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Received: 14-09-2017 • Accepted: 03-11-2017

Abstract. Başar and Braha [9], introduced the sequence spaces ˘̀∞, c̆ and c̆0 of Euler- Cesáro
bounded, convergent and null difference sequences and studied their some properties. The main purpose
of this study is to introduce the sequence spaces [`∞]e.r, [c]e.r and [c0]e.r of Euler- Riesz bounded,
convergent and null difference sequences by using the composition of the Euler mean E1 and Riesz
mean Rq with backward difference operator ∆. Furthermore, the inclusions `∞ ⊂ [`∞]e.r, c ⊂ [c]e.r and
c0 ⊂ [c0]e.r strictly hold, the basis of the sequence spaces [c0]e.r and [c]e.r is constucted and alpha-,
beta- and gamma-duals of these spaces are determined. Finally, the classes of matrix transformations
from the Euler- Riesz difference sequence spaces to the spaces `∞, c and c0 are characterized.
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1. Preliminaries, Background and Notation

In this section, we give some basic definitions and notations for which we refer to [7, 12,17,23].
By a sequence space, we understand a linear subspace of the space w = CN of all complex sequences which

contains φ, the set of all finitely non-zero sequences, where N = {0, 1, 2, ...}. We shall write `∞, c and c0 for
the spaces of all bounded, convergent and null sequences, respectively. Also by bs, cs, `1 and `p, we denote
the spaces of all bounded, convergent, absolutely and p−absolutely convergent series, respectively, where
1 < p <∞.

We shall assume throughout unless stated otherwise that p, q > 1 with p−1 + q−1 = 1 and 0 < r < 1, and
use the convention that any term with negative subscript is equal to naught.

Let λ, µ be two sequence spaces and A = (ank) be an infinite matrix of real or complex numbers ank,
where n, k ∈ N. Then, we say that A defines a matrix mapping from λ into µ, and we denote it by writing
A : λ → µ, if for every sequence x = (xk) ∈ λ the sequence Ax = {(Ax)n}, the A−transform of x, is in µ;
where

(Ax)n =
∑
k

ankxk (n ∈ N). (1.1)
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By (λ, µ), we denote the class of all matrices A such that A : λ→ µ. Thus, A ∈ (λ, µ) if and only if the series
on the right hand side of (1.1) converges for each n ∈ N and every x ∈ λ, and we have Ax = {(Ax)n}n∈N ∈ µ
for all x ∈ λ. A sequence x is said to be A−summable to α if Ax converges to α which is called the A−limit
of x.

Let X be a sequence space and A be an infinite matrix. The sequence space

XA = {x = (xk) ∈ w : Ax ∈ X}

is called the domain of A in X which is a sequence space.
A sequence space λ with a linear topology is called a K − space provided each of the maps pi : λ → C

defined by pi(x) = xi is continuous for all i ∈ N. A K− space is called an FK − space provided λ is a
complete linear metric space. An FK− space whose topology is normable is called a BK − space. If a
normed sequence space λ contains a sequence (bn) with the property that for every x ∈ λ there is a unique
sequence of scalars (αn) such that

lim
n→∞

||x− (α0b0 + α1b1 + · · ·+ αnbn)|| = 0

then (bn) is called a Schauder basis (or briefly basis) for λ. The series
∑
αkbk which has the sum x is then

called the expansion of x with respect to (bn), and is written as x =
∑
αkbk.

Given a BK−space λ ⊃ φ, we denote the nth section of a sequence x = (xk) ∈ λ by x[n] =
∑n
k=0 xke

(k),
and we say that x has the property
AK if limn→∞ ||x− x[n]||λ = 0 (abschnittskonvergenz),
AB if supn∈N ||x[n]||λ <∞ (abschnittsbeschränktheit),
AD if x ∈ φ (closure of φ ⊂ λ) (abschnittsdichte),
KB if the set {xke(k)} is bounded in λ (koordinatenweise beschränkt),
where e(k) is a sequence whose only non-zero term is a 1 in kth place for each k ∈ N. If one of these properties
holds for every x ∈ λ then we say that the space λ has that property [16, 23]. It is trivial that AK implies
AD and AK iff AB +AD. For example, c0 and `p are AK−spaces and, c and `∞ are not AD−spaces.

A matrix A = (ank) is called a triangle if ank = 0 for k > n and ann , 0 for all n ∈ N. It is trivial that
A(Bx) = (AB)x holds for the triangle matrices A,B and a sequence x. Further, a triangle matrix U uniquely
has an inverse U−1 = V which is also a triangle matrix. Then, x = U(V x) = V (Ux) holds for all x ∈ w.

Let us give the definition of some triangle limitation matrices which are needed in the text. ∆ denotes the
backward difference matrix ∆ = (∆nk) and ∆′ = (∆′nk) denotes the transpose of the matrix ∆, the forward
difference matrix, which are defined by

∆nk =
{

(−1)n−k , n− 1 ≤ k ≤ n,
0 , 0 ≤ k < n− 1 or k > n,

∆′nk =
{

(−1)n−k , n ≤ k ≤ n+ 1,
0 , 0 ≤ k < n or k > n+ 1,

for all k, n ∈ N; respectively.
Then, let us define the Euler mean E1 = (enk) of order one and Riesz mean Rq = (rnk) with respect to

the sequence q = (qk)

enk =
{

(n
k)

2n , 0 ≤ k ≤ n,
0 , k > n,

rnk =
{ qk

Qn
, 0 ≤ k ≤ n,

0 , k > n,

for all k, n ∈ N and where (qk) is a sequence of positive numbers and Qn =
∑n
k=0 qk for all n ∈ N. Their

inverses E−1
1 = (gnk) and R−1

q = (hnk) are given by

gnk =
{ (

n
k

)
(−1)n−k2k , 0 ≤ k ≤ n,

0 , k > n,
hnk =

{
(−1)n−k Qk

qn
, n− 1 ≤ k ≤ n,

0 , otherwise,

for all k, n ∈ N.
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We define the matrix B̃ = (b̃nk) by the composition of the matrices E1, Rq and ∆ as

b̃nk =
{

(n
k)qk

2nQn
, 0 ≤ k ≤ n,

0 , k > n,
(1.2)

for all k, n ∈ N.
In the literature, the notion of difference sequence spaces was introduced by Kızmaz [18], who defined the

sequence spaces

X(∆) = {x = (xk) ∈ w : ∆′x = (xk − xk+1) ∈ X}

for X ∈ {`∞, c, c0}. The difference space bvp, consisting of all sequences x = (xk) such that ∆x = (xk−xk−1)
is in the sequence space `p, was studied in the case 0 < p < 1 by Altay and Başar [5] and in the case
1 ≤ p ≤ ∞ by Başar and Altay [6], and Çolak et al. [13]. Kirişçi and Başar [19] have introduced and studied
the generalized difference sequence space

X̂ = {x = (xk) ∈ w : B(r, s)x ∈ X},

where X denotes any of the spaces `∞, c, c0 and `p with 1 ≤ p < ∞, and B(r, s)x = (sxk−1 + rxk) with
r, s ∈ R \ {0}. Following Kirişçi and Başar [19], Sönmez [21] has examined the sequence space X(B) as the
set of all sequences whose B(r, s, t)− trasforms are in the space X ∈ {`∞, c, c0, `p}, where B(r, s, t) denotes
the triple band matrix B(r, s, t) = {bnk{r, s, t}} defined by

bnk{r, s, t} =


r , n = k
s , n = k + 1
t , n = k + 2
0 , otherwise

for all k, n ∈ N and r, s, t ∈ R \ {0}. Quite recently, Başar has studied the spaces ˜̀
p of p−absolutely

B̃−summable sequences, in [8]. In [11], Choudhary and Mishra have defined the sequence space `(p) which
consists of all sequences whose S−transforms are in the space `(p). Also, many authors have constructed new
sequence spaces by using matrix domain of infinite matrices. For instance, er0 and erc in [1], erp and er∞ in [3],
er0(u, p), erc(u, p) in [14], er0(∆(m)), erc(∆(m)) and er∞(∆(m)) in [20], c0(∆m

λ ), cr(∆m
λ ) and `∞(∆m

λ ) in [15],
rt0(p), rtc(p) and rt∞(p) in [2], rq(p,∆) in [10]. Finally, the new technique for deducing certain topological
properties, for example AB−, KB−, AD−properties, solidity and monotonicity etc., and determining the
β− and α−duals of the domain of a triangle matrix in a sequence space is given by Altay and Başar [4].

Then, as a natural continuation of Başar [8], Başar and Braha [9] introduce the spaces ˘̀∞, c̆ and c̆0 of
Euler-Cesáro bounded, convergent and null difference sequences by using the composition of the Euler mean
E1 and Cesáro mean C1 of order one with backward difference operator ∆.

In the present paper, we introduce the [`∞]e.r, [c]e.r and [c0]e.rof Euler-Riesz bounded, convergent and null
difference sequences by using the composition of the Euler mean E1 and Riesz mean Rq with respect to the
sequence q = (qk) with backward difference operator ∆ and prove that the inclusions `∞ ⊂ [`∞]e.r, c ⊂ [c]e.r
and c0 ⊂ [c0]e.r strictly hold. We show that the spaces [c0]e.r and [c]e.r turn out to be the separable BK
spaces such that [c]e.r does not possess any of the following: AK property and monotonicity. Furthermore,
we investigate some properties and compute alpha-, beta- and gamma-duals of these spaces. Afterwards, we
characterize some matrix classes related to Euler-Riesz sequence spaces.
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2. The Euler-Riesz Sequence Spaces

In this section, we give some new sequence spaces and investigate their certain properties.

[c0]e.r =
{
x = (xk) ∈ w : lim

n→∞

n∑
k=0

(
n
k

)
qk

2nQn
xk = 0

}

[c]e.r =
{
x = (xk) ∈ w : lim

n→∞

n∑
k=0

(
n
k

)
qk

2nQn
xk exists

}

[`∞]e.r =
{
x = (xk) ∈ w : sup

n∈N

∣∣∣∣∣
n∑
k=0

(
n
k

)
qk

2nQn
xk

∣∣∣∣∣ <∞
}

With the notation (1.2), we may redefine the spaces [c0]e.r,[c]e.r and [`∞]e.r as fallows:

[c0]e.r = (c0)B̃ , [c]e.r = cB̃ and [`∞]e.r = (`∞)B̃ .

In the case (qk) = e = (1, 1, 1, . . .); the sequence spaces [c0]e.r, [c]e.r and [`∞]e.r are, respectively, reduced to
the sequence spaces č0, č and ˇ̀∞ which are introduced by Başar and Braha [9]. Define the sequence y = (yk),
which will be frequently used, as the B̃−transform of a sequence x = (xk), i.e.,

yk =
k∑
j=0

(
k
j

)
qj

2kQk
xj , k ∈ N. (2.1)

Throughout the text, we suppose that the sequences x = (xk) and y = (yk) are connected with the relation
(2.1). One can obtain by a straightforward calculation from (2.1) that

xk = 1
qk

k∑
j=0

(
k

j

)
(−1)k−j2jQjyj , k ∈ N. (2.2)

Theorem 2.1. The sets [c0]e.r, [c]e.r and [`∞]e.r are linear spaces with coordinatewise addition and scalar
multiplication that are BK−spaces with norm ||x||[c0]e.r

= ||x||[c]e.r
= ||x||[`∞]e.r

= ||B̃x||∞

Proof. The proof of the first part of the theorem is a routine verification, and so we omit it. Furthermore,
since (2.1) holds, c0, c and `∞ are BK−spaces with respect to their natural norm, and the matrix B̃ is a
triangle, Theorem 4.3.2 of Wilansky [23] implies that the spaces [c0]e.r, [c]e.r and [`∞]e.r are BK−spaces. �

Therefore, one can easily check that the absolute property does not hold on the spaces [c0]e.r, [c]e.r and
[`∞]e.r , because ||x||[c0]e.r

, |||x|||[c0]e.r
, ||x||[c]e.r

, |||x|||[c]e.r
and ||x||[`∞]e.r

, |||x|||[`∞]e.r
for at least one

sequence in the spaces [c0]e.r, [c]e.r and [`∞]e.r, where |x| = (|xk|). This says that [c0]e.r, [c]e.r and [`∞]e.r
are the sequence spaces of nonabsolute type.

Theorem 2.2. [c0]e.r, [c]e.r and [`∞]e.r are linearly isomorphic to the spaces c0, c and `∞, respectively, i.e.,
[c0]e.r � c0, [c]e.r � c and [`∞]e.r � `∞.

Proof. To prove this theorem, we should show the existence of a linear bijection between the spaces [c0]e.r
and c0. Consider the transformation S defined, with the notation of (2.1), from [c0]e.r to c0 by y = Sx = B̃x.
The linearity of S is clear. Further, it is obvious that x = θ whenever Sx = θ and hence S is injective, where
θ = (0, 0, 0, ...).

Let y ∈ c0 and define the sequence x = {xn} by

xn = 1
qn

n∑
k=0

(
n

k

)
(−1)n−k2kQkyk; for all n ∈ N.
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Then, we have

lim
n→∞

(B̃x)n = lim
n→∞

[
n∑
k=0

(
n
k

)
qk

2nQn
xk

]

= lim
n→∞

 n∑
k=0

(
n
k

)
qk

2nQn
1
qk

k∑
j=0

(
k

j

)
(−1)k−j2jQjyj


= lim

n→∞
yn = 0

which says us that x ∈ [c0]e.r. Additionally, we observe that

||x||[c0]e.r
= sup

n∈N

∣∣∣∣∣∣
n∑
k=0

(
n
k

)
qk

2nQn
1
qk

k∑
j=0

(
k

j

)
(−1)k−j2jQjyj

∣∣∣∣∣∣
= sup

n∈N
|yn| = ‖y‖∞ <∞.

Consequently, S is surjective and is norm preserving. Hence, S is a linear bijection which therefore says
us that the spaces [c0]e.r and c0 are linearly isomorphic, as desired.

It is clear that if the spaces [c0]e.r and c0 are replaced by the spaces [c]e.r and c or [`∞]e.r and `∞
respectively, then we obtain the fact that [c]e.r � c and [`∞]e.r � `∞. This completes the proof. �

We wish to exhibit some inclusion relations concerning with the spaces [c0]e.r, [c]e.r and [`∞]e.r, in the
present section. Here and after, by λ we denote any of the sets [c0]e.r, [c]e.r and [`∞]e.r and µ denotes any
of the spaces c0, c or `∞.

Theorem 2.3. The inclusions µ ⊂ λ hold.

Proof. Let x = (xk) ∈ µ. Then, since it is immediate that

‖x‖λ = ‖B̃x‖∞ = sup
n∈N

∣∣∣∣∣
n∑
k=0

(
n
k

)
qk

2nQn
xk

∣∣∣∣∣
≤ ‖x‖∞ sup

n∈N

n∑
k=0

(
n
k

)
2n = ‖x‖∞.

The inclusion µ ⊂ λ holds.
�

Theorem 2.4. The space [c0]e.r has AK−property.

Proof. Let x = (xk) ∈ [c0]e.r and x[n] = {x1, x2, ..., xn, 0, 0, ...}. Hence,

x− x[n] = {0, 0, ..., 0, xn+1, xn+2, ...} ⇒ ‖x− x[n]‖[c0]e.r
= ‖(0, 0, ..., 0, xn+1, xn+2, ...)‖

and since x ∈ [c0]e.r,

‖x− x[n]‖[c0]e.r
= sup
k≥n+1

∣∣∣∣∣∣
k∑
j=0

(
k
j

)
qj

2kQk
xj

∣∣∣∣∣∣
Then the space [c0]e.r has AK−property. �

Since the isomorphism S, defined in Theorem 2.1, is surjective, the inverse image of the basis of the spaces
c0 and c are the basis of the new spaces [c]e.r and [c0]e.r, respectively. Since the space `∞ has no Schauder
basis, [`∞]e.r has no Schauder basis. Therefore, we have the following theorem without proof.

Theorem 2.5. Define the sequence b(k) = {b(k)
n }n∈N of elements of the space [c0]e.r for every fixed k ∈ N by

b(k)
n =

{
(n

k)(−1)n−k2kQk

qn
, 0 ≤ k < n,

0 , k ≥ n.
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Let λk = (B̃x)k for all k ∈ N. Then the following assertions are true:
(i): The sequence {b(k)}k∈N is a basis for the space [c0]e.r and any x ∈ [c0]e.r has a unique representation

of the form
x =

∑
k

λkb
(k).

(ii): The set {e, b(k)}k∈N is a basis for the space [c]e.r and any x ∈ [c]e.r has a unique representation of
the form

x = le+
∑
k

[λk − l] b(k),

where l = limk→∞(B̃x)k.

Remark 2.6. It is well known that every Banach space X with a Schauder basis is separable.

From Theorem 2.5 and Remark 2.6, we can give the following corollary:

Corollary 2.7. The spaces [c0]e.r and [c]e.r are separable.

3. Duals of The New Sequence Spaces

In this section, we state and prove the theorems determining the α−, β− and γ− duals of the sequence
spaces [c0]e.r, [c]e.r and [`∞]e.r of non-absolute type.

The set S(λ, µ) defined by

S(λ, µ) =
{
z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x = (xk) ∈ λ

}
(3.1)

is called the multiplier space of the sequence spaces λ and µ. One can eaisly observe for a sequence space ν
with λ ⊃ ν ⊃ µ that the inclusions

S(λ, µ) ⊂ S(ν, µ) and S(λ, µ) ⊂ S(λ, ν)

hold. With the notation of (3.1), the alpha-, beta- and gamma-duals of a sequence space λ, which are
respectively denoted by λα, λβ and λγ are defined by

λα = S(λ, `1), λβ = S(λ, cs) and λγ = S(λ, bs).

For giving the alpha-, beta- and gamma-duals of the spaces [c0]e.r, [c]e.r and [`∞]e.r of non-absolute type,
we need the following Lemma;

Lemma 3.1. [22]
(i): A ∈ (c0 : `1) = (c : `1) = (`∞ : `1) if and only if

sup
K∈F

∞∑
n=0

∣∣∣∣∣∑
k∈K

ank

∣∣∣∣∣ <∞.
(ii): A ∈ (c0 : `∞) = (c : `∞) = (`∞ : `∞) if and only if

sup
n∈N

∞∑
k=0
|ank| <∞. (3.2)

(iii): A ∈ (c : c) if and only if (3.2) holds, and

∃(αk) ∈ w such that lim
n→∞

ank = αk for all k ∈ N, (3.3)

∃α ∈ C such that lim
n→∞

∞∑
k=0

ank = α.

Now, we may give the theorems determining the α−, β− and γ−duals of the Euler-Riesz sequence spaces
[c0]e.r, [c]e.r and [`∞]e.r.
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Theorem 3.2. Define the set aq as follows:

aq =
{
a = (ak) ∈ w : sup

K∈F

∞∑
n=0

∣∣∣∣∣∑
k∈K

(
n

k

)
(−1)n−k2k an

qn
Qk

∣∣∣∣∣ <∞
}
.

Then, {[c0]e.r}
α = {[c]e.r}

α = {[`∞]e.r}
α = aq.

Proof. We give the proof for the space [c0]e.r. We chose the sequence a = (ak) ∈ w. We can easily derive
with (2.2) that

anxn =
n∑
k=0

(
n

k

)
(−1)n−k2k an

qn
Qkyk = (By)n, (n ∈ N); (3.4)

where B = (bnk) is defined by the formula

bnk =
{ (

n
k

)
(−1)n−k2k an

qn
Qk , (0 ≤ k ≤ n)

0 , (k > n)
, (n, k ∈ N).

It follows from (3.4) that ax = (anxn) ∈ `1 whenever x ∈ [c0]e.r if and only if By ∈ `1 whenever y ∈ c0. This
gives the result that {[c0]e.r}

α = aq. �

Theorem 3.3. The matrix D(r) = (dnk) is defined by

dnk =
{ ∑n

j=k
(
j
k

)
(−1)j−k2k aj

qj
Qk , (0 ≤ k ≤ n)

0 , (k > n)
(3.5)

for all k, n ∈ N. Then, {[c0]e.r}β = b1 ∩ b2 and {[c]e.r}β = b1 ∩ b2 ∩ b3 where

b1 =
{
a = (ak) ∈ w : sup

n∈N

∑
k

|dnk| <∞

}
,

b2 =
{
a = (ak) ∈ w : lim

n→∞
dnk = αk

}
,

b3 =
{
a = (ak) ∈ w : lim

n→∞

∑
k

dnk exists
}
.

Proof. We give the proof for the space [c0]e.r. Consider the equation
n∑
k=0

akxk =
n∑
k=0

 k∑
j=0

(
k

j

)
(−1)k−j2j 1

qk
Qjyj

 ak
=

n∑
k=0

 n∑
j=k

(
k

j

)
(−1)k−j2j ak

qk
Qj

 yk = (Dy)n, (3.6)

where D = (dnk) defined by (3.5).
Thus, we decude by (3.6) that ax = (akxk) ∈ cs whenever x = (xk) ∈ [c0]e.r if and only if Dy ∈ c whenever

y = (yk) ∈ c0. Therefore, we derive from (3.2) and (3.3) that
lim
n→∞

dnk exists for each k ∈ N,

sup
n∈N

n∑
k=0
|dnk| <∞

which shows that {[c0]e.r}β = b1 ∩ b2. �

Theorem 3.4. {[c0]e.r}γ = {[c]e.r}γ = b1.

Proof. This is obtained in the similar way used in the proof of Theorem 3.3. �
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4. Matrix Transformations Related to The New Sequence Spaces

In this section, we characterize the matrix transformations from the spaces [c0]e.r, [c]e.r and [`∞]e.r into
any given sequence space µ and from the sequence space µ into the spaces [c0]e.r, [c]e.r and [`∞]e.r

Since [c0]e.r � c0 (or [c]e.r � c and [`∞]e.r � `∞), we can say: The equivalence “x ∈ [c0]e.r (or x ∈ [c]e.r
and x ∈ [`∞]e.r), if and only if y ∈ c0 (or y ∈ c and y ∈ `∞)” holds.

In what follows, for brevity, we write,

ãnk :=
n∑
k=0

(
n

k

)
(−1)n−k2kQk

qn
ank

for all k, n ∈ N.
Theorem 4.1. Suppose that the entries of the infinite matrices A = (ank) and E = (enk) are connected with
the relation

enk := ãnk (4.1)
for all k, n ∈ N and µ be any given sequence space. Then,

(i): A ∈ ([c0]e.r : µ) if and only if {ank}k∈N ∈ [c0]βe.r for all n ∈ N and E ∈ (c0 : µ).
(ii): A ∈ ([c]e.r : µ) if and only if {ank}k∈N ∈ {([c]e.r}β for all n ∈ N and E ∈ (c : µ).
(iii): A ∈ ([`∞]e.r : µ) if and only if {ank}k∈N ∈ {[`∞]e.r}β for all n ∈ N and E ∈ (`∞ : µ).

Proof. We prove only Part (i). Let µ be any given sequence space. Suppose that (4.1) holds between
A = (ank) and E = (enk), and take into account that the spaces [c0]e.r and c0 are linearly isomorphic.

Let A ∈ ([c0]e.r : µ) and take any y = (yk) ∈ c0. Then EB exists and {ank}k∈N ∈ b1 ∩ b2 which yields that
{enk}k∈N ∈ c0 for each n ∈ N. Hence, Ey exists and thus∑

k

enkyk =
∑
k

ankxk

for all n ∈ N.
We have that Ey = Ax which leads us to the consequence E ∈ (c0 : µ).
Conversely, let {ank}k∈N ∈ {[c0]e.r}β for each n ∈ N and E ∈ (c0 : µ), and take any x = (xk) ∈ [c0]e.r.

Then, Ax exists. Therefore, we obtain from the equality
∞∑
k=0

ankxk =
∞∑
k=0

 k∑
j=0

(
k

j

)
(−1)k−j2jQj

qk
akj

 yk
for all n ∈ N, that Ey = Ax and this shows that A ∈ ([c0]e.r : µ). This completes the proof of Part (i). �

Theorem 4.2. Suppose that the elements of the infinite matrices A = (ank) and B = (bnk) are connected
with the relation

bnk :=
k∑
j=0

(
k
j

)
qj

2kQk
ajk for all k, n ∈ N.

Let µ be any given sequence space. Then,
(i): A ∈ (µ : [c0]e.r) if and only if B ∈ (µ : c0).
(ii): A ∈ (µ : [c]e.r) if and only if B ∈ (µ : c).
(iii): A ∈ (µ : [`∞]e.r) if and only if B ∈ (µ : `∞).

Proof. We prove only Part (iii). Let z = (zk) ∈ µ and consider the following equality.
m∑
k=0

bnkzk =
k∑
j=0

(
k
j

)
qj

2kQk

(
m∑
k=0

ajkzk

)
for all m,n ∈ N

which yields as m → ∞ that (Bz)n = {B̃(Az)}n for all n ∈ N. Therefore, one can observe from here that
Az ∈ [`∞]e.r whenever z ∈ µ if and only if Bz ∈ `∞ whenever z ∈ µ. This completes the proof of Part
(iii). �
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The folowing results were taken from Stieglitz and Tietz [22]:

lim
k
ank = 0 for all n, (4.2)

lim
n
|
∑
k

ank| exist, (4.3)

lim
n→∞

∑
k

|ank| =
∑
k

| lim
n→∞

ank|, (4.4)

lim
n→∞

∑
k

|ank| = 0, (4.5)

Lemma 4.3. Let A = (ank) be an infinite matrix. Then
(i): A = (ank) ∈ (c0 : `∞) = (c : `∞) = (`∞ : `∞) if and only if (3.2) holds.
(ii): A = (ank) ∈ (c0 : c0) if and only if (3.2) and (4.2) hold.
(iii): A = (ank) ∈ (c : c0) if and only if (3.2), (4.2) and (4.5) hold.
(iv): A = (ank) ∈ (`∞ : c0) if and only if (4.5) holds.
(v): A = (ank) ∈ (c0 : c) if and only if (3.2) and (3.3) hold.
(vi): A = (ank) ∈ (c : c) if and only if (3.2), (3.3) and (4.3) hold.
(vii): A = (ank) ∈ (`∞ : c) if and only if (3.3) and (4.4) hold.

Now, we can give the following results:

Corollary 4.4. Let A = (ank) be an infinite matrix. The following statements hold:
(i): A ∈ ([c0]e.r : c0) if and only if {ank}k∈N ∈ {[c0]e.r}β for all n ∈ N and (3.2) and (4.2) hold with
ãnk instead of ank.

(ii): A ∈ ([c0]e.r : c) if and only if {ank}k∈N ∈ {[c0]e.r}β for all n ∈ N and (3.2) and (3.3) hold with
ãnk instead of ank.

(iii): A ∈ ([c0]e.r : `∞) if and only if {ank}k∈N ∈ {[c0]e.r}β for all n ∈ N and (3.2) holds with ãnk
instead of ank.

Corollary 4.5. Let A = (ank) be an infinite matrix. The following statements hold:
(i): A ∈ ([c]e.r : c0) if and only if {ank}k∈N ∈ {[c]e.r}β for all n ∈ N and (3.2), (4.2) and (4.5) hold

with ãnk instead of ank.
(ii): A ∈ ([c]e.r : c) if and only if {ank}k∈N ∈ {[c]e.r}β for all n ∈ N and (3.2), (3.3) and (4.3) hold

with ãnk instead of ank.
(iii): A ∈ ([c]e.r : `∞) if and only if {ank}k∈N ∈ {[c]e.r}β for all n ∈ N and (3.2) holds with ãnk instead

of ank.

Corollary 4.6. Let A = (ank) be an infinite matrix. The following statements hold:
(i): A ∈ ([`∞]e.r : c0) if and only if {ank}k∈N ∈ {[`∞]e.r}β for all n ∈ N and (4.5)holds with ãnk instead

of ank.
(ii): A ∈ ([`∞]e.r : c) if and only if {ank}k∈N ∈ {[`∞]e.r}β for all n ∈ N and (3.3) and (4.4) hold with
ãnk instead of ank.

(iii): A ∈ ([`∞]e.r : `∞) if and only if {ank}k∈N ∈ {[`∞]e.r}β for all n ∈ N and (3.2) holds with ãnk
instead of ank.

Corollary 4.7. Let A = (ank) be an infinite matrix. The following statements hold:
(i): A = (ank) ∈ (c0 : [c0]e.r) if and only if (3.2) and (4.2) hold with bnk instead of ank.
(ii): A = (ank) ∈ (c : [c0]e.r) if and only if (3.2), (4.2) and (4.5) hold with bnk instead of ank.
(iii): A = (ank) ∈ (`∞ : [c0]e.r) if and only if (4.5) holds with bnk instead of ank.
(iv): A = (ank) ∈ (c0 : [c]e.r) = (c : [c]e.r) = (`∞ : [c]e.r) if and only if (3.2) and (3.3) hold with bnk

instead of ank.
(v): A = (ank) ∈ (c : [c]e.r) if and only if 3.2), (3.3) and (4.3) hold with bnk instead of ank.
(vi): A = (ank) ∈ (`∞ : [c]e.r) if and only if (3.3) and (4.4) hold with bnk instead of ank.
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(vii): A = (ank) ∈ (c0 : [`∞]e.r) = (c : [`∞]e.r) = (`∞ : [`∞]e.r) if and only if (3.2) holds with bnk
instead of ank.
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