
Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat.
Volume 73, Number 4, Pages 941–956 (2024)
DOI:10.31801/cfsuasmas.1468665
ISSN 1303-5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr

Research Article; Received: April 15, 2024; Accepted: July 4, 2024

EXISTENCE AND UNIQUENESS OF A WEAK SOLUTION FOR

SINGULAR WEIGHTED ROBIN PROBLEM INVOLVING

p (.)-BIHARMONIC OPERATOR
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Abstract. The aim of this paper is to find the existence of solutions for the

following class of singular fourth order equation involving the weighted p(.)-
biharmonic operator:{

∆
(
a(x) |∆u|p(x)−2 ∆u

)
= λb(x) |u|q(x)−2 u+ V (x) |u|−γ(x) , x ∈ Ω,

a(x) |∆u|p(x)−2 ∂u
∂υ

+ β(x) |u|p(x)−2 u = 0, x ∈ ∂Ω,

where Ω is a smooth bounded domain in RN (N ≥ 2). Using variational meth-
ods, we prove the existence at least one nontrivial weak solution of such a Robin

problem in weighted variable exponent second order Sobolev spacesW
2,p(.)
a (Ω)

under some appropriate conditions. Finally, we deduce some uniqueness re-
sults.

1. Introduction

In this paper, the weighted singular Robin problem{
∆
(
a(x) |∆u|p(x)−2

∆u
)
= λb(x) |u|q(x)−2

u+ V (x) |u|−γ(x)
, x ∈ Ω,

a(x) |∆u|p(x)−2 ∂u
∂υ + β(x) |u|p(x)−2

u = 0, x ∈ ∂Ω,
(1)

is investigated with respect to some suitable assumptions, where a and b are weight
functions and nonnegative, ∂u

∂υ is the outer unit normal derivative of u on ∂Ω, p, q

are continuous functions on Ω, i.e. p, q ∈ C
(
Ω
)
with 1 < p− = infx∈Ω p(x) ≤

p(x) ≤ p+ = supx∈Ω p(x) < N
2 , β ∈ L∞ (∂Ω) such that β− = infx∈∂Ω β(x) > 0,

and Ω ⊂ RN (N > 2) is a bounded smooth domain, λ is a positive parameter,
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942 I. AYDIN

γ : Ω → (0, 1) is a continuous function, 1−γ− < p−, q+ < p−, V ∈ L
p∗(.)

p∗(.)+γ(.)−1
a (Ω),

V > 0 and p∗(x) = Np(x)
N−2p(x) .

In 2018, Chung [12] consider the p(x)-Laplacian Robin eigenvalue problem{
−∆p(x)u = λV (x) |u|q(x)−2

u, x ∈ Ω,

|∇u|p(x)−2 ∂u
∂υ + β(x) |u|p(x)−2

u = 0, x ∈ ∂Ω,

and prove the existence of a continuous family of eigenvalues in a neighborhood of
the origin using variational methods under some suitable conditions on the functions
q and V .

In 2024, Chung and Ho [14] use a concentration-compactness principle to solve
the lack of compactness of the critical Sobolev imbedding, and obtain the existence
of solutions to the following problem involving critical growth ∆2

p(x)u−M

(∫
Ω

1
p(x) |∇u|p(x) dx

)
∆p(x)u = λf(x, u) + |u|q(x)−2

u, x ∈ Ω,

u = ∆u = 0, x ∈ ∂Ω.

In 2011, Ayoujil and Amrouss [8] investigate the following problem:{
∆
(
|∆u|p(x)−2

∆u
)
= λ |u|q(x)−2

u, x ∈ Ω,

u = ∆u = 0, on ∂Ω,
(2)

and obtained that the energy functional associated to the problem (2) has a non-
trivial minimum for any positive λ for maxx∈Ω q(x) < minx∈Ω p(x) (see Theorem
3.1 in [8]). When p(x) = q(x), the problem (2) is considered by Ayoujil and Am-
rouss [7].

In 2015, Ge, Zhou and Wu [20] discuss the following problem:{
∆
(
|∆u|p(x)−2

∆u
)
= λV (x) |u|q(x)−2

u, in Ω,

u = ∆u = 0, on ∂Ω,
(3)

where V is an indefinite weight and λ is a positive real number. They obtained
several situations concerning the growth rates, and they showed, using the moun-
tain pass lemma and Ekeland’s principle, the existence of a continuous family of
eigenvalues.

In 2019, Kefi and Saoudi [25] search the existence of solutions for the following
inhomogeneous singular equation involving the p(x)-biharmonic operator:{

∆
(
|∆u|p(x)−2

∆u
)
= g(x)u−γ(x) ∓ λf(x, u), in Ω,

u = ∆u = 0, on ∂Ω.
(4)

They study the problem (4), which contains a singular term and indefinite many
more general terms than the equation (3), and prove the existence of a weak solution
for problem (4).
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In 2022, using variational techniques combined with the theory of the generalized
Lebesgue-Sobolev spaces Alsaedi, Ali and Ghanmi [1] studied weak solutions for the
following class of singular fourth order elliptic equations:{

∆
(
|x|p(x) |∆u|p(x)−2

∆u
)
= a(x)u−γ(x) + λf(x, u), in Ω,

u = ∆u = 0, on ∂Ω,
(5)

and prove the existence at least one nontrivial weak solution in W
2,p(.)
0 (Ω) .

In 2022, Mbarki [32] discuss the existence of solutions for a class of singular
p(x)-biharmonic Laplacian problem with Navier boundary conditions:{

∆
(
|x|p(x) |∆u|p(x)−2

∆u
)
= λV (x) |u|q(x)−2

u+ a(x)u−γ(x), in Ω,

u = ∆u = 0, on ∂Ω.
(6)

In 2022, Kulak, Aydın and Unal [28] consider the existence of weak solutions of
weighted Robin problem involving p(.)-biharmonic operator:{

∆
(
a(x) |∆u|p(x)−2

∆u
)
= λb(x) |u|q(x)−2

u, in Ω,

a(x) |∆u|p(x)−2 ∂u
∂υ + β(x) |u|p(x)−2

u = 0, on ∂Ω.
(7)

under some conditions in W
2,p(.)
a,b (Ω). We refer for instance to see ( [2], [13], [22],

[24], [26]).
Inspired by the articles mentioned above, we show the existence and unique-

ness of nontrivial solutions of problem (1) using compact embedding theorems in

W
2,p(.)
a (Ω) and variational methods. Therefore, we will obtain more general results

than the problems (4), (5), (6).

2. Abstract setting

Let Ω be a bounded open subset of RN with a smooth boundary ∂Ω. Put

C+

(
Ω
)
=

{
h ∈ C

(
Ω
)
: inf
x∈Ω

h(x) > 1

}
,

For any p ∈ C+

(
Ω
)
, we set

p− = inf
x∈Ω

p(x) and p+ = sup
x∈Ω

p(x)

such that 1 < p− ≤ p+ < ∞ and

Lp(.)(Ω) =

u

∣∣∣∣∣∣u : Ω → R is measurable and

∫
Ω

|u(x)|p(x) dx < ∞


with the (Luxemburg) norm

∥u∥p(.) = inf
{
λ > 0 : ϱp(.)

(u
λ

)
≤ 1

}
,
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where

ϱp(.)(u) =

∫
Ω

|u(x)|p(x) dx.

Moreover, the space
(
Lp(.)(Ω), ∥.∥p(.)

)
is a reflexive Banach space [27]. The weighted

Lebesgue space L
p(.)
a (Ω) is defined by

Lp(.)
a (Ω) =

u

∣∣∣∣∣∣u : Ω −→ R measurable and

∫
Ω

|u(x)|p(x) a(x)dx < ∞


such that ∥u∥p(.),a =

∥∥∥ua 1
p(.)

∥∥∥
p(.)

< ∞ for u ∈ L
p(.)
a (Ω), where a is a weight function

from Ω to (0,∞). Moreover, u ∈ L
p(.)
a (Ω) if and only if |u|p(.) a ∈ L1(Ω) [34].

We can define the space L
p(.)
a (∂Ω) similarly by

Lp(.)
a (∂Ω) =

u

∣∣∣∣∣∣u : ∂Ω −→ R measurable and

∫
∂Ω

|u(x)|p(x) a(x)dσ < +∞


with the norm

∥u∥p(.),a,∂Ω = inf

τ > 0 :

∫
∂Ω

∣∣∣∣u(x)τ

∣∣∣∣p(x) a(x)dσ ≤ 1


for u ∈ L

p(.)
a (∂Ω), where dσ is the measure on the boundary of Ω. Then

(
L
p(.)
a (∂Ω), ∥.∥p(.),a,∂Ω

)
is a a reflexive Banach space. If a ∈ L∞ (Ω), then L

p(.)
a = Lp(.) [15].

Proposition 1. (see [3], [5], [6], [19], [21], [30], [31]) For all u, v ∈ L
p(.)
a (Ω), we

have

(i) ∥u∥p(.),a < 1 (resp.= 1, > 1) if and only if ϱp(.),a(u) < 1 (resp.= 1, > 1),

(ii) ∥u∥p
−

p(.),a ≤ ϱp(.),a(u) ≤ ∥u∥p
+

p(.),a with ∥u∥p(.),a > 1,

(iii) ∥u∥p
+

p(.),a ≤ ϱp(.),a(u) ≤ ∥u∥p
−

p(.),a with ∥u∥p(.),a < 1

(iv) min
{
∥u∥p

−

p(.),a , ∥u∥
p+

p(.),a

}
≤ ϱp(.),a(u) ≤ max

{
∥u∥p

−

p(.),a , ∥u∥
p+

p(.),a

}
,

(v) min
{
ϱp(.),a(u)

1

p− , ϱp(.),a(u)
1

p+

}
≤ ∥u∥p(.),a ≤ max

{
ϱp(.),a(u)

1

p− , ϱp(.),a(u)
1

p+

}
,

(vi) ϱp(.),a(u− v) → 0 if and only if ∥u− v∥p(.),a → 0.

Proposition 2. (see [17])Let p and q be two measurable functions such that p ∈
L∞ (Ω) and 1 ≤ p(x)q(x) ≤ ∞ for a.e. x ∈ Ω. Let u ∈ Lq(.)(Ω), u ̸= 0. Then

min
{
∥u∥p

+

p(.)q(.) , ∥u∥
p−

p(.)q(.)

}
≤

∥∥∥|u|p(.)∥∥∥
q(.)

≤ max
{
∥u∥p

+

p(.)q(.) , ∥u∥
p−

p(.)q(.)

}
.
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Let a−
1

p(.)−1 ∈ L1
loc (Ω) and k ∈ Z+. Hence we define the weighted variable

exponent Sobolev space W
k,p(.)
a (Ω) is defined by

W k,p(.)
a (Ω) =

{
u ∈ Lp(.)

a (Ω) : Dαu ∈ Lp(.)
a (Ω), 0 ≤ |α| ≤ k

}
,

where α ∈ NN
0 is a multi-index, |α| = α1+α2+ ...+αN and Dα = ∂|α|

∂
α1
x1

...∂
αN
xN

. Then

W
k,p(.)
a (Ω) is a separable and reflexive Banach space equipped with the norm

∥u∥
W

k,p(.)
a

=
∑

0≤|α|≤k

∥Dαu∥p(.),a .

Alternatively, the space W
k,p(.)
a (Ω) could also be introduced as

W k,p(.)
a (Ω) =

{
u ∈ W k−1,p(.)

a (Ω) : Diu =
∂u

∂xi
∈ W k−1,p(.)

a (Ω) ,∀i = 1, 2, ...N

}
.

To find out solutions of the problem (1), we need some essential theories on the

space W
2,p(.)
a (Ω). The space X = W

2,p(.)
a (Ω) consists of all measurable functions

u ∈ L
p(.)
a (Ω) such that Dαu ∈ L

p(.)
a (Ω) for 0 ≤ |α| ≤ 2. Hence for any u ∈ X,

∥u∥X = ∥u∥p(.),a + ∥∇u∥p(.),a +
∑
|α|=2

∥Dαu∥p(.),a

Let

p∗(x) =

{
Np(x)

N−2p(x) , if p (x) < N
2 ,

+∞, if p (x) ≥ N
2 ,

for every x ∈ Ω. For p, q ∈ C+

(
Ω
)
in which q(x) < p∗(x) for all x ∈ Ω, there is

a continuous and compact embedding W 2,p(.)(Ω) ↪→ Lq(.)(Ω) (non-weighted). It is
obvious that p (x) < p∗(x) for all x ∈ Ω.

Remark 1. There is a continuous embedding X ↪→ L
p∗(.)
a (Ω) under some condi-

tions.

Proof. Firstly, we show by induction on k that W
k,p(.)
a (Ω) ↪→ L

p∗(.)
a (Ω). Let k = 1.

If 0 < a1 ≤ a(x) < a2 < ∞ for a.e. x ∈ Ω, then it is well known that the

embeddingW
1,p(.)
a (Ω) ∼= W 1,p(.) (Ω) ↪→ Lp∗(.) (Ω) for non-weighted case. Moreover,

the embedding W
1,p(.)
a (Ω) ↪→ L

p∗(.)
a (Ω) is also valid for weighted case (see [18],

[25], [27]). Suppose that the embedding W
k−1,p(.)
a (Ω) ↪→ L

r(.)
a (Ω) is satisfied for

r(x) = Np(x) /(N − ((k − 1)p(x))) when p(x) < N
k−1 . Since u ∈ W

k,p(.)
a (Ω), then

u and Dju (1 ≤ j ≤ N) belong to W
k−1,p(.)
a (Ω) , where p(x) < N

k . So it is easy to

see that u ∈ W
1,r(.)
a (Ω) and

∥u∥
W

1,r(.)
a

≤ C1 ∥u∥Wk,p(.)
a

.
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Due to kp(x) < N , we get r(x) < N and W
1,r(.)
a (Ω) ↪→ L

p∗(.)
a (Ω), where p∗(x) =

Nr(x) /N − r(x) = Np(x) /N − kp(x) and

∥u∥p∗,a ≤ C2 ∥u∥W 1,r(.)
a

≤ C3 ∥u∥Wk,p(.)
a

,

i.e. the embedding W
k,p(.)
a (Ω) ↪→ L

p∗(.)
a (Ω) is continuous. So X ↪→ L

p∗(.)
a (Ω). □

For A ⊂ Ω, denote by p−(A) = infx∈A p(x) and p+(A) = supx∈A p(x). Define

p∂ (x) = (p(x))
∂
=

{
(N−1)p(x)
N−p(x) , if p (x) < N,

∞, if p (x) ≥ N,

and

p∂r(x) (x) =
r(x)− 1

r(x)
p∂ (x)

for any x ∈ ∂Ω and r ∈ C (∂Ω,R) with r− = infx∈∂Ω r(x) > 1.

Theorem 1. (see [15])Assume that the set ∂Ω possesses the cone property and
p ∈ C

(
Ω
)
with p− > 1. If q ∈ C (∂Ω) and the inequality 1 ≤ q(x) < p∂r(x) (x) is

valid for all x ∈ ∂Ω, then there is a compact embedding W 1,p(.) (Ω) ↪→ L
q(.)
a (∂Ω)

for a ∈ Lr(.)(∂Ω), r ∈ C (∂Ω) with r(x) > p∂(x)
p∂(x)−1

for all x ∈ ∂Ω. In particular,

there is a compact embedding W 1,p(.) (Ω) ↪→ Lq(.)(∂Ω), where 1 ≤ q(x) < p∂ (x),
∀x ∈ ∂Ω.

It is easy to see that p∂r(x) (x) < p∂ (x) and p (x) < p∂ (x). So we have the

following Corollary under conditions in Theorem 1.

Corollary 1. (see [15])

(i) There is a compact embedding W 1,p(.) (Ω) ↪→ Lp(.)(∂Ω), where 1 ≤ p(x) <
p∂ (x), ∀x ∈ ∂Ω.

(ii) There is a compact embedding W 1,p(.) (Ω) ↪→ L
p(.)
a (∂Ω), where 1 ≤ p(x) <

p∂r(x) (x) < p∂ (x), ∀x ∈ ∂Ω.

Theorem 2. ( [5])Let a−α(.) ∈ L1 (Ω) with α (x) ∈
(

N
p(x) ,∞

)
∩
[

1
p(x)−1 ,∞

)
. Then

we have the compact embedding W
1,p(.)
a (Ω) ↪→ W 1,p∗(.) (Ω), where p∗(x) =

α(x)p(x)
α(x)+1 .

Corollary 2. If the inequality p(x) < p∂∗,r(x) (x) < p∂∗ (x) is valid for all x ∈ ∂Ω,

then there exists a compact embedding between W
1,p(.)
a (Ω) and L

p(.)
a (∂Ω).

Corollary 3. X ↪→ W
1,p(.)
a (Ω) ↪→↪→ L

p(.)
a (∂Ω).

Theorem 3. (see [19])Assume that the set ∂Ω possesses the cone property and
p ∈ C

(
Ω
)
. Suppose that b ∈ Lr(.) (Ω) , b(x) > 0 for x ∈ Ω, r ∈ C

(
Ω
)
and r− > 1.

If q ∈ C
(
Ω
)
and

1 ≤ q(x) <
r (x)− 1

r(x)
p♦(x)
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for all x ∈ Ω, then there is a compact embedding W 1,p(.) (Ω) ↪→ L
q(.)
b (Ω), where

p♦(x) =

{
Np(x)
N−p(x) , if p (x) < N,

+∞, if p (x) ≥ N.

Corollary 4. If the inequality 1 ≤ q(x) < r(x)−1
r(x) (p∗)

♦
(x) is true for all x ∈ Ω,

then there exists a compact embedding between W
1,p(.)
a (Ω) and L

q(.)
b (Ω). So X ↪→↪→

L
q(.)
b (Ω).

If we use the method in Theorem 2.1 in [16] and [4], then we obtain the following
theorem. In addition, this theorem plays an important role for the existence of weak
solutions of the problem (1).

Theorem 4. (see Theorem 3 in [28])Let u ∈ X. Then the norms ∥u∥∂ and ∥u∥X
are equivalent on X, where

∥u∥∂ = ∥∆u∥p(.),a + ∥u∥p(.),a,∂Ω .

Let β ∈ L∞ (∂Ω) such that β− = infx∈∂Ω β(x) > 0. Then, the norm ∥u∥β(x) is

defined by

∥u∥β(x) = inf

τ > 0 :

∫
Ω

a(x)

∣∣∣∣∆u(x)

τ

∣∣∣∣p(x) dx+

∫
∂Ω

β(x)

∣∣∣∣u(x)τ

∣∣∣∣p(x) dσ ≤ 1


for any u ∈ X. Moreover, ∥.∥β(x) and ∥.∥X are equivalent on X by Theorem 4.

Proposition 3. (see [6], [21], [30], [31]) Let Iβ(x)(u) =
∫
Ω

a(x) |∆u(x)|p(x) dx +∫
∂Ω

β(x) |u(x)|p(x) dσ with β− > 0. For any u, uk ∈ X (k = 1, 2, ...), we have

(i) ∥u∥p
−

β(x) ≤ Iβ(x)(u) ≤ ∥u∥p
+

β(x) with ∥u∥β(x) ≥ 1,

(ii) ∥u∥p
+

β(x) ≤ Iβ(x)(u) ≤ ∥u∥p
−

β(x) with ∥u∥β(x) ≤ 1,

(iii) min
{
∥u∥p

−

β(x) , ∥u∥
p+

β(x)

}
≤ Iβ(x)(u) ≤ max

{
∥u∥p

−

β(x) , ∥u∥
p+

β(x)

}
,

(iv) ∥u− uk∥β(x) → 0 if and only if Iβ(x)(u− uk) → 0 as k → ∞,

(v) ∥uk∥β(x) → ∞ if and only if Iβ(x)(uk) → ∞ as k → ∞.

Definition 1. We say that u ∈ X is a weak solution of (1) if∫
Ω

a(x) |∆u|p(x)−2
∆u∆vdx+

∫
∂Ω

β(x) |u(x)|p(x)−2
uvdσ

−λ

∫
Ω

b(x) |u|q(x)−2
uvdx−

∫
Ω

V (x) |u|−γ(x)
vdx = 0

for all v ∈ X. We point out that if λ ∈ R is an eigenvalue of the problem (1), then
the corresponding u ∈ X − {0} is a weak solution of (1).
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To obtain a weak solution to (1), let us introduce the functional Eλ : X → R
defined by

Eλ (u) = ϕ(u)− λ

∫
Ω

b (x)

q (x)
|u|q(x) dx− Φλ(u),

for any λ > 0, where

ϕ(u) =

∫
Ω

a(x)

p (x)
|∆u|p(x) dx+

∫
∂Ω

β(x)

p(x)
|u(x)|p(x) dσ

and

Φλ(u) =

∫
Ω

V (x)

1− γ(x)
|u|1−γ(x)

dx.

Due to the singular term V (x) |u|−γ(x)
, Eλ is not of class C1 functional in X, and

classical variational methods (e.g Mountain-Pass Lemma of Ambrosetti-Robinowitz)
are not applicable. It is easy to see that

< E′
λ (u) , u >=

∫
Ω

a(x) |∆u|p(x) dx+

∫
∂Ω

β(x) |u(x)|p(x) dσ

−λ

∫
Ω

b(x) |u|q(x) dx−
∫
Ω

V (x) |u|−γ(x)
dx

for all u ∈ X.

3. Main Results

In this section, we will show that the problem (1) has at least one nontrivial weak
solution. Throughout this paper, assume that 1 < p− ≤ p+ < N

2 , β ∈ L∞ (∂Ω),

V ∈ L
p∗(.)

p∗(.)+γ(.)−1
a (Ω), V > 0 and a, b > 0.

Theorem 5 (Vitali’s Theorem). (see p. 60 in [29])Let (fn)n∈N be a sequence of

functions with finite integrals over a measurable set Ω ⊂ RN . Suppose that

lim
n→∞

fn(x) = f(x)

for almost all x ∈ Ω and let f be an almost everywhere finite function. Suppose
that the following condition (P ) is satisfied:

(P ) (Equi-absolutely-continuous) For every ε > 0 there exists a δ > 0 with the
property: if B ⊂ Ω, µ(B) < δ, then∫

Ω

|fn(x)| dx < ε
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for all n ∈ N. Hence, the function f has a finite integral over Ω and

lim
n→∞

∫
Ω

|fn(x)| dx =

∫
Ω

|f(x)| dx.

Theorem 6 (Absolute Continuity of the Lebesgue Integral). (see Theorem 12.34
in [23]) Let f ∈ L1(Ω). For every ε > 0 there exists a δ > 0 depending only on ε
and f such that for all A ⊂ RN satisfying µ(A) < δ, we have∫

A

|f(x)| dx < ε.

Lemma 1. Let V ∈ L
p∗(.)

p∗(.)+γ(.)−1
a (Ω) and 0 < r < a(x) for a.e x ∈ Ω and some

r > 0. Then Eλ is weakly lower semi-continuous.

Proof. The proof consists of three steps.
Step 1: The functional ϕ : X → R is convex. Indeed, since the function t → tθ

is convex on [0,∞) for any θ > 1, so for each x ∈ Ω (or x ∈ ∂Ω)∣∣∣∣ξ + µ

2

∣∣∣∣p(x) ≤ (
|ξ|+ |µ|

2

)p(x)

≤ 1

2
|ξ|p(x) + 1

2
|µ|p(x)

for all ξ, µ ∈ RN . Hence, we have∣∣∣∣∆u+∆v

2

∣∣∣∣p(x) ≤ (
|∆u|+ |∆v|

2

)p(x)

≤ 1

2
|∆u|p(x) + 1

2
|∆v|p(x) (8)

and ∣∣∣∣u+ v

2

∣∣∣∣p(x) ≤ (
|u|+ |v|

2

)p(x)

≤ 1

2
|u|p(x) + 1

2
|v|p(x) . (9)

Multiplying (8) and (9) by a(x)
p(x) ,

β(x)
p(x) and integrating over Ω and ∂Ω respectively,

we obtain

ϕ(
u+ v

2
) ≤ 1

2
ϕ(u) +

1

2
ϕ(v)

for any u, v ∈ X. So ϕ is convex.
Step 2: ϕ is weakly lower semi continuous on X. From Step 1 and Corollary

3.8 in [10] it is enough to show that ϕ is strongly lower semi continuous on X. Let
ε > 0, u, v ∈ X such that

∥u− v∥X <
ε∥∥∥a p(x)−1

p(x) |∆u|p(x)−1
∥∥∥

p(x)
p(x)−1

<
ε

C6 + C7
. (10)

Since the functional ϕ is convex, variable Hölder inequality and Proposition 2, we
obtain

ϕ(v) ≥ ϕ(u) +
〈
ϕ′(u), v − u

〉
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≥ ϕ(u)−
∫
Ω

a(x) |∆u|p(x)−1 |∆(v − u)| dx−
∫
∂Ω

β(x) |u(x)|p(x)−1 |u− v| dσ

≥ ϕ(u)− C4

∥∥∥a p(.)−1
p(.) |∆u|p(.)−1

∥∥∥
p(.)

p(.)−1

∥∥∥a 1
p(.) |∆(v − u)|

∥∥∥
p(.)

−C5

∥∥∥β p(.)−1
p(.) |u|p(.)−1

∥∥∥
p(.)

p(.)−1
,∂Ω

∥∥∥β 1
p(.) |u− v|

∥∥∥
p(.),∂Ω

≥ ϕ(u)− C4 max

{∥∥∥a 1
p(.) |∆u|

∥∥∥p+−1

p(.)
,
∥∥∥a 1

p(.) |∆u|
∥∥∥p−−1

p(.)

}
∥|∆(v − u)|∥p(.),a

−C5 max

{∥∥∥β 1
p(.) |u|

∥∥∥p+−1

p(.),∂Ω
,
∥∥∥β 1

p(.) |u|
∥∥∥p−−1

p(.),∂Ω

}
∥|u− v|∥p(.),β,∂Ω

= ϕ(u)− C4 max
{
∥∆u∥p

+−1
p(.),a , ∥∆u∥p

−−1
p(.),a

}
∥|∆(v − u)|∥p(.),a

−C5 max
{
∥u∥p

+−1
p(.),β,∂Ω , ∥u∥p

−−1
p(.),β,∂Ω

}
∥|u− v|∥p(.),β,∂Ω

≥ ϕ(u)− C6 ∥u− v∥X − C7 ∥u− v∥X ≥ ϕ(u)− ε,

for some positive constants C4, C5, C6 and C7. It follows that ϕ is strongly lower
semi continuous and convex, so we deduce that the functional I is weakly lower
semi continuous.

Step 3: Eλ is weakly lower semi-continuous. Let {un} be a sequence which is
weakly converges to u in X. Then, from Step 2, we have

ϕ(u) ≤ lim inf
n→∞

ϕ(un). (11)

By Corollary 4 we have the compact embedding X ↪→↪→ L
q(.)
b (Ω). Hence, the

sequence {un} converges strongly to u in L
q(.)
b (Ω) and

lim
n→∞

∫
Ω

b (x)

q (x)
|un|q(x) dx = lim inf

n→∞

∫
Ω

b (x)

q (x)
|un|q(x) dx =

∫
Ω

b (x)

q (x)
|u|q(x) dx. (12)

On the other hand, by Vitali’s Theorem, we can claim that

lim
n→∞

∫
Ω

V (x) |un|1−γ(x)
dx =

∫
Ω

V (x) |u|1−γ(x)
dx. (13)

Indeed, we only need to prove that
∫
Ω

V (x) |un|1−γ(x)
dx, n ∈ N

 (14)

is equi-absolutely-continuous. It is known that every weakly convergent sequence is
bounded. So (un)n∈N is bounded inX. In addition, using the continuous embedding

X ↪→ L
p∗(.)
a (Ω) by Remark 1, the sequence (un)n∈N is bounded in L

p∗(.)
a (Ω), and

there exists a C8 > 0 such that ∥un∥p∗(.),a < C8 for all n ∈ N. Now, let ε > 0, then,
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using Proposition 1 and the absolutely-continuity of
∫
Ω

|V (x)|
p∗(x)

p∗(x)+γ(x)−1 a(x)dx,

there exist two positive constants ς and ξ such that

∥V ∥ς p∗(.)
p∗(.)+γ(.)−1

,a
≤

∫
Ω

|V (x)|
p∗(x)

p∗(x)+γ(x)−1 a(x)dx < εξ (15)

for every Ω2 ⊂ Ω. Consequently, by the Hölder inequality, Proposition 2 and (15)
we have∫
Ω

|V (x)| |un|1−γ(x)
dx ≤

∫
Ω

(
|V (x)| a(x)

p∗(x)+γ(x)−1
p∗(x)

)(
|un|1−γ(x)

a(x)−
p∗(x)+γ(x)−1

p∗(x)

)
dx

≤ C9

∥∥∥∥|V (x)| a(x)
p∗(x)+γ(x)−1

p∗(x)

∥∥∥∥
p∗(.)

p∗(.)+γ(.)−1

∥∥∥∥|un|1−γ(x)
a(x)

1−p∗(x)−γ(x)
p∗(x)

∥∥∥∥
p∗(.)

1−γ(.)

= C9 ∥V ∥ p∗(.)
p∗(.)+γ(.)−1

,a
.
∥∥∥|un|1−γ(x)

a(x)
1−γ(x)
p∗(x) a(x)−1

∥∥∥
p∗(.)

1−γ(.)

≤ C10 ∥V ∥ p∗(.)
p∗(.)+γ(.)−1

,a

∥∥∥∥(|un| a(x)
1

p∗(x)

)1−γ(x)
∥∥∥∥

p∗(.)
1−γ(.)

≤ C10 ∥V ∥ p∗(.)
p∗(.)+γ(.)−1

,a
max

{∥∥∥|un| a(x)
1

p∗(x)

∥∥∥1−γ+

p∗(.)
,
∥∥∥|un| a(x)

1
p∗(x)

∥∥∥1−γ−

p∗(.)

}
= C10 ∥V ∥ p∗(.)

p∗(.)+γ(.)−1
,a
max

{
∥un∥1−γ+

p∗(.),a , ∥un∥1−γ−

p∗(.),a

}
≤ C10 ∥V ∥ p∗(.)

p∗(.)+γ(.)−1
,a
∥un∥dp∗(.),a < C10ε

ξ ∥un∥dp∗(.),a

for d > 0. So the claim (13) is obtained because of the boundedness of the sequence

(un)n∈N in L
p∗(.)
a (Ω). So we have

Eλ (u) ≤ lim inf
n→∞

Eλ (un)

by (11), (12) and (13). □

Lemma 2. Eλ is bounded from below and coercive.

Proof. It is clear that

Eλ (u) =

∫
Ω

a(x)

p (x)
|∆u|p(x) dx+

∫
∂Ω

β(x)

p(x)
|u(x)|p(x) dσ − λ

∫
Ω

b (x)

q (x)
|u|q(x) dx

−
∫
Ω

V (x)

1− γ(x)
|u|1−γ(x)

dx

≥ 1

p+
Iβ(x) −

λ

q−

∫
Ω

b(x) |u|q(x) dx− 1

1− γ+

∫
Ω

V (x) |u|1−γ(x)
dx



952 I. AYDIN

≥ 1

p+
Iβ(x)(u)−

λ

q−
max

{
∥u∥q

−

q(.),b , ∥u∥
q+

q(.),b

}
− 1

1− γ+

∫
Ω

|V (x)| |u|1−γ(x)
dx

≥ 1

p+
Iβ(x)(u)−

λ

q−
∥u∥q

−

q(.),b −
1

1− γ+
∥V ∥ p∗(.)

p∗(.)+γ(.)−1
,a
max

{
∥u∥1−γ+

β(x) , ∥u∥1−γ−

β(x)

}
≥ 1

p+
∥u∥p

−

β(x) −
λC11

q−
∥u∥q

−

β(x) −
1

1− γ+
∥V ∥ p∗(.)

p∗(.)+γ(.)−1
,a
∥u∥1−γ−

β(x) .

Since 1− γ− < p− and q+ < p−, we infer that Eλ (u) → ∞ as u → ∞. So Eλ is is
bounded from below and coercive. □

Lemma 3. There exists a function φ ∈ X such that φ ̸= 0 and Eλ (φ) < 0.

Proof. Let φ ∈ C∞
0 (Ω) such that Ω′ ⊂ suppφ ⊂ Ω1 ⊂ Ω and 0 ≤ φ ≤ 1 in Ω1.

Then we have

Eλ (tφ) =

∫
Ω

a(x)tp(x)

p (x)
|∆φ|p(x) dx+

∫
∂Ω

β(x)tp(x)

p(x)
|φ|p(x) dσ − λ

∫
Ω

b (x) tq(x)

q (x)
|φ|q(x) dx

−
∫
Ω

V (x)t1−γ(x)

1− γ(x)
|φ|1−γ(x)

dx

≤ tp
−

p−
Iβ(x)(φ)−

λ

q+

∫
Ω

tq(x) |φ|q(x) b (x) dx−
∫
Ω

V (x)t1−γ(x)

1− γ− |φ|1−γ(x)
dx

≤ tp
−

p−
Iβ(x)(φ)−

t1−γ−

1− γ−

∫
Ω

V (x) |φ|1−γ(x)
dx

for any t ∈ (0, 1). Since 1−γ− < p−, we obtain Eλ (tφ) < 0 for any t < δ
1

p−−(1−γ−)

with 0 < δ < min

{
1,

p−

1−γ−

Iβ(x)(φ)

∫
Ω

V (x) |φ|1−γ(x)
dx

}
. Finally, we point out that

Iβ(x)(φ) > 0. In fact, if Iβ(x)(φ) = 0, then ∥φ∥β(x) = 0 and consequently φ = 0 in

Ω, which is a contradiction. □

Theorem 7. The problem (1) has at least one nontrivial weak solution.

Proof. From Lemma 2 we can define

mλ = inf
u∈X

Eλ (u) .

Let (un)n∈N be a minimizing sequence, that is Eλ (un) → mλ as n → ∞. Assume
that (un)n∈N is not bounded. So ∥un∥X → ∞ as n → ∞. Since Eλ is coercive, we
have

Eλ (un) → +∞ as ∥un∥X → ∞.
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This contradicts the fact that (un)n∈N is a minimizing sequence, so (un)n∈N is
bounded in X. Since X is a reflexive Banach space, then there exists a subsequence
still denoted by un and uλ ∈ X such that un ⇀ uλ weakly in X. From Lemma 1

Eλ (uλ) ≤ lim inf
n→∞

Eλ (un) = mλ.

On the other hand, from the definition of mλ, we have mλ ≤ Eλ (uλ). Therefore, uλ

is a global minimum for Eλ, which is a weak solution for the problem (1). Finally,
Lemma 3 it follows that uλ ̸= 0. The proof of the Theorem is completed. □

4. Uniqueness of the Solution

We begin considering the following problem ∆
(
a(x) |∆un|p(x)−2

∆un

)
= V (x)

(un+
1
n )

γ(x) , x ∈ Ω,

a(x) |∆un|p(x)−2 ∂un

∂υ + β(x) |un|p(x)−2
un = 0, x ∈ ∂Ω,

(16)

where un = min {u, n} . By Theorem 7, the problem (16) has a solution un ∈
X ∩ L∞ (Ω) and un > 0 for each n ∈ N (see Lemma 4.1 in [11] and Lemma 3.1
in [9]). Now we recall the algebraic inequality from Lemma A.0.5 in [33].

Lemma 4. Let x, y ∈ RN and ⟨., .⟩ the standard scalar product in RN . Then〈
|x|p−2

x− |y|p−2
y, x− y

〉
≥ c |x− y|p

for p ≥ 2.

Theorem 8. The problem (16) has a unique solution in X ∩ L∞ (Ω) .

Proof. Let n ∈ N and un, vn ∈ X ∩ L∞ (Ω) solves the problem (16). Then we can
write∫

Ω

a(x) |∆un|p(x)−2
∆un∆φdx+

∫
∂Ω

β(x) |un|p(x)−2
unφdσ =

∫
Ω

V (x)φ(
un + 1

n

)γ(x) dx
(17)

and∫
Ω

a(x) |∆vn|p(x)−2
∆vn∆φdx+

∫
∂Ω

β(x) |vn|p(x)−2
vnφdσ =

∫
Ω

V (x)φ(
vn + 1

n

)γ(x) dx
(18)

for all φ ∈ X. By choosing (un − vn)
+

= max {un − vn, 0} as a test function for
the weak solution, and subtracting (18) from (17) we obtain∫

Ω

V (x)

{
1(

un + 1
n

)γ(x) − 1(
vn + 1

n

)γ(x)
}
(un − vn)

+
dx = (19)

∫
Ω

a(x)
{
|∆un|p(x)−2

∆un − |∆vn|p(x)−2
∆vn

}
∆(un − vn)

+
dx
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+

∫
∂Ω

β(x)
{
|un|p(x)−2

un − |vn|p(x)−2
vn

}
(un − vn)

+
dσ

≥ C12

∫
Ω

a(x)
∣∣∣∆(un − vn)

+
∣∣∣p(x)−2

dx+ C13

∫
∂Ω

β(x)
∣∣∣(un − vn)

+
∣∣∣p(x)−2

dσ ≥ 0

by Lemma 4. On the other hand, we have∫
Ω

V (x)

{
1(

un + 1
n

)γ(x) − 1(
vn + 1

n

)γ(x)
}
(un − vn)

+
dx

=

∫
Ω

V (x)

{(
vn + 1

n

)γ(x) − (
un + 1

n

)γ(x)(
un + 1

n

)γ(x) (
vn + 1

n

)γ(x)
}
(un − vn)

+
dx ≤ 0. (20)

Hence, we infer that (un − vn)
+
= 0 a.e. in Ω and un ≤ vn from (19) and (20). By

symmetry, this also implies un = vn. □

5. Conclusion

In this paper we obtain the existence of solutions for the class of singular fourth
order equation (1) involving the weighted p(.)-biharmonic operator. Moreover, we
find a unique solution for (16) in X ∩ L∞ (Ω) . The existence of multiple weak so-
lutions to the problem (1) can also be investigated in other studies in the future.
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