos w)3 = m (− cos t cosw) ,

3k1 sin t cos t cos2 w
r3(1+rk1 cos t cos w) = m (−sin t cosw) ,

3k1 cos t sin w cos w
r3(1+rk1 cos t cos w) = m (−sinw) .



(3.34)

Here, from the last equation of (3.34) it’s easy to see that

m(s, t, w) = −3k1 cos t cosw
r3(1 + rk1 cos t cosw)

. (3.35)

Here, when the equation (3.35) is substituted into the second equation of (3.32), we obtain
k1(rk1 + sec t secw) = 0.

Since this is not possible, we can give the following theorem:

Theorem 3.7. There are no tubular hypersurfaces (3.1), obtained by pseudo hyperspheres
whose centers lie on a timelike curve in E4

1, with first kind L2-pointwise 1-type Gauss map.

Finally, since the coefficients F1, F2, F3 and F4 in equation (3.23) are all zero only for
k1 = 0, we can give the following theorem:
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Theorem 3.8. The tubular hypersurfaces (3.1), obtained by pseudo hyperspheres whose
centers lie on a timelike curve in E4

1, have L2-harmonic Gauss map if and only if k1 = 0.

4. Some classifications for Tubular hypersurfaces generated by spacelike
curves with Lk operators in E4

1

In this section, we give the general formulas for L1 (Cheng-Yau) and L2 operators of
the Gauss maps of the six types of tubular hypersurfaces T{j,λ}(s, t, w) that are formed
as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyperspheres
whose centers lie on spacelike curves β(s) with non-null Frenet vectors in E4

1 and give
some classifications for these hypersurfaces which have generalized Lk 1-type Gauss map,
first kind Lk-pointwise 1-type Gauss map and second kind Lk-pointwise 1-type Gauss map
and Lk-harmonic Gauss map, k ∈ {1, 2}.

The tubular hypersurfaces T{j,λ}(s, t, w) that are formed as the envelope of a family of
pseudo hyperspheres or pseudo hyperbolic hyperspheres whose centers lie on a spacelike
curve with non-null Frenet vectors Fi in E4

1 can be parametrized by

T{2,1}(s, t, w) = β(s) + r(cosh t sinhwF2(s) + coshwF3(s) + sinh t sinhwF4(s)),
T{2,−1}(s, t, w) = β(s) + r(cosh t coshwF2(s) + sinhwF3(s) + sinh t coshwF4(s)),
T{3,1}(s, t, w) = β(s) + r(sinh t sinhwF2(s) + cosh t sinhwF3(s) + coshwF4(s)),
T{3,−1}(s, t, w) = β(s) + r(sinh t coshwF2(s) + cosh t coshwF3(s) + sinhwF4(s)),
T{4,1}(s, t, w) = β(s) + r(coshwF2(s) + sinh t sinhwF3(s) + cosh t sinhwF4(s)),
T{4,−1}(s, t, w) = β(s) + r(sinhwF2(s) + sinh t coshwF3(s) + cosh t coshwF4(s)),


(4.1)

respectively. Here, we suppose for T{j;λ}(s, t, w) that
i) ⟨Fj , Fj⟩ = −1 = εj and for i ̸= j, ⟨Fi, Fi⟩ = 1 = εi, i, j ∈ {1, 2, 3, 4},
ii) if the tubular hypersurface is foliated by pseudo hyperspheres or pseudo hyperbolic

hyperspheres, then λ = 1 or λ = −1, respectively (for more details, one can see [3]).
Now, let us write the following lemma which states the general parametric expressions

of 6 different types of tubular hypersurfaces given by (4.1) and obtained by pseudo hyper-
spheres and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with
non-null Frenet vector fields in E4

1.

Lemma 4.1. The general expression of the tubular hypersurfaces T{j,λ}(s, t, w) that are
formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyper-
spheres whose centers lie on a spacelike curve β(s) with non-null Frenet vectors Fi(s) in
E4

1 can be given by

T{j,λ}(s, t, w) = β(s) + r
(∑4

i=2µ
λ
i (s, t, w)Fi(s)

)
, (4.2)

where
µλ

5(s, t, w) = µλ
2(s, t, w), µλ

6(s, t, w) = µλ
3(s, t, w)

and for j = 2, 3, 4

µλ
j (s, t, w) = (sinhw)

1+λ
2 (coshw)

1−λ
2 cosh t,

µλ
j+1(s, t, w) = (sinhw)

1−λ
2 (coshw)

1+λ
2 ,

µλ
j+2(s, t, w) = (sinhw)

1+λ
2 (coshw)

1−λ
2 sinh t.

Here, if the canal hypersurface is foliated by pseudo hyperspheres or pseudo hyperbolic
hyperspheres, then λ = 1 or λ = −1, respectively.
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Here, we can give the general parametric expressions of the unit normal vector fields,
the coefficients of the first fundamental forms and the principal curvatures of the tubular
hypersurfaces T{j,λ} parametrized by (4.2).

The unit normal vector fields N{j,λ} (j = 2, 3, 4) of (4.2) are

N{j,λ} = −(−1)(4−j)!λj∑4
i=2µ

λ
i Fi. (4.3)

The coefficients of the first fundamental forms g{j,λ}
ik (j = 2, 3, 4) of (4.2) are

g
{j,λ}
11 = 1 + r2(k2)2

(
−(−1)(4−j)!

(
µλ

3

)2
+ (−1)j

(
µλ

2

)2
)

+ r2(k3)2
(

(−1)(5−j)!
(
µλ

3

)2
+ (−1)j

(
µλ

4

)2
)

+ 2(−1)(4−j)!rk1µ
λ
2 + r2(k1)2

(
µλ

2

)2
− 2(−1)(5−j)!r2k2k3µ

λ
2µ

λ
4 ,

g
{j,λ}
12 = g

{j,λ}
21 = r2(µλ

j+1)w

(
(−1)jk3

(
µλ

2

)
w

− (−1)(4−j)!k2
(
µλ

4

)
w

)
,

g
{j,λ}
22 = r2

(
(µλ

j+1)w

)2
,

g
{2,λ}
13 = g

{2,λ}
31 = λr2 (−k2 cosh t+ k3 sinh t) ,

g
{3,λ}
13 = g

{3,λ}
31 = −λr2k3 cosh t,

g
{4,λ}
13 = g

{4,λ}
31 = λr2k2 sinh t,

g
{j,λ}
23 = g

{j,λ}
32 = 0,

g
{j,λ}
33 = −λr2.



(4.4)

The principal curvatures κ{j,λ}
i (j = 2, 3, 4) of (4.2) are

κ
{j,λ}
1 = κ

{j,λ}
2 = (−1)(4−j)!λj

r ,

κ
{j,λ}
3 = k1µλ

2
λj(1+(−1)(4−j)!rk1µλ

2 ) .

 (4.5)

From Lemma 4.1, (4.3), (4.4) and (4.5), we get

L1N
{j,λ} =

2
(
−(−1)(5−j)!k1k2µ

λ
3 + k′

1µ
λ
2

)
r

(
(−1)(4−j)! + rk1µλ

2
)3 F1

+
−2λ

(
µλ

2 + 3r2(µλ
2)3 (k1)2 + k1

(
λr + 4(−1)(4−j)!r(µλ

2)2
))

r3 (
(−1)(4−j)! + rk1µλ

2
)2 F2

+
−2λ(−1)(4−j)!µλ

3

(
1 + 3(−1)(4−j)!rk1µ

λ
2

)
r3 (

(−1)(4−j)! + rk1µλ
2
) F3 +

−2λµλ
4

(
(−1)(4−j)! + 3rk1µ

λ
2

)
r3 (

(−1)(4−j)! + rk1µλ
2
) F4. (4.6)

Let T{j,λ}(s, t, w) have generalized L1 (Cheng-Yau) 1-type Gauss map, i.e., L1N
{j,λ} =

mN{j,λ} + nC, where C = C1F1 + C2F2 + C3F3 + C4F4 is a constant vector. Here, by
taking derivatives of the constant vector C with respect to s, from (2.8)-(2.10) we obtain
for T{j,λ} that

C ′
1 + (−1)(4−j)!C2k1 = 0,

C ′
2 + C1k1 + (−1)(5−j)!C3k2 = 0,

C ′
3 + C2k2 − (−1)(4−j)!C4k3 = 0,

C ′
4 + C3k3 = 0.

 (4.7)
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Also, by taking derivatives the constant vector C with respect to t, w separately, one can
see that the functions Ci depend only on s.

So, with similar procedure in Subsection 3.1, we obtain the following theorems:

Theorem 4.2. There are no tubular hypersurfaces (4.2), obtained by pseudo hyperspheres
and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null
Frenet vector fields Fi in E4

1, with generalized L1 1-type Gauss map in E4
1.

Theorem 4.3. There are no tubular hypersurfaces (4.2) obtained by pseudo hyperspheres
and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null
Frenet vector fields Fi in E4

1 with second kind L1-pointwise 1-type Gauss map in E4
1.

Theorem 4.4. The tubular hypersurfaces (4.2) obtained by pseudo hyperspheres and
pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet
vector fields Fi in E4

1 have first kind L1-(global) pointwise 1-type Gauss map, i.e., L1N
{j,λ} =

mN{j,λ} in E4
1 if and only if k1 = 0, where m(s, t, w) = 2λj+1(−1)(4−j)!

r3 .

Theorem 4.5. The tubular hypersurfaces (4.2) obtained by pseudo hyperspheres and
pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet
vector fields Fi in E4

1 cannot have L1-harmonic Gauss map.

Also, from Lemma 4.1, (4.3), (4.4) and (4.5), we get

L2N
{j,λ} =

λj
(
(−1)jµλ

3k1k2 − (−1)(4−j)!µλ
2k

′
1

)
r2 (

(−1)(4−j)! + rk1µλ
2
)3 F1

+
−λj+1k1

(
2λ(−1)(4−j)! − 3(−1)j

(
µλ

4

)2
− 3(−1)(5−j)!

(
µλ

3

)2
− 3(−1)(4−j)!rk1

(
µλ

2

)3
)

r3 (
(−1)(4−j)! + rk1µλ

2
)2 F2

+
λj+1µλ

3

(
3(−1)(5−j)!rk1µ

λ
2

)
r4 (

(−1)(5−j)! + (−1)jrk1µλ
2
)F3 +

λj+1µλ
4

(
3(−1)(5−j)!rk1µ

λ
2

)
r4 (

(−1)(5−j)! + (−1)jrk1µλ
2
)F4. (4.8)

Thus, with similar procedure in Subsection 3.2, we can give the following theorems:

Theorem 4.6. There are no tubular hypersurfaces (4.2) obtained by pseudo hyperspheres
and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null
Frenet vector fields Fi in E4

1 with generalized L2 1-type Gauss map in E4
1.

Theorem 4.7. There are no tubular hypersurfaces (4.2) obtained by pseudo hyperspheres
and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null
Frenet vector fields Fi in E4

1 with second kind L2-pointwise 1-type Gauss map in E4
1.

Theorem 4.8. There are no tubular hypersurfaces (4.2) obtained by pseudo hyperspheres
and pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null
Frenet vector fields Fi in E4

1 with first kind L2-pointwise 1-type Gauss map in E4
1.

Theorem 4.9. The tubular hypersurfaces (4.2) obtained by pseudo hyperspheres and
pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with non-null Frenet
vector fields Fi in E4

1 have L2-harmonic Gauss map if and only if k1 = 0.
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